
Vol. 30 ISMB 2014, pages i302–i309
BIOINFORMATICS doi:10.1093/bioinformatics/btu280

Ragout—a reference-assisted assembly tool for

bacterial genomes
Mikhail Kolmogorov1,2, Brian Raney3, Benedict Paten3 and Son Pham4,*
1St. Petersburg University of the Russian Academy of Sciences, 2Bioinformatics Institute, St. Petersburg, Russia, 3UCSC,
1156 High Street, Santa Cruz, CA and 4Department of Computer Science and Engineering, UCSD, 9500 Gilman Drive,
La Jolla, CA, USA

ABSTRACT

Summary: Bacterial genomes are simpler than mammalian ones, and

yet assembling the former from the data currently generated by high-

throughput short-read sequencing machines still results in hundreds of

contigs. To improve assembly quality, recent studies have utilized

longer Pacific Biosciences (PacBio) reads or jumping libraries to con-

nect contigs into larger scaffolds or help assemblers resolve ambigu-

ities in repetitive regions of the genome. However, their popularity in

contemporary genomic research is still limited by high cost and error

rates. In this work, we explore the possibility of improving assemblies

by using complete genomes from closely related species/strains. We

present Ragout, a genome rearrangement approach, to address this

problem. In contrast with most reference-guided algorithms, where

only one reference genome is used, Ragout uses multiple references

along with the evolutionary relationship among these references in

order to determine the correct order of the contigs. Additionally,

Ragout uses the assembly graph and multi-scale synteny blocks to

reduce assembly gaps caused by small contigs from the input assem-

bly. In simulations as well as real datasets, we believe that for common

bacterial species, where many complete genome sequences from

related strains have been available, the current high-throughput

short-read sequencing paradigm is sufficient to obtain a single high-

quality scaffold for each chromosome.

Availability: The Ragout software is freely available at: https://github.

com/fenderglass/Ragout.

Contact: spham@salk.edu

1 INTRODUCTION

The recent proliferation of next-generation sequencing with short

reads has enabled many new experimental opportunities, but it

has also raised formidable computational challenges in genome

assembly. Even for relatively simple bacterial genomes, their

assemblies from current generation of high-throughput short

reads are still fragmented with hundreds of contigs. To improve

the assembly’s quality, recent studies have utilized longer Pacific

Biosciences (PacBio) reads or jumping libraries to connect con-

tigs into larger scaffolds or help assemblers resolve ambiguities in

repetitive regions of the genome (Bashir, 2012; Deshpande, 2013;

Koren, 2012). However, their popularity in current genomic re-

search is still limited by high cost and error rates.
When a related genome is available, an alternative approach

is to use this genome to guide the assembly of the target genome,

in a method called ‘reference-assisted assembly’. The first

reference-assisted assembly tools aligned contigs against the ref-

erence and ordered them according to their positions in the ref-

erence genome. While this approach is still commonly used, it

introduces errors when structural variations between the refer-

ence and the assembled (target) genome are present. In an at-

tempt to address this problem, Gaul and Blanchette (Gaul and

Blanchette, 2006) formulated the contig ordering problem, which

attempts to order contigs so that the 2-break distance (DCJ dis-

tance) (Alekseyev and Pevzner, 2009; Bergeron et al., 2006) be-

tween the resulting scaffold and the reference genome is

minimized. This formulation has been further applied in some

reference-guided assembly tools (Richter et al., 2007; Rissman

et al., 2009). Unfortunately, while the approach is theoretically

sound, these tools still generate erroneous scaffolds when there

are rearrangements between the target and reference genomes.

This poses an important question: is a single reference genome

sufficient to obtain a single scaffold (for each chromosome) with-

out errors?

Recently, Kim et al. (2013) introduced RACA software, which

made an important step toward reliable reconstruction of the

target (assembled) genome. In contrast to other tools, which

use only one reference, RACA utilizes a reference as well as

multiple outgroups to guide the assembly. This approach

proved to be valuable, since the adjacency information in the

outgroups can also help infer the adjacencies in the target

assembly.

Although RACA marked an important advancement in the

reference-guided assembly problem, it still suffers some limita-

tions. First, RACA uses information from outgroup genomes,

but it heavily relies on a single reference. As with any genome

rearrangement tools, RACA decomposes these sequences into

synteny blocks. However, rather than constructing synteny

blocks by considering all input sequences, RACA constructs syn-

teny blocks based on pairwise sequence alignment against only

the reference genome. This approach, in some cases, cannot

detect synteny blocks (Pham and Pevzner, 2010) and also

raises the question of what to do with assembly sequences (con-

tigs) that do not align against the reference. Second, unlike syn-

teny blocks constructed from complete genomes, synteny blocks

constructed in the presence of contigs can be fragmented, since

assemblies usually have contigs of various lengths. Constructing

synteny blocks from fragmented assemblies raises a problem: on

which scale should synteny blocks be constructed? If one con-

structs large-scale synteny blocks, then small and fragmented

synteny blocks (within small contigs) are not considered, thus

leading to gaps in the assembly. On the other hand, if one con-

structs small-scale synteny blocks, then the rearrangement*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

https://github.com/fenderglass/Ragout
https://github.com/fenderglass/Ragout
mailto:spham@salk.edu
next 
high 
[6,10,3]
``
''
[8]
[5,1]
[15,16]
[9
]
ly
[14
]
ly
XPath error Undefined namespace prefix
XPath error Undefined namespace prefix


analysis becomes harder, since smaller synteny blocks are more

likely to exhibit structural variations and are also more suscep-

tible to be incorrectly identified (i.e. false synteny blocks). This

dilemma must be addressed in order to obtain high-quality

scaffolds.

