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ABSTRACT

Motivation: The past several years have seen the development of

methodologies to identify genomic variation within a fetus through

the non-invasive sequencing of maternal blood plasma. These meth-

ods are based on the observation that maternal plasma contains a

fraction of DNA (typically 5–15%) originating from the fetus, and such

methodologies have already been used for the detection of whole-

chromosome events (aneuploidies), and to a more limited extent for

smaller (typically several megabases long) copy number variants

(CNVs).

Results: Here we present a probabilistic method for non-invasive ana-

lysis of de novo CNVs in fetal genome based on maternal plasma

sequencing. Our novel method combines three types of information

within a unified Hidden Markov Model: the imbalance of allelic ratios at

SNP positions, the use of parental genotypes to phase nearby SNPs

and depth of coverage to better differentiate between various types of

CNVs and improve precision. Our simulation results, based on in silico

introduction of novel CNVs into plasma samples with 13% fetal DNA

concentration, demonstrate a sensitivity of 90% for CNVs 4400 kb

(with 13 calls in an unaffected genome), and 40% for 50–400 kb

CNVs (with 108 calls in an unaffected genome).

Availability and implementation: Implementation of our model and

data simulation method is available at http://github.com/compbio-

UofT/fCNV.

Contact: brudno@cs.toronto.edu

1 INTRODUCTION

Until recently, the prenatal analysis of a fetal genome required

samples directly obtained from the fetus by invasive procedures

like chorionic villus sampling or amniocentesis, where amniotic

fluid is sampled from around the developing fetus.

Amniocentesis, however, has several important disadvantages.

Foremost, it carries a non-trivial risk of miscarriage [estimated

procedure-related fetal loss rate is 0.6–1% (Douglas et al., 2007)],

and hence is refused by a fraction of patients. Secondly, amnio-

centesis cannot be performed too early, as the risk of miscarriage

rises significantly, and is typically indicated for the 15th week of

pregnancy, outside of the time-frame for the safest abortion op-

tions (512 weeks) and leaving only limited time for follow-up

analysis. Finally, amniocentesis is a complex and expensive med-

ical procedure ($1500–$3000). Consequently, amniocentesis is

typically performed only to confirm or reject a diagnosis if a

genetic disease is suspected, e.g. high likelihood of Down syn-

drome based on prenatal ultrasound.

The last several years has seen the initial development of al-
ternative, non-invasive methods for prenatal genetic testing.

Prominent among these are methods that are based on analysis
(arrays or sequencing) of cell-free DNA (cfDNA) extracted from

maternal blood plasma, which contains an admixture of fetal and
maternal DNA. The fraction of fetal DNA in such an admixture

varies depending on multiple factors, including maternal weight
and size of the fetus, but typically builds up from�5–7% early in

the pregnancy to 10% at week 10 (Wang et al., 2013) to as much
as 50% before delivery (Fan et al., 2012; Wang et al., 2013). In

experiments conducted by Kitzman et al. (2012) (and utilized in
this article), the estimated admixture in samples obtained at 8

weeks and 18.5 weeks of gestation was 7 and 13%, respectively.
The decreasing cost of DNA sequencing has made it practical

to directly sequence cfDNA extracted from maternal blood to
identify likely genetic disorders present in the fetus. Non-invasive

methods are becoming more commonly used to directly identify
aneuploidies (abnormal chromosome counts) and are also

enabling preventive screening for heritable genetic diseases, re-
sulting in better prenatal health care (Saunders et al., 2012).

While most non-invasive genetic diagnostics aim to test for a
particular previously known biomarker, Kitzman et al. (2012)

demonstrated the possibility of the reconstruction of the whole
genome of the fetus by combining whole-genome sequencing of

parental genomes with deep sequencing of cfDNA from mater-
nal plasma (78� coverage). The key intuition in this method is

the comparison of allelic ratios at individual SNP loci, as the
inheritance of a particular paternal allele affects the percentage

of reads with that allele at the particular position in the genome.
This method heavily relies on the availability of phased parental

genotypes, as these allow for the inference of likely co-inherited
SNPs, leading to an improvement in the signal-to-noise ratio. It

consequently provides for high accuracy identification of in-
herited (98% accuracy) but not de novo single nucleotide variants

(17 correct calls out of 44 true de novo sites, with 3884 called
positions).

