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ABSTRACT

Motivation: Understanding and predicting an individual’s response in

a clinical trial is the key to better treatments and cost-effective medi-

cine. Over the coming years, more and more large-scale omics data-

sets will become available to characterize patients with complex and

heterogeneous diseases at a molecular level. Unfortunately, genetic,

phenotypical and environmental variation is much higher in a human

trial population than currently modeled or measured in most animal

studies. In our experience, this high variability can lead to failure of

trained predictors in independent studies and undermines the cred-

ibility and utility of promising high-dimensional datasets.

Methods: We propose a method that utilizes patient-level genome-

wide expression data in conjunction with causal networks based on

prior knowledge. Our approach determines a differential expression

profile for each patient and uses a Bayesian approach to infer corres-

ponding upstream regulators. These regulators and their correspond-

ing posterior probabilities of activity are used in a regularized

regression framework to predict response.

Results: We validated our approach using two clinically relevant

phenotypes, namely acute rejection in kidney transplantation and re-

sponse to Infliximab in ulcerative colitis. To demonstrate pitfalls in

translating trained predictors across independent trials, we analyze

performance characteristics of our approach as well as alternative

feature sets in the regression on two independent datasets for each

phenotype. We show that the proposed approach is able to success-

fully incorporate causal prior knowledge to give robust performance

estimates.

Contact: daniel.ziemek@pfizer.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

With our increasing understanding of the etiology and hetero-

geneity of complex diseases comes the realization that thera-

peutic drugs might need to be tailored to specific

subpopulations of patients. Our current inability to predict

such subpopulations has contributed to the rising cost of drug

development and overall health-care expenditure. One aspect of

this problem is the identification of patient populations that re-

spond to an experimental drug in a clinical trial. It currently

becomes feasible to generate multi-omics (e.g. transcriptomics,

genetics and metabolomics) datasets for all patients in a clinical

trial of hundreds of people for a cost that is only a small per-

centage of the overall cost of the trial.
Research on Precision Medicine (Mirnezami et al., 2012) has

been particularly strong in oncology as many cancers have a

strong genetic basis to leverage for this purpose. For instance,

the National Cancer Institutes of Health (NCI) in the USA re-

cently outlined their criteria for the use of omics-based predictors

(McShane et al., 2013) in NCI-funded clinical trials. They point

out the pitfalls of defining omics-based predictors that do not

translate well to patient population outside the initial trial, i.e.

the problem of overfitting the available data. As a striking ex-

ample of the care that has to be taken when defining signatures,

Venet et al. (2011) compare 47 published gene-expression signa-

tures for breast cancer. The sobering result is that the majority of

signatures do not perform better than any randomly picked set

of genes of similar size. In our experience, the aspect of replic-

ability in independent datasets has not received enough attention

in the current literature on novel methods. It is relatively easy to

demonstrate the benefits of a method within one well-controlled

study but much harder to show translatability to independent

studies. This problem is especially pronounced in human popu-

lations in which genetic and environmental diversity is much

higher than in animal studies. As this problem has impacted

method adoption for our internal research in several cases, we

tried to explicitly validate findings in at least two independent

cohorts in each response prediction scenario.
In this article, we focus on human clinical trials with patient-

level genome-wide gene-expression data. Responders to therapy

are identified at the end of the study using disease-specific

measures. The question of interest is whether the baseline or

early treatment gene-expression data can predict response to

treatment. There has been substantial prior work on establishing

predictive gene-expression signatures based on data-driven meth-

ods alone as well as by leveraging other types of biological

information. For instance, Tibshirani et al. (2002) proposed the

use of regularization techniques to improve gene selection for

predictive signatures early on. Since then, many authors have

proposed approaches using different machine-learning tech-

niques including regularized regression, SVMs and random for-

ests. Cun and Fr€ohlich (2012) give a recent review. One recent

example that utilizes prior knowledge is the PARADIGM ap-

proach (Vaske et al., 2010) which uses probabilistic models to

integrate genetics, epigenetics and transcriptional data with

curated pathway information to determine active pathways in

cancer patients, but does not directly attempt a prediction of

response and non-response status in trial data.
*To whom correspondence should be addressed.
yPresent address: Biogen Idec, Cambridge, MA, USA.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which

permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

mailto:daniel.ziemek@pfizer.com
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu272/-/DC1
,
gene 
2 
study
gene 
disease 
gene 
gene 
machine 
,
,
n't 
XPath error Undefined namespace prefix