In this work, we present Ragout (Reference-Assisted Genome

Ordering UTility), a genome rearrangement approach for refer-

ence-assisted assembly that can produce high-quality scaffolds

with a small number of misordered contigs and high genome

coverage. Rather than working with a single reference, Ragout

uses multiple complete genomes from closely related species/

strains. In contrast with most existing tools, in which only a

fixed scale of synteny blocks is used, our algorithm works itera-

tively with different scales of synteny blocks and also utilizes the

assembly graph to improve scaffolds.

We demonstrate that with multiple references, Ragout signifi-

cantly improves the assembly of the target genome compared to

existing tools. Through simulations as well as real datasets, we

believe that for common bacterial species, for which many com-

plete genome sequences from related strains have been made

available, the current high-throughput short-read-sequencing

paradigm is sufficient to assemble into a single high-quality scaf-

fold. The Ragout software is freely available at: https://github.

com/fenderglass/Ragout.

2 METHODS

2.1 Algorithm overview

Ragout takes as input:

� an assembly (a set of contigs);

� a set of related genomes; and

� a phylogenetic tree of all the genomes (including the target

assembly).

It outputs high-quality scaffolds in the form of ordered lists of contigs.

Ragout first decomposes the input sequences into synteny blocks using

Sibelia software (Minkin et al., 2013). After this stage, these sequences are

represented in the alphabet of synteny blocks instead of as strings of

nucleotides. While each reference sequence is transformed into a single

sequence of synteny blocks (a list of signed numbers), the assembly cor-

responds to multiple sequences of synteny blocks because the target

genome has been fragmented into multiple contigs.

Due to this fragmentation, some adjacency information is missing.

Ragout uses a genome-rearrangement approach to infer these missing

adjacencies. Initially, we filter all repetitive blocks as well as blocks

that are not present in the target assembly, since these kinds of synteny

blocks are hurdles in most current genome-rearrangement algorithms.

From the remaining blocks, we build an incomplete multi-color break-

point graph, in which vertices correspond to the ends of synteny blocks

and edges represent adjacencies between them. Ragout further solves

the Half-breakpoint State Parsimony Problem to transform this graph

to the ‘normal’ multi-color breakpoint graph (Alekseyev and Pevzner,

2009) by recovering missing adjacencies in the target assembly. Next,

contigs are assembled into scaffolds with respect to the inferred adja-

cencies. The above procedure is repeated multiple times with different

synteny block scales, and the resulting scaffolds in these iterations are

reconciled into a single set of scaffolds. Afterwards, a refinement step

is performed. In this step, small and repetitive contigs are recovered

and inserted back into the scaffolds by using the adjacency information

from the assembly graph. The pseudocode of Ragout is described in

Algorithm 1.

Algorithm 1 Ragout pseudocode

procedure RAGOUT(references, target, phylogeny, blockSizes)

assemblies ;

for all blockSize in blockSizes do

synBlocks RUNSIBELIA(references, target, blockSize)

bpGraph BUILDBREAKPOINTGRAPH(synBlocks)

weightedGraph EDGESSCORE(bpGraph, phylogeny)

adjacencies MINPERFMATCHING(weightedGraph)

scaffolds BUILDSCAFFOLDS(target, adjacencies)

ADD(scaffolds, assemblies)

end for

scaffolds MERGEITERATIONS(assemlies)

assemblyGraph BUILDASSEMBLYGRAPH(target)

scaffolds REFINESCAFFOLDS(scaffolds, assemblyGraph)

OUTPUTSCAFFOLDS(scaffolds)

end procedure

Since the synteny block-reconstruction algorithm used in Ragout has

been described in (Minkin et al., 2013), we will not describe it in this

article. Below, we delve into the details of Ragout algorithm, assuming

that synteny blocks have already been constructed.

2.2 A genome-rearrangement approach for recovering

missing adjacencies

Given reference sequences and assembly in the alphabet of synteny

blocks, our task is to recover the missing adjacencies of synteny blocks

in the target assembly. While breakpoint graphs best capture adjacency

information, they have thus far only been defined for complete genomes.

Below, we introduce incomplete multi-color breakpoint graphs for present-

ing synteny block adjacencies in the assembly and reference sequences.