While most efforts to detect copy number variants (CNVs)
from cfDNA sequencing have so far concentrated on whole-

chromosome events [e.g. Chu et al. (2009)], the past year has
seen the first few attempts at methods for genome-wide identifi-

cation of sub-chromosomal de novo CNVs. Such methods are
desired to enable non-invasive prenatal screening for diseases

like DiGeorge syndrome (�3Mb deletion), Prader-Willi syn-
drome (the deletion subtype caused by a �4Mb deletion) and

other disorders associated with a mid to large sized CNV. So far
two manuscripts address the problem of detecting sub-chromo-

somal CNVs (Chen et al., 2013; Srinivasan et al., 2013). While
the exact methods used in both of these approaches differ, both

rely on depth of coverage: they map the reads to the genome,*To whom correspondence should be addressed.
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divide the genome into bins and identify the CNVs by comparing

the number of reads mapped to each bin. The key idea in these

methods is that deletions/duplications will result in more/fewer

fetal reads within a window, and this difference can be identified

using statistical methods. Srinivasan et al. (2013) use depth-of-

coverage computed in 1Mb windows across the genome to iden-

tify CNVs that are typically41MB, though they do report dis-

covery of a 300kb CNV. Nine of the 22 discovered CNVs in 11

patients were concordant with karyotyping results, with most

discrepancies being short (51Mb) CNVs. Importantly, they use

extremely short (25bp) reads, allowing for larger number of frag-

ments at equal coverage depth. Chen et al. (2013) use even larger

10Mb windows, again considering only the number of fragments

mapped, and are able to successfully identify variants 9–29Mb

with only one false positive among six true positives in 1311 pa-

tients. Both methods utilize low coverage WGS of the plasma

cfDNA, while leveraging the large number of samples.
In this manuscript, we introduce a novel model for non-

invasive prenatal identification of de novo CNVs with increased

sensitivity compared with methods published so far. Our method

combines three types of information within a unified probabilis-

tic model. First, our method takes advantage of the imbalance of

allelic ratios at SNP positions that are introduced by various

types of paternally and maternally inherited CNVs. Secondly,

following the work of Kitzman et al. (2012), we use parental

genotypes to phase nearby SNPs, modelling their co-inheritance

(or recombination) and thus improving the signal-to-noise ratio.

Finally, we observed that allelic ratios poorly differentiate be-

tween certain types of CNVs: for example, as further described

below, a duplication of a paternally inherited allele results in

extremely similar allelic ratios to deletion of a maternally in-

herited one. We thus combine the allelic ratios with the depth-

of-coverage signal to better differentiate between such cases. Our

simulation results, based on in silico introduction of novel CNVs

into plasma samples with 13% fetal DNA concentration, dem-

onstrate a sensitivity of 90% for CNVs4400kb (with 13 calls in

an unaffected genome), and 40% for 50–400kb CNVs (with 108

calls in an unaffected genome).

2 METHODS

Our method models two types of signal from the data: (i) imbalance of

the allele distributions at SNP loci (discussed in Section 2.1) and (ii)

number of fragments sequenced from �1kb genomic regions (discussed

in Section 2.2). Though each of these is noisy, the two are (nearly) inde-

pendent (modulo number of reads overlapping the SNP position) vari-

ables and can be combined into a single generative model. For this

purpose, we use a Hidden Markov Model (HMM), where we interpret

the allele counts at SNP loci as emissions, while the coverage is used as a

prior probability for each state (see Section 2.3).