As a common consensus, most methods employ some form of
regularization to overcome the problem of many variables but

few samples. Furthermore, methods vary in the amount of prior

knowledge they employ—from no prior knowledge at all to a

mixture of different omics technologies as in the case of

PARADIGM. However, most novel methods have not been de-

veloped in the setting of human data with high intrinsic levels of
phenotypic and genetic heterogeneity and are not evaluated in a

truly independent dataset, e.g. a trial conducted at a different

clinic, but exclusively rely on cross-validation approaches.
In contrast, we present a method that attempts to define bio-

logically interpretable, yet predictive signatures of diseases pro-

gression or response to drug treatment that translate well to new

studies. In conjunction with a well-accepted learning algorithm,

L1-regularized logistic regression (Friedman et al., 2010), we base

our method on a large collection of causal relationships manually

curated from the literature. The causal graph consists of
�450000 causal relationships, of which 4250 000 are unique,

between �37000 entities, representing �65 000 full-text articles

indexed by PubMed. Each causal relationship describes an ex-

perimentally observed perturbation experiment leading to a

defined transcriptional change. We previously published a

Bayesian inference method on this causal graph that given a
set of differentially expressed genes, is able to identify potential

upstream regulators and their biological context (Zarringhalam

et al., 2013). The method is called Bayesian Causal Reasoning

Engine (Bayes-CRE) and will serve as a building block in this

work. We briefly outline it in Section 2. A prerequisite for the

method to work is that relevant biology is captured in the under-

lying knowledgebase of causal relationships. We found that
Bayes-CRE is able to capture the relevant upstream regulators

in numerous test cases, indicating that the collection of pairwise

causal relations in our network has sufficient level of complexity

to be useful. More large-scale dataset with more complex notion

of causality can also be incorporated into our methodology as

they become available in the future.
The search for suitable experimental datasets has been surpris-

ingly difficult. Our criteria for inclusion were (i) a dataset of at

least 20 human subjects with a defined clinical binary outcome,
i.e. responders and non-responders, (ii) at least some detectable

difference in gene expression at baseline between the two groups

and (iii) the availability of a similar but entirely independent trial

for testing purposes. For the purposes of this work, we settled on

two appropriate datasets: the studies of Khatri et al. (2013) and

Einecke et al. (2010) on acute rejection in kidney transplantation
and the work of Arijs et al. (2009) on infliximab treatment in

ulcerative colitis.

In the following, we will define the details of our proposed
method, compare its performance against alternative feature sets

and demonstrate that its application can lead to biologically in-

terpretable predictors that are robust to resampling and, most

crucially, seem to translate well to independent patient

populations.

2 METHODS

Conceptually, we require a set of features characterizing each patient in

the clinical trial which can then be utilized by a classification algorithm

for prediction. In the following, we will explore using (i) a significant set

of normalized gene expression values, (ii) the set of enriched Gene

Ontology (GO) categories (Ashburner et al., 2000) and (iii) significant

upstream regulators and their activity scores (Zarringhalam et al., 2013).

2.1 Data processing

We processed gene-expression data from two clinical phenotypes: (i)

acute rejection in kidney transplantation (Khatri et al., 2013; Einecke

et al., 2010) and (ii) response to infliximab in ulcerative colitis (Arijs

et al., 2009). Each phenotype consists of two datasets (GEO accession

numbers GSE50058 and GSE21374 in acute rejection and GSE12251 and

GSE14580 in response to infliximab). Datasets corresponding to different

phenotypes were analyzed separately. For each phenotype, both datasets

were combined and RMA (robust multi-array average) normalized. The

probes that were absent in all samples—irrespective of response status—

were filtered using the mas5calls function from the R Bioconductor

package (Gentleman et al., 2004). Differential gene-expression analysis

with FDR cutoff of 0.05 and a fold-change cutoff value of 1.3 was per-

formed on the normalized combined dataset as well as individual datasets

in each phenotype using the R Bioconductor package. This combined

normalization will put all transcript abundance estimates on a similar

scale. Note that this part does not use any information on response

status from either training or test set. Although this combined normal-

ization may have a slight impact on performance estimates as more test

examples are added to the datasets, the performance should be shifted

towards better generalizability to the test set. Moreover, this effect equally

impacts all tested methods presented in this work as they all use the

normalized expression data as a starting point. From a practical point

of view, testing data can always be added to the normalization at test

time, data re-normalized and the classifiers re-trained on the training data

alone.