2.2.1 Incomplete multi-color breakpoint graphs Given an assembly

A and k reference sequences P1, . . . , Pk in the alphabet of synteny blocks

B, we define the incomplete multi-color breakpoint graph BG(A, P1, . . . ,

Pk)= (V, E), where V=fbhi ; b
t
i jbi 2 Bg: For each synteny block, there are

two vertices in the graph which correspond to the tail and head of the

block. Edges are undirected and colored by k+1 colors. An edge con-

nects vertices that correspond to heads/tails of adjacent synteny blocks

and is colored by the corresponding color of the genome/assembly. To

simplify the notation, we use red, P1, . . . , Pk to refer to the colors of

edges, where red edges represent the adjacencies of synteny blocks in

the target assembly A, and Pi represents the adjacencies of synteny

blocks in genome Pi (see Fig. 1A).

Before constructing the graph, we filter synteny blocks from reference

genomes that are not present in the target assembly, since these synteny

blocks do not help to infer the adjacencies in the target genome. Also, we

filter synteny blocks that have multiple copies within any sequences, since

duplicated synteny blocks make further analysis in the breakpoint graph

complicated.

After this filtering, the constructed graph has two important proper-

ties: (i) each vertex has at most one edge of each color (since all repetitive

synteny blocks are removed), and (ii) each vertex corresponds to a certain

synteny block in the target genome. Therefore, if the target genome were

available, the set of all red edges would define a perfect matching in the

graph. However, since the genome is fragmented into contigs, the adja-

cency information of the target genome at the vertices that correspond to

the end of contigs is missing. The main task is to infer these missing red

edges in the graph using other adjacencies from the reference genomes

as well as using their evolutionary relationship in the form of a phylo-

genetic tree.

i303

Reference-assisted assembly tool for bacterial genomes

,
high 
high 
short 
read 
high 
https://github.com/fenderglass/Ragout
https://github.com/fenderglass/Ragout
high 
[12]
genome 
``
''
[1]
Algorithm
1
procedure
all
blockSizes
end
end
block 
[12]
paper
genome 
. 
.
1
2


2.2.2 The phylogenetic tree Let T be a rooted phylogenetic tree of

the genomes A, P1, . . . , Pk. T consists of k+1 leaves, (k – 1) internal

nodes of degree three, and one node of degree two (called the root).

Edges connecting two nodes are called branches. Branch length represents

evolution time (evolution time is usually inferred from the number of

nucleotide substitutions in sequence alignment).

A parsimonious model for rearrangements. Given a tree T with all

of its k+1 leaves represented as complete genomes (in the alphabet of

synteny blocks), the parsimony procedure (Fitch, 1971; Sankoff, 1975)

explains the descent of these various sequences from a common ancestor

with the fewest number of changing operations, associated with a min-

imum cost value. When one of these genomes is divided into contigs, a

possible formulation for recovering the target genome corresponds to

finding a permutation of these contigs such that the parsimony procedure

returns the lowest cost among all possible orderings of these contigs. Note

that this is a double optimization. One step finds the most parsimonious

explanation for a given configuration of the target genome, while the

other step finds the configuration of the target genome having lowest

cost. The usual (and more correct) choice for the allowed operation in

the first optimization is the 2-break operation (also called a DCJ oper-

ation) since it can well approximate many real rearrangement operations

(Alekseyev and Pevzner, 2009). However, accounting for such an oper-

ation will lead to an NP-complete problem (Ma et al., 2006). In this work,

rather than using the 2-break operation, we study the parsimonious

approach on individual breakpoints. While considering breakpoints indi-

vidually may not adequately reflect the reality of rearrangements (since

each rearrangement uses at least two breakpoints), this method is com-

putationally feasible and has been proven to be valuable in the problem

of ancestral genome reconstruction (Ma et al., 2006).

In the breakpoint graph BG(A, Pi, . . . , Pk), we call each vertex a half-

breakpoint (since a breakpoint involves two synteny block ends). For a

given genome Pi, the state of a half-breakpoint vi is defined as the half-

breakpoint adjacent to it, i.e. the vertex vj, such that the color of the edge

(vi, vj) is Pi (color) in BG. Because of the first graph property described

above, each half-breakpoint has at most one such state. If the synteny

block corresponding to vi is missing in a genome, the state vi is void (see

Fig. 1B).

Rather than using the parsimony procedure with 2-break operations,

we study the parsimony procedure with respect to the change of half-

breakpoint’s states for each vertex in the breakpoint graph. The cost

associated with a state change along a branch b of length � in the phylo-

genetic tree isWðbÞ=e�� : Intuitively, the longer a branch, the more likely

a half-breakpoint state can change along it, and therefore the smaller the

corresponding cost. Next, we formulate the Half-breakpoint State

Parsimony Problem in order to infer the evolutionary scenario of a par-

ticular half-breakpoint.