For our method, we assume that we have phased haplotypes of both

parents, and deep sequencing data of cfDNA from maternal plasma. In

practice we used whole-genome sequencing (WGS) data for the parents,

with phasing based on 1000 Genomes data (see Section 3.1). All de novo

CNVs thus correspond to a particular parental haplotype duplication or

deletion event. Labelling the two maternal and paternal haplotypes as

MA, MB, PA, PB. For each inheritance pattern—normal inheritance, ma-

ternal duplication, paternal duplication, maternal deletion, paternal dele-

tion—we introduce a set of phased inheritance patterns that enumerates all

the possible configurations of fetal haplotypes corresponding to the

respective inheritance pattern. For example a duplication in the maternal

gamete will consist of one (or more) of six phased inheritance patterns:

MAMAPA;MAMBPA;MBMBPA;

MAMAPB;MAMBPB;MBMBPB

There are a total of 20 phased inheritance patterns (PP): six each for

maternal/paternal duplication, two each for maternal/paternal deletion

and four for normal inheritance). We refer to the number of alleles

(copy count) inherited by the fetus as jPPj. We use r to refer to the

percentage of cfDNA that is fetus-derived; this parameter is estimated

from positions in the genome where the parents are homozygous for

alternate alleles.

2.1 SNP allele distribution

For every SNP locus we observe a distribution of nucleotides in maternal

plasma reads. In this section we focus on calculating the probability of the

observation with respect to a phased inheritance pattern. Formally, we

observe the counts of the four nucleotides fkA; kC; kG; kTg and compute

the probability of observing each of these from a particular phased in-

heritance pattern PP. Ideally, these counts should follow multinomial

distribution with the parameter vector ðpA; pC; pG; pTÞ. However we

have found that modelling them as independent Gaussians with variance

equal to the mean (as an approximation of the Poisson), makes the in-

ference of the inheritance pattern more robust to noise.

More formally,

Pr½kxjMA;MB;PA;PB; r;PP��N �x; �xð Þ ð1Þ

To compute the expected support �x for x 2 fA;C;G;Tg, we first

adjust the mixture ratio r based on the expected number of fetal haplo-

types jPPj, as absence/presence of an additional fetal copy in the plasma

sample influences the local fetal mixture ratio. We accommodate this in-

fluence of jPPj expected fetal haplotypes instead of regular two as follows:

r0=
jPPj � r=2

jPPj � r=2+ð1� rÞ
ð2Þ

Then for each nucleotide x we compute the probability px of observing

a read supporting x. Such a read might have originated from multiple

haplotypes, including two maternal haplotypes and jPPj fetal haplotypes.

We can individually evaluate this probability for each haplotype and

subsequently sum them to obtain px:

px=
X

i2fA;Bg

½Mi equals x� �mið1� r0Þ

+
X
y2PP

½y equals x� �
r0

jPPj

ð3Þ

For reads putatively coming from maternal portion of the cfDNA

sample, we correct for maternal CNVs by using the allele ratios mi as

observed in maternal-only sequencing data. Additionally, to mitigate

noise we add pseudocount � (proportional to the genome-wide coverage)

to these counts.

mi=
�+#reads supporting Mi in maternal sample

2�+
X

j2fA;Bg

#reads supporting Mj in maternal sample
ð4Þ

We thus obtain the expected probability distribution for each nucleo-

tide observed at this SNP locus.

To obtain the expected number of reads �x supporting particular vari-

ant at this SNP locus, we have to multiply px by the number of reads

mapped,

�x=px � #mapped reads ð5Þ

As we describe later, we use this probability distribution N �x; �xð Þ

that is conditional on phased pattern PP as the emission distribution for

each nucleotide in our HMM.
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2.2 CNVs and depth of coverage

Variations in number of fragments sequenced per a region is a standard

measure used for detection of mid- to large-sized CNVs [see Medvedev

et al. (2009) for a review], and has also been used for CNV detection from

maternal plasma (Chen et al., 2013; Srinivasan et al., 2013). However, the

relatively low admixture of fetal DNA in the maternal plasma together

with cfDNA sequencing biases considerably limit potential of methods

relying on coverage signal from a single sample. Furthermore, the high

variability of the coverage derived from blood plasma (Fig. 1) makes it

difficult to identify shorter CNVs. Thus, methods Chen et al. (2013) and

Srinivasan et al. (2013) use large bins and require multiple datasets to

establish a baseline for CNV calling.