2.2 Generating differential gene-expression profiles for

each individual

In order to obtain enriched GO terms as well as upstream regulators, we

need to identify differentially expressed genes per individual. If there are

enough replicates and a healthy control group is available, this can be

achieved by pairwise comparisons of gene values between the individuals

and the controls.

Here, we define differential expression relative to response status of the

individual. For example, a gene for a responder is called differentially

expressed if it is significantly different from the distribution of gene-

expression values in non-responders. More specifically let �r
g; �

nr
g and

�rg; �
nr
g denote the mean and standard deviation of normalized gene

values for gene g among the responders and non-responders, respectively.

If the individual is a responder, the Z-score profile is zg=ðxg � �
nr
g Þ=�

nr
g

where xg is the normalized gene value of gene g. If the individual is a non-

responder, the Z-profile is then zg=ðxg � �
r
gÞ=�

r
g: Note that the response

status of the individuals in the training set is known and hence the op-

posite group can be identified. The genes with large Z-score values in the

absolute value sense are then declared as differentially expressed. Based

on the sign of the Z-scores, we determine the up or down regulation of

the gene (up regulated if the Z-score is positive and down regulated if the

Z-score is negative). It should be noted that in assigning significance to

per-individual gene values, we are making an implicit assumption that zg
approximately follows a standard normal distribution. This practical ap-

proximation enables us to assess how far a gene value falls from the mean

of the distribution and hence generate the profiles of differentially ex-

pressed genes per-individual. If extra information (e.g. more replicates per

patient or an independent control group) is available, the significance of

gene values can be estimated using more direct approaches (such as a

standard t-test).

For a new individual or an individual in a test set, the response status is

not known a priori. In this case, we have to compute two z-profiles
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obtained by comparisons with both groups (Fig. 1). The z-profile ob-

tained from the opposite group of the true status of the new individual,

will be a ‘correct’ z-profile containing potentially important gene differ-

ences that are linked to response. The other z-profile will contain

‘random’ differences of the individual with the rest of the individuals in

the same group. Correspondingly, we have two sets of differentially ex-

pressed genes. We use an absolute value Z-score cutoff of 2 throughout

this work.

2.3 Feature sets

In the following, we will define five types of feature sets of increasing

complexity. In the training phase, a subset of features will be selected by

the classifier and only those will be used for prediction. For instance, this

corresponds to a subset of differentially expressed genes or a subset of

potential upstream regulators. Note that all feature sets that use per-

individual differentially expressed genes at prediction time will require

two feature profiles assuming, first, that the test subject is a responder

and then that the subject is a non-responder based on the procedure

outlined above. Our main feature set is Feature Set IV. Prediction accur-

acy of the feature sets will be discussed in Section 3. Table 1 gives an

overview.

2.3.1 Feature Set I: gene-expression values The simplest feature set

relies on the normalized expression values only and reflects commonly

used practice when no additional prior knowledge is available. We define

two subtypes, namely normalized gene values of top 10 differentially ex-

pressed genes according to P-value (Feature Set Ia or TOP10) and (2)

normalized gene values of all differentially expressed genes (Feature Set

Ib or ALL).

2.3.2 Feature Set II: gene Z-scores Feature Set II also does not use

any prior knowledge, but tries to exploit differences of individual patients

better. At training time, all ‘correct’ individual level Z-score profiles and

corresponding differentially expressed genes per individual are computed

(Fig. 1). The union of these differentially expressed genes constitutes

Feature Set II. In contrast to Feature Set I, the computed Z-scores of,

say, a responder contains information as to how differentially each gene is

expressed with respect to the non-responder group and not only normal-

ized expression values.

2.3.3 Feature Set III: enriched GO categories or GO terms GO

terms are a commonly used form of prior biological knowledge. Each GO

terms is a collection of genes labeled with a specific biologically mean-

ingful term, such as ‘insulin receptor signaling pathway (GO:0008286)’.

Feature Set III tries to explore the encoded knowledge to improve

response prediction. To determine significantly enriched GO terms, we

performed enrichment analysis using the TopGOR package (Alexa et al.,

2006) on each individual’s differentially expressed genes at training time.

The union of all GO terms with a P-value510– 6 forms Feature Set III.

We use the logarithm of the enrichment P-value as features.