2.2.3 Half-breakpoint state parsimony Given a half-breakpoint u

and the phylogenetic tree T, each leaf of which is labeled by state(u) in

each corresponding genome. Label the internal nodes of T in order to min-

imize the total cost needed to derive the leaves’ states from their common

ancestor.

Below is a linear time algorithm for solving this problem. The solution

for this problem mimics Sankoff’s dynamic programming algorithm for

the weighted small parsimony problem. The optimality proof is perfectly

analogous to Sankoff’s proof (Sankoff, 1975).

� Input: stateðuÞ for each leaf node of tree.

� Output: stateðuÞ for each internal node, along with the corresponding

cost.

� Objective function: st(v)=minimum score of the subtree rooted at

vertex v if v has state t.

� Initialization: for each leaf node l: st(l)=0 if the state of leaf node is

t, otherwise st(l)=1.

� Recursion: The score at each vertex is based on the scores of its

children:

st parentð Þ=mini si leftchildð Þ+� i;tW leftbranchð Þg
�

+minj sj rightchildð Þ+� j;tW rightbranchð Þg
�

where � i;j=0 i fi=j and1 otherwise:

� Termination: minasaðrootÞ:

� Complexity: O(n�d), where n is the number of leaves and d is the

number of possible states.

When all the internal nodes of the tree have already been labeled, the

cost of half-breakpoint state parsimony of the half-breakpoint u can be

calculated by summing the cost in all the branches that the state changes.

P u;Tð Þ=
X

branch i;jð Þ

� i;jW branchlengthð Þ ð1Þ

2.2.4 Recovering missing adjacencies Since the half-breakpoint state

parsimony problem can be solved efficiently, the remaining question is to

recover all missing adjacencies such that
X

u2G
Pðu;TÞ—the total cost of

all half-breakpoints in G—is minimal. Since we filtered all duplicated

synteny blocks as well as synteny blocks that do not appear in the

target assembly, adjacencies in the target genome define a perfect match-

ing in the graph. The cost of this matching is defined to be the sum of the

half-breakpoint parsimony cost of all vertices (half-breakpoints).

For each vertex that is not incident to a red edge in the breakpoint

graph, the Ragout algorithm finds the cost for the half-breakpoint state

parsimony problem on each of its possible states. These states are chosen

from the vertex’s adjacent vertices in the breakpoint graph. Since choos-

ing a state for a particular half-breakpoint corresponds to choosing an

edge incident to it, for each edge in the breakpoint graph, two such cost

values are calculated. We assign the weight of each edge as the sum of

these two values. As some adjacencies in the target genome are already

known (vertices incident to a red edge), we can also remove those vertices

from the graph before applying the Blossom algorithm to find the perfect

matching with minimum cost (in O(jV j4) time) and add corresponding

edges into the final matching afterwards. This matching defines the op-

timal adjacencies in the target genome.

2.2.5 Building scaffolds Finally, we order contigs into scaffolds.

Starting from one contig, we try to extend it in both the forward and

(a) (b)

Fig. 1. (a) A breakpoint graph of three reference genomes and one as-

sembly. The three reference genomes (Ref1, Ref2 and Ref3) are presented

as cyclic permutations of synteny blocks: Ref1(blue): + 1 +2 +3 +4

+5, Ref2(green): + 1 +3 +4 +5 and Ref3(orange): + 1 � 4 – 3 + 5,

respectively. The target assembly (red) is presented as four separated

permutations (corresponds to four contigs): Target Assembly: +1 j+2+

3 j+4 j+5: (b) A phylogenetic tree representing the states of the half-

breakpoint 5h. Each leaf is labeled by the state of the half-breakpoint 5h in

the corresponding reference/target genome. (According to this tree, the

state of 5h in the target genome is 4t, although the correct state of 5h in the

target genome is unknown.)

i304

M.Kolmogorov et al.

. 
-- 
1
. 
[7,17]
[1]
[11
]
[11
]
,
.
. 
[
17]
.
. 
. 


backward directions, using the inferred adjacencies from the matching

above.

2.3 The choice of minimum synteny block size and

iterative assembly

Since synteny block reconstruction is a parameter-dependent procedure,

and the choice of parameters depends on the ‘synteny block scale’

required in each particular application, an important question to ask is:

which scale of synteny blocks should one use for reference-assisted as-

sembly? We argue that using a single scale of synteny blocks is not suf-

ficient to obtain high-quality scaffolds. If one constructs large-scale

synteny blocks, then small and fragmented synteny blocks (coming

from small contigs and micro-rearrangements) are not considered, thus

leading to gaps in the assembly. On the other hand, if one constructs

small-scale synteny blocks, then rearrangement analysis becomes more

difficult, since small-scale blocks are more likely to exhibit structural

variations and are also more susceptible to be incorrectly identified

(false synteny blocks). To resolve this dilemma, we use multiple synteny

block scales in order to build multiple scaffolds and then reconcile these

scaffolds.