Simultaneously, the coverage forms an important complementary

signal to the allelic distributions described above: certain ratios have

very similar probability under different phased patterns, e.g. a deletion

of a maternally inherited allele may yield distributions similar to a pater-

nally inherited duplication. Incorporating the coverage signal helps to

discriminate such states. In our method, we use the coverage information

as a noisy predictor to complement the signal we obtain from SNP loci.

As a measure of coverage in a genomic region, we use window ratio

value (WRV) analogous to the bin ratio valuemeasure used by Srinivasan

et al. (2013), which is essentially the number of fragments mapped to the

region and normalized by the number of fragments mapped to other

regions with similar GC content. Note that WRVs are independent of

GC content and depth of sequencing of the sample.

For the purpose of our model, we split the genome to non-overlapping

windows, each containing a single SNP, with breakpoints being in the

middle between two adjacent SNPs. For each SNP i the corresponding

WRVi for the window Wi containing the i-th SNP position is then com-

puted as the ratio of number of fragments NWi
mapped to Wi to the sum

of fragments mapped to 200 windows of the same size with GC content

closest to Wi:

WRVi =
NWiX

W2 neigh200
GC
ðWiÞ

NW
ð6Þ

However, the variable length of the windows makes such computations

expensive as computation of neigh200GCðWiÞ is linear in number of windows.

To make the WRV computations practical, we scale NWi
to correspond

to expected number of fragments as if jWij=1kb by multiplying NWi

by 1000=jWij (for clarity, not shown in our equations). Then WRVs in

1kb bins can be precomputed, enabling us to find neigh200GCðWiÞ in time

logarithmic from the number of bins. Using 1kb bins is a good approxi-

mation as the mean distance between two adjacent SNP loci is expected

to be 1�kb.

Overall, our goal is to estimate the probability of observing WRVS
i in

the studied plasma sample conditional on the number of fetal haplotypes

(jPPj), which is either three for duplication, one for deletion or two for

normal inheritance. To do so, we use a reference sample to obtainWRVR
i

for comparison (computed in the same genomic window Wi). Further we

need to compute two more reference WRVR
i s, each scaled to reflect one

CNV type. For duplication, we would expect to see ð1+r=2Þ times more

fragments while for deletion ð1� r=2Þ times less fragments, thus the

scaled WRVR;jPPj
i is estimated as

WRVR;jPPj
i =

NWR
i
� ð1+ jPPj � 2ð Þ � r=2Þ

X
W2neigh200

GC
ðWR

i Þ

NWR
ð7Þ

Finally, we can compute the probability of WRVS
i being generated

from an event with fetal allele copy count jPPj as:

NðWRVR;jPPj
i �WRVS

i ;�=0; �noiseÞ ð8Þ

where we model the difference between WRVS
i and WRVR

i as a Gaussian

noise with zero mean and empirically estimated variance �noise.

By normalizing the probabilities of WRVS
i w.r.t. all phased patterns,

we obtain priors for each phased pattern that are used in the HMM

described in the next section.

As a reference plasma sequencing coverage, we use plasma sample of

the G1 trio of Kitzman et al. (2012) dataset, as the overall coverages

observed in corresponding bins between the two samples correlate well

(mean absolute error of WRVs being 0.000347, see Fig. 2A). Because

coverage variation of cfDNA from plasma has much wider distribution

than standard WGS, a sample from other plasma is more suitable than

the same trio maternal sample (see Fig. 2B) for purpose of coverage

distribution reference in our model. Availability of additional plasma

datasets would enable us to further improve the accuracy of the reference

bins.

Note that compared with previous methods, we use significantly smal-

ler windows: �1kb versus 100kb–1Mb used previously by Chen et al.