2.3.4 Feature Set IV: significant upstream regulators or Bayes-
CRE Finally, we define a feature set that incorporates relevant up-

stream regulators of downstream gene expression changes. In

Zarringhalam et al. (2013), we introduced a Bayesian framework to iden-

tify potential upstream regulators and their biological context. The net-

work relies on causal statements extracted from peer-reviewed PubMed

Fig. 1. Estimating differential gene expression per individual: For individuals in the training set, response status is known and a Z-score profile is

computed with respect to the opposite group. For an individual not in the training set, two Z-score profiles are computed: (i) assuming the individual is a

responder and (ii) assuming the individual is a non-responder. Genes with an absolute Z-score greater than a defined cutoff are declared differentially

expressed. For instance, the IRF7 transcript would be called differentially down-regulated assuming the new individual is a non-responder, but not

differentially regulated assuming responder status

Table 1. Classification of feature sets

Number Feature Set description Prior

knowledge

Relative

to group

Ia Top 10 most differentially

expressed genes

No No

Ib All differentially expressed genes No No

II Z-score of differential expression No Yes

III Enriched Gene Ontology terms Yes Yes

IV Significant upstream regulators Yes Yes

With respect to (i) their use of prior knowledge independent of the current dataset

and (ii) the computation of group-dependent features which will require two feature

profiles at test time.
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full papers. These causal statements can be used to construct a signed

causal graph in which the set of nodes consists of transcripts, proteins, or

compounds. A directed edge between nodes indicates the existence of a

causal relation between the source and the target nodes while the sign of

the edge specifies the direction of regulation. For transcriptomics data-

sets, we are mostly interested in molecular perturbations leading to tran-

scriptional changes.

From this causal graph a Bayesian network is constructed. The net-

work consists of several layers (Fig. 2). The first layer of the network

consists of transcript nodes representing observed differentially expressed

genes. To account for the noise in gene-expression data, we introduced a

second layer of nodes, called true state nodes that are directly above the

transcript nodes reflecting the true state of regulation independent of

measurement noise. The next layer of nodes in the network consists of

regulators. These are the proteins and compounds in the causal network

that potentially regulate the transcripts. The regulator nodes are causally

linked to the true state nodes as determined by the causal graph. In order

to account for conditions under which the causal relations are relevant,

we introduced two additional layers of nodes. For each causal relation in

the network, an applicability node was defined which is directly connected

to the true state node of the corresponding causal relation. Each causal

relation is annotated with the PubMed id of the article reporting the

causal relation which in turn is annotated with MeSH (Medical Subject

Headings) terms. These MeSH terms, e.g. ‘adipogenesis’ or ‘JAK/STAT

signaling cascade’ provide additional biological context and are intro-

duced as context nodes in the network. Context nodes are connected to

applicability node of their corresponding causal relation.

Based on this network topology, we defined a conditional probability

distribution and used a Gibbs-sampling algorithm to query the network

and infer upstream regulators, i.e. regulator nodes with high posterior

probability given the observed differential gene-expression data. In sum-

mary, the input of the inference algorithm are the differentially expressed

genes between two conditions and their corresponding direction of regu-

lation (up or down) and the output is the posterior probabilities of regu-

lators, applicability of edges and the contexts with their MeSH terms.

More details can be found in Zarringhalam et al. (2013).

Feature Set IV is defined as the union of all significant upstream regu-

lators, i.e. posterior probability 40.4, uncovered for each individual’s

differentially expressed genes at training time. The posterior probabilities

of regulators constitute the features.

2.4 Predicting response via regularized regression

Given any of the input feature sets, we use an L1-regularized logistic

regression approach to train a binary classifier using the R glmnet pack-

age (Friedman et al., 2010). In case of Feature Sets II, III and IV

(Z-scores, Go-terms and Bayes-CRE), the ‘correct’ profile is known

during training and used to train the classifier. For a prediction in the

testing phase, features derived from both z-profiles are used and two

predictions are made, one for each profile. Each prediction is given a

probability by the classifier. If the class predictions are cz1 and cz2 with

probabilities pz1 and pz2 for the two profiles, a final decision on class label

is made using the following decision function: f(i)= cz1 if pz14pz2 and

f(i)= cz2 if pz24pz1, where i indicated the individual for whom the pre-

diction is made. Algorithm 1 summarizes the approach.