Consider two scaffolds As and Aw constructed from large- and small-

scales of synteny blocks, respectively. A contig is called strong if it is in the

scaffold As and called weak if it is in Aw and not in As. Two scaffolds As

and Aw are called consistent if every pair of adjacent contigs in As is either

adjacent or separated by only weak contigs in Aw. Although the order of

contigs in As is more reliable than in Aw, there are many small synteny

blocks that do not reveal in As and only appear in the ‘finer’ scaffold Aw.

We therefore rely on the ‘skeleton of contigs’ in As and insert smaller

contigs from Aw if they are consistent (see Fig. 2).

The merged scaffold is therefore consistent with As. We successively

apply the described procedure to scaffolds in different stages (sorted by

the scale of synteny blocks) until we reach the stage with the smallest

scale.

2.4 Refinement with the assembly graph

While the iterative procedure attempts to maximize the number of contigs

used to build the scaffold, there are still some certain types of contigs that

cannot be utilized in that stage. These contigs include: (i) contigs that are

shorter than minimum synteny block size that existing synteny block

tools can detect (several hundred nucleotides), (ii) contigs contained

only in the target genome and (iii) repetitive contigs. Such fragments

are not considered in the rearrangement analysis and will therefore not

appear in the merged scaffolds. To add these fragments, we need to use

the assembly graph, which has been output by short-read assemblers and

can also be independently constructed from input contigs. The genome

traverses the graph with a certain unknown path. However, since initial

scaffolds are now available, we can use these scaffolds to restore small or

repetitive fragments. This problem is analogous to the problem of repeat

resolution in short-read assembly. Instead of paired-read information, we

have pairs of adjacent contigs built during the rearrangement analysis

stage.

Given an assembly graph and a set of merged scaffolds from the pre-

vious step of the algorithm, for each pair of consecutive contigs from

these scaffolds we find all possible paths connecting them in the assembly

graph that do not contain contigs from the scaffold. If there exists only

one such path, we insert all the intermediate contigs along this path be-

tween the two contigs (see Fig. 3). This procedure significantly improves

the number of used contigs in most datasets.

3 RESULTS

We benchmarked Ragout against other reference-assisted assem-

bly tools [Mauve Contig Mover (Rissman et al., 2009), OSLay
(Richter et al., 2007), RACA (Kim et al., 2013)] on one simulated
and three real bacterial datasets. Since the complete sequences of

target genomes are available, we can also assess the quality of the
resulting scaffolds by the number of misordered contigs, scaffold
gaps and coverage.

As each output scaffold is an ordered list of contigs, we define
the number of misordered contigs as the minimum number of
contigs in the scaffolds whose mapping positions or directions

are not consistent with the mapping positions and directions of
the contigs before and after them. Also, we define the number of
gaps in a scaffold as the number of contig pairs that are adjacent

in a scaffold, but are separated by some other contigs when we
map all contigs to the reference genome. The coverage is defined
as the total number of aligned bases against the reference,

divided by the genome size.
Mauve Contig Mover and OSLay were run with parameters

recommended for bacterial genomes. For Ragout, we ran three

iterations with the corresponding minimum synteny block sizes:
5000, 500, 100, as they are the default scales used in Sibelia
(Minkin et al., 2013) for bacterial genomes. Since RACA

works with only one synteny block size, we chose the maximal
synteny block scale (most reliable).

3.1 Assembly using one closely related reference

First, we benchmark these tools on an easy case in which the
target and reference genomes do not exhibit any structural vari-

ations. In this situation, one reference is sufficient to obtain the
correct assembly. This also allows us to compare Ragout with
MCM and OSLay, which can work only with one reference.

The dataset consists of two different Escherichia coli strains:
DH1 (NC_017625) as the reference and K-12 subs. MG1655
(NC_000913) as the target. The contigs were assembled with

SPAdes assembler (Bankevich et al., 2012). The results can be
seen in Table 1. Ragout and MCM are able to recover one com-
plete scaffold, while OSLay outputs eight scaffolds. The quality

of Ragout’s assembly without refinement is quite similar to
MCM, but with refinement Ragout uses significantly more con-
tigs and produces fewer gaps in the final scaffolds.(a) (b)

Fig. 2. Merging two scaffolds As and Aw built from two different synteny

scales into a scaffold M. Yellow rectangles represent weak contigs. (a) As

and Aw are consistent. (b) As and Aw are not consistent

Fig. 3. Refinement with the assembly graph. The procedure fills scaffold

gaps with small contigs. The big circles illustrate contigs with known

order, while small ones correspond to contigs that were not considered

in rearrangement analysis

i305

Reference-assisted assembly tool for bacterial genomes

``
''
large 
``
''
``
''
1
2
,
3
short 
paired 
(
[16]
[15]
[9
]) 
[12
]
-
E.
[2
]


3.2 Assembly of one chromosome using multiple

references

Next, we want to address a more problematic case in which

multiple references are available, but each of these references

exhibits structural variations comparing to the target genome.