(2013) and Srinivasan et al. (2013). As mentioned earlier, our goal here is

not to detect CNVs immediately, but to rather compute a probability

distribution over the number of haplotypes the fetus has inherited, which

are used as priors in the more complex model. Due to the independence

assumptions inherent in the HMM we want these priors, applied at each

state, to be (approximately) independent, and hence we picked non-over-

lapping windows each containing one SNP locus.

2.3 HMM for CNV Inference

To combine the signals from individual SNP positions, we use an HMM

with 20 states corresponding to modelled phased inheritance patterns

(Fig. 3). That means each sate represents a possible set of parental haplo-

types inherited by the fetus. States representing normal inheritance are

central to the model assuming that two CNVs cannot be immediately

subsequent. Between states of the same inheritance pattern, we allow for

transitions reflecting either recombinations or errors in phasing. For each

state, the emissions are the counts of individual alleles in reads mapped to

that particular SNP position. The probability of the observed emission is

the probability of such allele counts in the expected allele distribution

Fig. 1. Distribution of fragments per kilobase of chromosome 1 per mil-

lion fragments (FPKM) in 1 megabase segments for plasma sample (blue)

and maternal sample (red) of the I1 trio
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(a) (b)

(c) (d)

Fig. 3. HMM used for CNV inference. (a) High-level architecture of the HMM with five sets of states corresponding to five types of fetal inheritance.

Note, we do not allow two CNVs to be adjacent; thus, switching between two CNVs always has to go through a normal inheritance state. Edges in (a)

represent edges coming in/out of all states between two sets of states. (b–d) Correspond to the diagram of states of the HMM within the normal

inheritance, maternal duplication and maternal deletion states of (a). Paternal duplications/deletions are analogous to (c) and (d). Inner edges in (b–d)

serve to model errors in phasing or recombination events

(a) (b)

Fig. 2. (a) A scatterplot demonstrating the correlation of WRV between plasma samples of I1 and G1 trios. The shown WRVs were computed for

windows of size 1 kb in chromosome 1. (b) Histogram of absolute errors betweenWRVs from different samples, comparing distribution of absolute error

between plasma samples of I1 and G1 trios (red), and between plasma sample and maternal sample of I1 trio (blue). There is a notably heavier tail in case

of plasma to maternal sample error distribution, composed of windows with weak WRV correspondence—an artifact of wider coverage distribution in

plasma cfDNA sample compared to standard WGS maternal sample (Fig. 1). This artifact causes plasma to maternal sample WRV comparison to have

higher mean absolute error (0.000521, compared with 0.000347 for plasma I1 to plasma G1) even though they are from the same trio
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conditional on phased inheritance pattern as described above in

Section 2.1.

To incorporate the coverage information, for each SNP position, we

multiply the transition probabilities into the state by the copy number

priors obtained in Section 2.2. Specifically, each edge incoming to a state

is multiplied by the corresponding prior of inheriting that many haplo-

types, which are then normalized so that the sum of the probabilities

leaving each state is one.

The transition probabilities within an event type (e.g. maternal dupli-

cation) were set to 0.01, to reflect expected haplotype block lengths of

several hundred SNPs. Further, the transition probability for starting a

CNV was set to one in ten thousand SNP loci (0.0001) with length ex-

pected to span approximately one thousand SNPs (i.e. transition prob-

ability back to normal inheritance was set to 0.001).

2.4 CNV Simulation in silico

To evaluate the accuracy of our CNV discovery algorithm, we created

simulated datasets with CNVs of various sizes inserted into the sequenced

plasma. While previous approaches have used simple Poisson modelling

of the coverage of cfDNA for simulation purposes (Chen et al., 2013), we

propose a more elaborate model to more accurately model the extremely

uneven coverage that we observe in cfDNA samples (Fig. 1). Our simu-

lation performs the deletion or duplication of a particular fetal allele. We

need to resolve the haplotypes of every individual in the trio, to correctly

add or remove reads originating from a target haplotype of the CNV

event. Similarly to our detection method (described in Results, below), we

used Beagle 4 (Browning and Browning, 2013) with 1000 Genomes

Project reference haplotypes; however, we also use the fetal genome

sequenced after delivery, and utilize pedigree information to phase each

individual in the trio.