2.5 Validation within the dataset: cross validation

We assessed the accuracy of the feature sets by performing a leave-one-

out cross validation. In case of Feature Set I, the i-th example was taken

out from the dataset and the classifier was trained on the features from

the remaining individuals in the set. A prediction was then made on the

class label of the i-th individual. In case of Feature Sets II, III and IV, the

i-th example was taken out from the dataset and the classifier was trained

on the features from the remaining individuals in the set. As response

status for the i-th individual is unknown to the classifier, two predictions

were made for the i-th individual using both profiles. Using the decision

function as described above, a final decision on the class label of the i-th

individual was made.

2.6 Training and testing on independent sets

In case of Feature Set I, classifier was trained on features calculated using

the training set and predictions were made on subjects in test set. In case

of Feature Sets II, III and IV, the classifier was trained on the correct

profile in the training set and predictions were made for individuals in the

test set using both profiles. The class label was then decided using the

decision function.

3 RESULTS

We applied our pipeline using all feature sets to two relevant

phenotypes (acute rejection in kidney transplantation and

Fig. 2. Illustration of the Bayesian Network: for each causal relation, an

applicability node is constructed and MeSH terms are used as context

nodes. Noise in gene-expression data is accounted for by introducing

true state nodes
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response to infliximab therapy in ulcerative colitis), each contain-

ing two independent datasets.

3.1 Predicting acute rejection in kidney transplantation

In Khatri et al. (2013), the authors identified 11 genes that are

significantly over expressed in acute rejection from four organs.

They report that the identified genes could diagnose acute rejec-

tion with high specificity and sensitivity (AUC=0.8). We ana-

lyzed the dataset generated by the authors (GSE50058) as well as

an independent dataset [GSE21374 by Einecke et al. (2010)], also

analyzed by Khatri et al. (2013) in a similar fashion. The datasets

GSE50058 consists of 43 kidney transplant rejection and 54 non-

rejection samples. Dataset GSE21347 consists of 76 kidney trans-

plant rejection and 206 non-rejection samples.
The raw data was processed as described in Section 2, leading

to a total of 3601 differentially expressed genes in GSE50058 and

454 differentially expressed genes in GSE21374. Among these

differentially expressed genes 334 are shared by both datasets.

Combining both datasets and filtering for genes with unique

entrez id results in 641 differentially expressed genes. These

group-wise differentially expressed genes were used as input to

Bayes-CRE and upstream regulators and corresponding context

(MeSH) terms were identified. Table 2 summarizes the results.

Note that this analysis was not used in predictions and was per-

formed for biological interpretation as outlined later in this

section.
Figure 3 (left and middle panels) shows the achieved specificity

and sensitivity for all defined feature sets. Here, we focus on real-

world performance in an independent test set. Details of the

performance differences between cross validation versus inde-

pendent test set are depicted in Figure 4 and will be discussed

in a separate section. The performance of the TOP10 feature is

strikingly different depending on the training set used. Whereas it

is the top performer when training on the GSE21374 data, it

performs worst when roles are switched. This behavior is plaus-

ible when considering the different number of differentially

expressed genes in the two datasets. When training on
GSE21374 chances are that the top 10 genes out of the 454
differentially expressed genes are also contained in the� 3600

genes that are differentially expressed in GSE50058. However,
the odds are reversed when training on GSE50058. The ALL
Feature Set does poorly in both datasets. In the larger

GSE50058 dataset one explanation might be there are a
large number of features to pick from which results in
overfitting. However, even when training on GSE21374 the

ALL feature performs worst. When comparing accuracy of
prediction based on cross-validation, TOP10 and ALL per-
form almost equally well with an accuracy of 0.78 and 0.79,

respectively (Supplementary Table S1). It appears that the
classification algorithm picked features that gave a slight
advantage under training conditions, but which did not gener-

alize at all to the independent test scenario. The Z-score and
GO term features also show variable performance in that
they are highly sensitive in one run, but highly specific in the
other. The Bayes-CRE features show consistent performance

across GSE21374 and GSE50058. While accuracy is slightly
higher for the TOP10 feature in the first case and about
the same for Z-scores in the second case, only the Bayes-CRE

feature is able to retain its performance and, as we will see, is
also stable when going from cross-validation to independent
test set.