The dataset contains five different Helicobacter Pylori strains:

Puno120 (NC_017378), ELS37 (NC_017063), Gambia94/24

(NC_017371) and G27 (NC_011333) as references and SJM180

(NC_014560) as the target. The corresponding phylogenetic tree

is shown on Figure 4A. The dot plots showing the rearrange-

ments can be seen in Figure 5. Contigs were assembled using

ABYSS (Simpson et al., 2009).
First, we run Ragout as well as OSLay and MCM on each of

the available references separately to illustrate that the ‘usual’

assisted assembly with one reference is insufficient for the current

case. Every tool produces a certain amount of misordered con-

tigs, which can be explained by the structural divergence between

the reference and the target (see Table 2).
Since OSLay and MCM can only run with one reference, we

use Ragout and RACA to benchmark different sets of multiple

references (see Table 3). For RACA, G27 was chosen to be the

reference and others were treated as outgroups. Both tools have

misordered contigs when using three or fewer references. Ragout

is able to infer the correct order of the contigs with the set of four

references, while RACA still has some misordered contigs. Also,

Ragout outputs the assembly with better coverage and fewer

gaps.

3.3 Multiple chromosome assembly using multiple

references

The next dataset was taken from a recent study (Bashir et al.,

2012) in which long PacBio reads were used to obtain the com-

plete de novo assembly of Vibrio Cholerae H1 str.

(AKGH01000001). Here we want to show that with multiple

related references (even though these references and the target

genome have structural variations), complete scaffolds with high

quality can also be obtained from only short-read data. We used

SPAdes to assemble non-paired Illumina reads with read length

40 bp. Three references were chosen so that each of them would

have rearrangements in at least one chromosome compared to

the target genome: O1 Biovar (AE003852), O1 Inaba

(CM001785) and O395 (CP001235). See Figure 6 for the dot-

plots. The phylogenetic tree is shown on Figure 4(B).

Using three references, Ragout was able to correctly recon-

struct two scaffolds that correspond to two V.Cholerae chromo-

somes (see Table 4). Refinement with the assembly graph

significantly increases the number of utilized contigs.

Fig. 5. (a�d) Dot plots of H.Pylori references versus target genomes. (e)

Dot plot of Ragout’s scaffold versus the target genome showing a perfect

diagonal line for visual verification

(a) (b)

(c) (d)

Fig. 4. Phylogenetic trees. (a) Heclicobacter Pylori with SJM180 as

target. (b) Vibrio Cholerae with H1 as target. (c) Staphylococcus Aureus

withUSA300 as target. (d) Simulated genomes. Solid branches contain all

types of rearrangements, while dashed branches contain only indels

Table 1. Comparison of different tools using one reference

Ragout MCM OSLay

Scaffolds 1 (1) 1 8

Coverage 97.9 (97.6) 97.6 96.7

Ordered contigs 129 (79) 77 80

Gaps 52 (71) 73 61

Misordered 0 (0) 0 1

All tools were run with their default parameters. For Ragout, results are given both

with and without (in brackets) refinement. The total number of the contigs is 156.

Initial assembly coverage is 98.18%.

i306

M.Kolmogorov et al.

H.
,
[18
]
``
''
[4
]
V.
short 
, 


For RACA, O1 Inaba was chosen to be the reference and

others were treated as outgroups. RACA outputs three correct

scaffolds with three references and six scaffolds with two refer-

ences. Ragout outperforms RACA by the quality of the assem-

bly, both with and without refinement.

3.4 Assembly using structurally divergent references

Finally, we want to address the case when the references have a

large number of structural variations. This case requires us to

perform simulations because bacterial genomes usually have few

rearrangements.

The phylogenetic tree that was used for simulations is shown

on Figure 4(D). For the sake of simplicity, the tree is chosen to

be symmetrical and can be treated both as an unrooted tree or as

a rooted one with the target branch of infinitesimal length. On

each of the four outer branches (incident to references), five re-

versals and five translocations were simulated. Additionally, to

make the dataset more complex, we have simulated 10 indels on

each of the tree branches, including all inner ones. Genomes were

then decomposed into synteny blocks, and then the target

genome was split into contigs, where each contig represents

exactly one synteny block.

Our analysis includes three cases corresponding to when four,

three or two of the simulated references are available. For each

case, we have generated 100 different datasets. Since the phylo-

genetic tree is symmetric, the result does not depend on which

particular reference is absent. We took E.coli K-12 str. MG1655

substr. (NC_000913) as a target and the number of synteny

blocks in decomposition was 112 in average.
Next, we run Ragout on every dataset. The results of simula-

tions can be seen in Figure 7, which clearly shows that the

number of misordered contigs increases when some of the refer-

ences are missing from the analysis. The errors in the case when

Fig. 6. Dot plots of different chromosomes ofV.Cholerae references (a–c)

versus the corresponding chromosomes of the target genome showing

rearrangements

Table 2. Comparison with MCM and OSLay using one H. Pylori refer-

ence showing misordered contigs

Reference Scaffolds Ordered Misordered Coverage

Mauve contig mover

G27 1 53 7 97.9

Gambia94/24 1 54 8 97.9

ELS37 1 45 9 98.0

Puno120 1 56 11 98.0

OSLay

G27 5 50 1 96.2

Gambia94/24 8 49 3 96.4

ELS37 6 53 3 98.0

Puno120 8 51 2 87.0

Ragout

G27 1 (1) 91 (50) 4 (4) 97.7 (97.4)