To simulate a duplication, of either maternal or paternal origin,

we used the parental DNA sequencing data from the family trio

dataset. First, we filtered for reads mapping to the intended region

of duplication that also match the target haplotype of the parent ac-

cording to the parental phasing. In case of reads not uniquely mapping

to either of the two parental haplotypes, i.e. the read mapped to a

region without any heterozygous SNP locus, the read was selected

randomly with probability 0.5. Subsequently, the filtered reads were

uniformly down-sampled according to fetal DNA mixture ratio and

the original plasma DOC in this region to match the expected number

of reads derived from a single fetal haplotype in plasma sequencing.

Resulting reads were then mixed together with original plasma reads to

create a plasma sample containing the desired duplication in the fetal

genome.

To simulate a deletion, we first identified a fetal haplotype in-

herited from the parent of choice, which was to be deleted. We filtered

the plasma sample removing reads coming from this target fetal haplo-

type. That is, each read mapped to the intended deletion region was

removed with probability of belonging to the fetus and also being

inherited from the intended parent. To find this probability, we used

the phasing to check which maternal and fetal haplotypes match the

SNPs in the read. If none of the four haplotypes matched the read, we

removed the read with probability r=2 where r is the fetal DNA ad-

mixture ratio. If the fetal target haplotype matched the read, it was

removed with probability

r=2

Nm � ð1� rÞ=2+Nf � r=2
ð9Þ

where 05Nf � 2 and 0 � Nm � 2 are respectively the number of fetal

and maternal haplotypes that matched the read.

We also simulated plasma datasets with decreased fetal DNA mixture

ratio. To achieve a desired down-rated admixture ratio r0 in our plasma

sample, we had to remove appropriate number of reads coming from the

fetal DNA. First, we have computed the appropriate fraction of

fetal-origin reads, w.r.t. original admixture ratio r, to be removed from

the plasma as

rdel=1�
1� r

r
�

r0

1� r0
ð10Þ

Similarly to simulation of a deletion, we have then filtered the plasma

reads for reads originating from the fetal genome. Since this cannot

be decided without ambiguity, we estimated the corresponding probabil-

ity pf:

pfðseqÞ=

Nf � r=2

Nm � ð1� rÞ=2+Nf � r=2
iff Nm+Nf40

r iff Nm+Nf=0

8><
>:

ð11Þ

where Nf and Nm, as above, are the number of fetal and maternal haplo-

types that match SNP alleles of the read. Thus a read was then removed

with probability equal to

rdel � pfðseqÞ ð12Þ

3 RESULTS

3.1 Datasets and processing

In our experiments, we used WGS data of two mother–father–

child trios I1 (Table 1), and G1, published by Kitzman et al.

(2012). In our experiments, we mainly used the first trio I1

with 13% fetal admixture in obtained plasma. For maternal,

paternal and plasma datasets, the reads were aligned to the

hg19 genome using BWA. We genotyped both the parents

using Samtools and Vcftools. To improve the precision of geno-
typing, we only consider variants at positions previously identi-

fied as variable within the 1000 Genomes Project. Subsequently

we phased the haplotypes using Beagle 4 (Browning and

Browning, 2013) with reference haplotype panels from 1000

Genomes Project.

3.2 Evaluation

We simulated 360 CNVs in I1 plasma to evaluate our method’s

recall, while G1 plasma sample served as a reference in DOC-

based CNV estimation as described in Section 2.2. For each test

case, we picked a random position in chromosome 1, outside

annotated centromere and telomeres regions, to place the simu-
lated CNV. Our simulation methods are described in detail in

Section 2.4. We then ran our algorithm on a genomic window

starting 20Mb before the simulated CNV and ending 20Mb

after the CNV. The results are shown in Table 2. We acknow-

ledge a CNV as correctly called if CNV predictions of the same

type span at least 50% of it, while precision is computed as the

fraction of correct CNV calls over all calls of that category. To

Table 1. Summary of mother–father–child trio I1 sequencing data

[Courtesy of Kitzman et al. (2012)]