To assess the biological plausibility of the upstream regulators
detected by Bayes-CRE, we examined the context of the causal
relationships supporting the generated upstream regulators with

the aid of the MeSH terms enriched with them. Additionally, we
investigated whether the upstream regulators have been previ-
ously identified as significant components of acute rejection biol-

ogy. Table 2 shows the upstream regulators selected by Bayes-
CRE on the group-wise comparisons. The direction of regulation
of differentially expressed genes in combined normalized datasets

was used to generate the table.
Unsurprisingly, several predictive upstream regulator such as

upregulation of IFNG, LPS, IL2, TNF, CXCL12 and IRF7

(Table 2) are consistent with heightened immune response and
hence higher risk of acute rejection. Furthermore, the associated
MeSH terms show abundance of general immunology context

some of which can be specifically linked to acute rejection such as
MHC Class II, HLA-D antigens and immunodominance. IFNG,
one of the most probable upstream regulators, is known for its

paramount role in acute rejection. In some skin grafts IFNG has
been shown to be necessary for initiating acute graft rejection
(Ring et al., 1999). Additionally, IFNG ELISPOT has been

proposed as a pre-transplant measurement of donor-specific
memory T-cell and subsequently post-transplant risk
(Augustine et al., 2005). Alefacept is a medication approved by

the FDA for psoriasis and has been suggested as an immuno-
suppressive agent for kidney transplantation (Cooper and
Wiseman, 2010). It is a humanized antibody that is thought to

inhibit memory T-cells. Hence, predicted decrease of Alefacept
may be a surrogate regulator implying activation of memory
T-cells. Once activated, T-cells produce IL2 and other cytokines.

In summary, the significant upstream regulators may provide a
plausible biological explanation of main events that are predict-
ive of acute rejection, from antigen presentation to T-cell activa-

tion and cytokine release.

Table 2. Top upstream regulators selected by Bayes-CRE in the Acute

Rejection study

Rank Upstream regulator Direction Probability

1 IFNG Up 1.00

2 LPS Up 1.00

3 SE LPS Up 0.99

4 HNF1A Down 0.98

5 IL2 Up 0.97

6 HNF4A Down 0.95

7 Beta-estradiol Up 0.93

8 TNF Up 0.90

9 E.coli B4 LPS Up 0.87

10 Alefacept Down 0.74

11 MYCN Down 0.71

12 CXCL12 Up 0.71

13 NKX2-1 Down 0.69

14 IRF7 Up 0.65

15 Poly rI:rC-RNA Up 0.63
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3.2 Response to infliximab in ulcerative colitis

In Arijs et al. (2009), the authors studied two cohorts
(A: GE14580 and B: GE12251) of patients who received treat-
ment of infliximab for refractory ulcerative colitis. They defined

response to therapy based on mucosal healing, endoscopic sub-
score and histological sub-score at 4 weeks for patients who

received a single infusion and 6 weeks for patients who received
a loading regimen. In cohort A 24 patients with active ulcerative

colitis were studied. Biopsies were collected within a week prior
to the first treatment and 4 weeks post-treatment and gene ex-
pression was measured. Cohort B was a placebo controlled trial

of infliximab therapy in refractory ulcerative colitis where 22
patients with active ulcerative colitis received a loading dose of

infliximab and gene expression was measured prior and post
treatment. Some key differences between Cohorts A and B in-

clude (i) response assessed at week 4 or 6 after infliximab treat-
ment in Cohort A compared to week 8 after infliximab treatment

in Cohort B, (ii) Cohort A patients are treated with 5mg/kg
infliximab and Cohort B patients are treated with 5mg/kg or
10mg/kg infliximab and (iii) Cohort A patients either have a

single infusion or a loading regimen (0, 2 and 6 weeks) while

Cohort B patients all received a loading regimen (0, 2 and 6

weeks). The cohorts were independent of one another.
Analysis of differential gene expression resulted in 168 differ-

entially expressed genes in cohort B. Differential gene-expression

analysis on cohort A did not result in any significantly expressed

genes after FDR correction. Combining the datasets resulted in

280 differentially expressed genes. As in the rejection datasets,

these group-wise differentially expressed genes were used as input

to Bayes-CRE and upstream regulators and corresponding con-

text (MeSH) terms were identified for biological interpretation

purpose. Table 3 summarizes the results of the combined dataset.