Gambia94/24 2 (2) 83 (45) 7 (7) 96.8 (96.6)

ELS37 1 (1) 102 (56) 4 (3) 98.1 (97.5)

Puno120 2 (2) 92 (49) 6 (6) 97.2 (96.9)

All tools were run with their default parameters. For Ragout, results are given both

with and without (in brackets) refinement. The total number of contigs is 183. Initial

assembly coverage is 98.57%.

Table 3. Comparison of Ragout and RACA on H.pylori using multiple

references

References Scaffolds Coverage Ordered Gaps Misordered

Ragout

G27, ELS37 2 (2) 97.8 (97.6) 95 (53) 22 (39) 1 (1)

G27, Puno120, ELS37 1 (1) 97.8 (97.6) 95 (53) 21 (36) 1 (1)

G27, Puno120,

Gambia94/24, ELS37

1 (1) 97.6 (97.3) 93 (46) 22 (38) 0 (0)

RACA

G27, ELS37 3 83.6 35 29 2

G27, Puno120, ELS37 2 83.6 35 30 1

G27, Puno120,

Gambia94/24, ELS37

2 83.8 35 31 1

All tools were run with their default parameters. For Ragout, results are given both

with and without (in brackets) refinement. The total number of contigs is 183. Initial

assembly coverage is 98.57%.

Table 4. Comparison of Ragout and RACA on V.cholerae using multiple

references

References Scaffolds Coverage Ordered Gaps Misordered

Ragout

O1 Inaba 3 (3) 95.3 (94.8) 317 (185) 41 (64) 5 (3)

O1 Inaba, O1 biovar 2 (2) 95.5 (94.7) 305 (179) 46 (68) 6 (4)

O1 Inaba, O1

biovar, O395

2 (2) 95.5 (94.7) 300 (174) 46 (66) 2 (0)

RACA

O1 Inaba, O1 biovar 6 85.8 124 51 0

O1 Inaba, O1

biovar, O395

3 90.0 127 56 0

All tools were run with their default parameters. For Ragout, results are given both

with and without (in brackets) refinement. The total number of contigs is 1407.

Initial assembly coverage is 96.89%.

i307

Reference-assisted assembly tool for bacterial genomes



all references are available can be explained by breakpoint reuse,

which makes it impossible for the algorithm to distinguish over-
lapping rearrangements.

To compare Ragout and RACA, we chose two datasets with
four references, since each run of RACA requires a large number

of manual preparations. Results can be seen in Table 5. In both
cases, Ragout produces better assemblies than RACA; one pos-

sible explanation for this phenomenon is that RACA heavily
relies on one particular reference.

3.5 Parameter choice and iterative assembly

We would like to benchmark Ragout with different parameters
of iterative/non-iterative assembly. The dataset consists of five

strains of Staphylococcus Aureus as references: COL
(NC_002951), JKD6008 (NC_017341), N315 (NC_002745),

RF112 (NC_007622) and USA300 (NC_007793) as the target.
The phylogenetic tree is shown in Figure 4(C). Contigs were

assembled from single-cell sequencing data using SPAdes.
The results of benchmarking can be seen in Table 6. As ex-

pected, the smaller size of a synteny block allows the algorithm
to arrange more contigs, but analysis becomes more complicated.

As a result, the algorithm produces some incorrect adjacencies
which leads to misordered contigs and more fragmented assem-

bly (in number of scaffolds). Next, iterative assembly was per-
formed in three stages (5000, 500, 100). This assembly kept the

complete scaffold from the first stage, while adding some smaller
contigs from the second and third stages. Even though some

misordered contigs could be carried to the merged scaffolds,
these errors are local and do not violate the correct ‘skeleton’

of scaffolds.

4 DISCUSSION

In this article, we have presented Ragout, a package for improv-

ing assemblies using multiple complete references. We demon-
strated that with multiple related genomes available, one can

obtain a complete and high-quality scaffold for each chromo-
some using only high-throughput short-read sequencing. This

marks an important improvement in genome assembly of short
reads and even raises a question whether long PacBio reads or

long jumping libraries are needed for genomic studies of

common bacteria where multiple related references have been

available.
The current version of Ragout uses Sibelia for synteny block

reconstruction and therefore limits itself to bacterial genomes.