Individual Sample DOC

Mother (I1-M) Plasma (5ml, gestational age 18.5 weeks) 78

Whole blood (51ml) 32

Father (I1-P) Saliva 39

Child (I1-C) Cord blood at delivery 40
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evaluate the effect the admixture has on accuracy, we repeated

this experiment not only with the original plasma dataset, but

also once down-sampled to only contain 10% admixture.
The results indicate that our method can achieve nearly perfect

recall and precision for variants 43 megabases, and promising

results down to CNVs of 400 kb. Maternally inherited events are

typically more difficult to identify than paternally inherited ones,

and deletions more difficult than duplications, possibly due to

complete dropout of fetal alleles due to reduced admixture.
To evaluate power of individual signals utilized by our

unified model, we also tested models that take into consideration

only either the allelic ratios or coverage information. The al-

lelic ratios only model is as described above in Section 2.3 but

without multiplying of copy number prior in the transition prob-

abilities. Obtained results are shown together with the results of

the unified model in Table 2.
For predicting fetal CNVs based solely on coverage informa-

tion, we split the sample to bins of uniform size and computed

WRVs for each, following the work of Srinivasan et al. (2013).

We then ran a simple HMM with three states corresponding to

normal inheritance, duplication and deletion, respectively. The

WRVs in bins were interpreted as emissions and the emission

distributions were computed as described in Section 2.2,

Equation (8). We tested the HMM with bin sizes of 100 and

300kb, and the results are summarized in Table 3. Using

larger bins limit resolution of the method, e.g. in case of

300kb bins the obtained recall on5400kb CNVs is (close to)

zero. On the other hand for large CNVs43Mb using 300 kb bin

size mostly improves upon 100kb bins in terms of both recall and

precision.

Note, that a direct comparison with the methods by Chen

et al. (2013) and Srinivasan et al. (2013) is not possible, as they

are tailored to low coverage plasma sequencing data and require

a large number of control plasma samples to evaluate signifi-

cance of observed coverage variation in the studied plasma

sample for CNV calling.

Table 2. Summary of recall on test set composed of 360 in silico simulated CNVs in I1 maternal plasma samples with

13 and 10% fetal admixture ratio

ra�os only combined ra�os only combined ra�os only combined ra�os only combined

recall 55 60 55 60 10 15 25 22
precision 73 52 25 75 67 100 2 2

recall 100 100 98 98 30 40 73 78
precision 100 100 100 100 86 100 23 89

recall 95 100 93 95 95 100 100 100
precision 100 100 100 100 100 100 100 100

recall 50 45 48 48 0 0 15 15
precision 71 69 23 30 NA NA 2 2

recall 100 100 90 92 5 20 38 45
precision 100 100 95 100 100 80 10 16

recall 95 95 100 100 45 40 93 88
precision 100 100 100 100 100 100 97 97

13%

10%

50k - 400k

400k - 3M

>3M

50k - 400k

400k - 3M

>3M

mixture 
ra�o

Paternal Del (20) Paternal Dup (40) Maternal Del (20) Maternal Dup (40)
length

Note: The ‘ratios only’ column corresponds to the method that only uses allelic ratios, but not the coverage prior. In such cases both the

precision and recall are mostly dominated by the model combining both signals. (We write ‘NA’ in a precision field if no call of such

CNV category was predicted by the model).