As before, these results were not used for prediction purposes.
All Feature Sets were generated as described before. Since

differential gene-expression analysis on cohort A did not result

in any significantly expressed genes, we only used cohort B

as training set and cohort A as testing set. The right panel in

Figure 3 depicts attained specificity and sensitivity for this data-

set. The GO terms, Z-scores and ALL Feature Sets perform

poorly on the test set. Picking the TOP10 genes leads to accept-

able performance with an emphasis on sensitivity. The best per-

formance is obtained using the Bayes-CRE features with an
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Fig. 3. Attained specificity (x-axis) and sensitivity (y-axis) of feature sets in acute rejection datasets (left and middle panels) and response to infliximab in

ulcerative colitis (right panel)
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Fig. 4. Overall performance comparison of the different feature sets. Each panel shows accuracy of predictions in (left) cross-validation and (right)

independent test set
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accuracy of 0.79. As before, the Bayes-CRE predictions empha-

size specificity over sensitivity. It is worth noting that the strategy

of picking top differentially expressed genes has been employed

in the original paper of this study (Arijs et al., 2009). However,

the top five genes were picked from the combined cohort. While

that is technically correct, the reported performance of 95% sen-

sitivity and 85% specificity is somewhat misleading as it cannot

be attained on the individual cohorts. As we will see in Figure 4,

similar values are attained in the training cohort here, but cannot

be sustained in the independent test.
Similar to the acute rejection study, we examined the biolo-

gical plausibility of upstream regulators uncovered by Bayes-

CRE. Table 3 shows the top upstream regulators selected by

Bayes-CRE on the group-wise comparisons. The direction of

regulation of differentially expressed genes in combined normal-

ized datasets was used to generate the table.
Ulcerative colitis is a chronic manifestation of inflammation of

the colonic mucosa with TNF playing a central role in the dis-

ease. Several anti-TNF therapeutics such as infliximab,

Aadilumab, Certolizumab, Golimumab are now used in patients

who fail to respond to conventional treatment regimens that in-

clude immunosuppressive drugs. However a subset of these pa-

tients do not respond to anti-TNF therapeutics as well and the

biological mechanisms at play here are poorly understood.

Interestingly, one of the significant predicted upstream regulators

that distinguishes the infliximab responders from the non-

responders here is the TNF pathway itself. The higher expression

of the TNF pathway components in non-responders may suggest

the lack of response to be due to an inadequate infliximab

dosing. Also to note that this study has been done in patients

who have not been treated with infliximab prior to this study

thus ruling out the non-response to infliximab being due to gen-

eration of anti-infliximab antibodies. MeSH terms associated

with IFNG regulator such as tryptophan and kynurenine metab-

olism are supported by an observed dysregulation of enzymes

such as IDO1, TDO2 and KYNU in these pathways in ulcerative

colitis (data not shown). Another MeSH term, enriched for the

LPS hypothesis, is the cyclooxygenase term with established links

to the disease. A study by Silverberg et al. (2009) shows a genetic

association for IFNG locus with ulcerative colitis. Perturbations

in the gut microbial flora and colonic mucosal integrity in ul-

cerative colitis can result in the dysregulation of predicted

pathways such as LPS and Interferon. DSS-induced colitis in

LPS sensitive mice treated with LPS exhibit a more severe disease

while LPS has no effect in DSS-induced colitis in LPS hypore-

sponsive mice (Lange et al., 1996). Further evidence for a role for

LPS in ulcerative colitis comes from studies showing patients

with elevated levels of LPS in disease (Rojo et al., 2007). LPS,

present only on Gram-negative bacteria binds to TLR4 and in-

duces pro-inflammatory cytokines thus driving inflammation in

disease. Furthermore genetic studies show a significant associ-

ation for TLR4 with ulcerative colitis and Crohns disease (Shen

et al., 2010). It can be inferred that the non-responders have an

overall increased level of inflammation despite no significant dif-

ferences in the disease activity scores resulting from the activa-

tion of the LPS-TLR4 pathway triggered by the presence of

gram-negative bacteria.