When synteny blocks have been available, Ragout is fast and

memory-efficient. We plan to make Ragout compatible with

other synteny block generation tools that can work with mam-

malian genomes [e.g. Cactus aligner Paten et al. (2011)] and fur-

ther extend Ragout to work with mammalian datasets. Another

limitation of Ragout is that it only uses the assembly graph for

recovering repetitive blocks or small contigs that could not be

captured in synteny analysis. Therefore, it can make mistakes

when rearrangements happened on the target branch. Since de

Bruijn graphs can be transformed into breakpoint graphs and

vice-versa, the de Bruijn graphs output from short-read assem-

blers can also be used for rearrangement analysis and we will

focus on this issue in further studies.

ACKNOWLEDGEMENTS

We would like to thank Jaebum Kim for assisting us with the

benchmark of RACA software. We are indebted to Phillip

Compeau, Apua Paquola, Nitin Udpa, Shay Zakov, Nikolay

Vyahhi and Han Do for revising the manuscript and for many

helpful suggestions that significantly improve the paper.

Fig. 7. Correspondence of the number of available references with the

number of misordered contigs for Ragout

Table 5. Comparison of Ragout and RACA on simulated datasets

Dataset 1 Dataset 2

Ragout RACA Ragout RACA

Scaffolds 1 6 1 8

Coverage 95.3 83.5 94.5 75.4

Ordered 112 101 112 90

Gaps 3 6 11 5

Misordered 0 3 4 2

Ragout and RACA were run with synteny block size equal to 500 (the size is known

from the simulations) without refinement. The total number of contigs is 114 in both

cases. Initial assembly coverage is 100%.

Table 6. Iterative assembly of S.Aureus

SB size 100 500 5000 Iterative

Scaffolds 5 2 1 1

Coverage 96.7 96.3 92.0 96.7

Ordered 108 91 62 89

Gaps 75 75 56 73

Misordered 1 0 0 1

Ragout was run with four S.Aureus references with different minimum synteny

block sizes. Iterative assembly was performed with all previous sizes combined

(5000, 500, 100). The total number of contigs is 767. Initial assembly coverage is

98.4%.We did not perform refinement with the assembly graph in order to focus on

the effect of synteny block size.

i308

M.Kolmogorov et al.

S.
``
''
paper
short 
(
,
[13])
``
''


Funding: NIH (grant number 1U41HG007234-01) and VP

Foundation (grant number BI-2013-02), in part.

Conflict of Interest: none declared.

REFERENCES

Alekseyev,M.A. and Pevzner,P.A. (2009) Breakpoint graphs and ancestral genome

reconstructions. Genome Res., 19, 943–957.

Bankevich,A. et al. (2012) Spades: a new genome assembly algorithm and its ap-

plications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Bashir,A. et al. (2012) A hybrid approach for the automated finishing of bacterial

genomes. Nat. Biotechnol., 30, 701–707.

Bashir,K. et al. (2012) A hybrid approach for the automated finishing of bacterial

genomes. Nat. Biotechnol., 30, 701–709.

Bergeron,A. et al. (2006) A unifying view of genome rearrangements. In:

Proceedings of Algorithms in Bioinformatics. Springer, pp. 163–173.

Deshpande,V. et al. (2013) Cerulean: A hybrid assembly using high throughput

short and long reads. In: Proceedings of Algorithms in Bioinformatics.

Springer, pp. 349–363.

Fitch,W.M. (1971) Toward defining the course of evolution: minimum change for a

specific tree topology. Syst. Biol., 20, 406–416.

Gaul,E. and Blanchette,M. (2006) Ordering partially assembled genomes using gene

arrangements. In: Proceedings of the Comparative Genomics. Springer,

pp. 113–128.

Kim,J. et al. (2013) Reference-assisted chromosome assembly. Proc. Natl Acad. Sci.

USA, 110, 1785–1790.

Koren,S. et al. (2012) Hybrid error correction and de novo assembly of single-

molecule sequencing reads. Nat. Biotechnol., 30, 693–700.

Ma,J. et al. (2006) Reconstructing contiguous regions of an ancestral genome.

Genome Res., 16, 1557–1565.

Minkin,I. et al. (2013) Sibelia: A scalable and comprehensive synteny block gener-

ation tool for closely related microbial genomes. In: Proceedings of Algorithms in

Bioinformatics. Springer, pp. 215–229.

Paten,B. et al. (2011) Cactus: Algorithms for genome multiple sequence alignment.

Genome Res., 21, 1512–1528.

Pham,S.K. and Pevzner,P.A. (2010) Drimm-synteny: decomposing genomes into

evolutionary conserved segments. Bioinformatics, 26, 2509–2516.

Richter,D.C. et al. (2007) Oslay: optimal syntenic layout of unfinished assemblies.

Bioinformatics, 23, 1573–1579.

Rissman,A.I. et al. (2009) Reordering contigs of draft genomes using the mauve

aligner. Bioinformatics, 25, 2071–2073.

Sankoff,D. (1975) Minimal mutation trees of sequences. SIAM J. Appl. Math., 28,

35–42.

Simpson,J.T. et al. (2009) Abyss: A parallel assembler for short read sequence data.

Genome Res., 19, 1117–1123.

i309

Reference-assisted assembly tool for bacterial genomes