Table 3. Summary of results obtained by an HMM using only WRV signal

bin size -> 100kb 300kb 100kb 300kb 100kb 300kb 100kb 300kb

recall 5 0 22 0 20 0 8 0
precision 5 0 100 NA 2 0 100 NA

recall 75 25 50 20 75 25 30 18
precision 35 21 100 100 11 5 100 100

recall 75 75 50 55 89 80 32 55
precision 37 94 100 100 81 48 100 100

recall 5 0 18 0 10 0 8 2
precision 8 0 100 NA 2 0 100 100

recall 60 20 32 18 60 15 18 8
precision 26 9 100 100 6 3 100 100

recall 75 60 45 45 85 70 22 45
precision 25 86 100 100 40 24 100 100

mixture 
ra�o

Paternal Del (20) Paternal Dup (40) Maternal Del (20) Maternal Dup (40)
length

13%

10%

50k - 400k

400k - 3M

>3M

50k - 400k

400k - 3M

>3M

Note: The same test set composed of 360 in silico simulated CNVs was used as in Table 2. We ran the model with 100, and 300 kb bin

sizes. (We write ‘NA’ in a precision field if no call of such CNV category was predicted by the model).

i217

Probabilistic method for detecting CNV

kilobases
3 
,
kb
to 
;


To further test precision of our combined method, we ran our
combined model on the whole plasma dataset (expected to con-

tain no large de novo variants) and observed the number of CNV
calls for each size. These numbers are shown in Table 4, with in
silico accuracy for each length shown for comparison. Notably, a

large fraction of the larger false-positive calls correspond to
CNVs already present in parents (and hence inherited, rather
than de novo).

3.3 Implementation note

Our model is implemented in the Python programming language
with the PyPy interpreter. When ran on a whole genome dataset,
our implementation required up to 20GB of system memory and

took54h of single thread CPU time to finish.

4 DISCUSSION

In this manuscript, we introduce a novel probabilistic method for

the identification of de novo CNVs from maternal blood plasma
sequencing with largely increased sensitivity compared with
methods published so far. Our method combines three types of

data: allelic ratios, reflecting the changes in the expected obser-
vations of various alleles at SNP positions in the presence of the
CNV; phasing information, allowing for the combining of allelic

ratios across multiple SNP positions, thus improving the signal-
to-noise ratio; and depth of coverage information reflecting the
change in expected sequencing depth in the presence of the CNV.
We apply the resulting method to simulated sequencing data,

demonstrating promising results for CNVs 4400kb in length,
and especially for CNVs of paternal origin.
Simultaneously, we believe our method can be further im-

proved in several ways. First, our approach of modelling the
depth of coverage prior using small windows is likely suboptimal.
Especially because the method is searching for larger CNVs,

using larger windows would be advantageous; however, in this
case the observations of coverage at adjacent SNPs would no
longer be independent, and thus not properly modelled as an

HMM. We believe a more expressive model that is able to
model such interactions between coverage terms would improve
on the current results. Secondly, our method does not directly
model potential inherited CNVs in the father (maternally in-

herited CNVs are modelled through the use of maternal priors
at each position). Explicitly pre-computing and utilizing
information about these inherited CNVs is likely to reduce the

false-positive rate of ours and related methods. Thirdly, we
incorporated the coverage signal in our model by comparing

the observed WRV with the corresponding WRV in a reference

plasma sample (G1 in our experiments). Using multiple plasma

references would reduce individual-specific biases, thus improve

the overall performance.

The main limitation of our method in practice is the need for

deep maternal plasma cfDNA sequencing to exploit the allelic

ratios signal. Note that the parental genome WGS could be

replaced by genotyping using SNP arrays; however, the need

for a paternal sample is a limitation for broad clinical use.
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Table 4. In silico recall and number of CNVs of various sizes generated in a genome-wide run

50-200k 200-400k 400-750K 750k-3M 3M-7.5M 10M+
Maternal origin 0% 40% 57% 73% 100% 100%
Paternal origin 43% 77% 100% 97% 93% 100%

82 (7, 8, 4) 26 (2, 3, 2) 9 (1, 1, 0) 4 (2, 1, 2) 0 (-) 0 (-)

Combined Model

in silico  CNV recall

WG calls and their (F, M, P) overlap

Note: For each CNV size, we also show (in parenthesis) the number of calls that are from at least 50% overlapped by

CNVnator (Abyzov et al., 2011) calls on the fetal, maternal and paternal genomes, respectively.
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