3.3 Analysis of prediction performance

One of the key points of this work is that optimization of meth-

ods based on one study can lead to misleadingly high estimates of

performance and that the use of appropriate prior knowledge

can help to avoid the situation. Figure 4 summarizes the situation

based on our data and implemented methods. As expected, per-

formance in cross-validation runs is higher than in the independ-

ent test sets. In our examples, the TOP10 feature set has one of

the highest declines and, in contrast, Bayes-CRE features have a

consistently small drop in performance. Performance even

slightly improves in the infliximab dataset. It is also interesting

to note the spread in accuracy in the different datasets. When

training on GSE21374 in the kidney rejection dataset (left

panel in Fig. 4), the classifier can pick from a set of �450 dif-

ferentially expressed genes. Prediction is attempted in GSE50058

which has about eight times more differentially expressed (and

therefore predictive) genes. As the underlying biology is shared

to some extent, chances are higher to pick useful features. This

situation reverses when training on GSE50058 as can be

observed in the large spread of accuracies in the middle panel

of Figure 4.
Unfortunately, it is also not obvious from our data how much

a given feature will deteriorate in performance in an independent

set. For instance, the TOP10 differentially expressed genes ap-

proach works well for two of the three datasets, but does very

poorly on the third (middle panel of Fig. 4). Some feature sets

oscillate between high specificity and high sensitivity as evident

for the Z-score feature in Figure 3. As accuracy is just one well-

accepted measure of performance, we also analyzed results based

on F-measure and balanced accuracy (see Supplementary Figs S1

and S2) with broadly similar conclusions. As desired, the Bayes-

CRE approach seems to be able to use prior knowledge to focus

on biologically relevant features that translate well to independ-

ent studies.

To analyze why Bayes-CRE features are able to predict stably

in this scenario, we performed a bootstrapping analysis by ran-

domly selecting 2/3 of samples as training and 1/3 as testing on

each dataset. The process was repeated 100 times and the

number of times that the predictive upstream regulator were se-

lected by L1 regularization was recorded. Figure 5 shows how

often an upstream regulator was picked in dataset GSE21374 on

the x-axis and GSE50058 on the y-axis. In addition, the color

Table 3. Top upstream regulators selected by Bayes-CRE in response to

infliximab treatment in UC patients

Rank Upstream regulator Direction Probability

1 IFNG Down 1.00

2 LPS Down 1.00

3 TNF Down 0.99

4 Retinoic acid Down 0.92

5 SE LPS Down 0.89

6 Poly rI:rC-RNA Down 0.86

7 Decitabine Down 0.82

8 Allergens Down 0.77

9 IL1 Down 0.62
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indicates whether a upstream regulator plays a role in the com-

bined analysis as referenced in Table 2. Clearly, the most preva-

lent upstream regulators of IFNG, LPS and TNF are relevant in

both datasets. In addition, more dataset specific features can be

seen towards the x- and y-axes of the plot. As the underlying

biology relating to immune response and inflammation seems to

be shared among the datasets, the Bayes-CRE approach is able

to integrate the signals from downstream transcripts into a fea-

ture, i.e. the posterior probability of regulation that serves well as

a predictor. That does not seem to be possible based on the gene-

expression data alone. Finally, we also ran permutation experi-

ments to ensure that results are due to the phenotype labels, i.e.

(non-) rejection of kidney transplants and response to infliximab

treatment, and not random artifacts. Permuted datasets did not

result in any or only very few upstream regulators in all permu-

tations. As a consequence, we did not proceed to any higher level

feature generation.

4 DISCUSSION

Patient populations exhibit high genetic, environmental and

phenotypic heterogeneity. This makes the search for robust pre-

dictors in clinical trials a difficult endeavor. If we rely on classical

(low-dimensional) biomarkers, prediction performance might

not be sufficient. Using high dimensional datasets, e.g. transcrip-

tomics datasets, can easily lead to predictors that have stellar

performance in the training trial, but poor performance in an

independent study (Fig. 4). This seems to be the case even when

all proper considerations of cross-validation or a test/training

split within one clinical trial are observed—at least given current

sample sizes. Many methods have been developed to avoid over-

fitting of the data, but as we demonstrate in this work, even a

well-accepted regularized classifier will not always be able to pick

out the biologically robust features based on expression data

alone. We found that any of the defined feature sets is able to

predict with high accuracy under a certain set of circumstances.

For instance, the Z-score profiles perform best when trained on
GSE50058, but very poorly in all other cases (Fig. 4). In contrast,
picking the TOP10 genes does not work at all when training on

GSE50058, but well in the other cases. The Bayes-CRE feature
set retained performance across all scenarios tested and was
among the top predictors in independent test sets.

It should be noted that the performance of this method is
strongly dependent on the prior knowledge encoded in the
underlying knowledgebase. If no relevant upstream regulators

are available in the knowledgebase that can aggregate the down-
stream transcriptional signal, performance will be poor as no
useful features can be generated. At the same time, the number

of generated features can easily be checked. If there are a number
of differentially expressed genes present in a dataset, but regula-
tor nodes receive only weak posterior probabilities, the knowl-

edgebase is likely to contain no relevant biology and other
approaches should be pursued. As demonstrated by our results,
generalization to independent datasets in the presence of high

levels of confounding factors (such as clinical site, exact compos-
ition of trial population, etc.) is very difficult and research should
be invested to not only find better mathematical approaches to

exploit the dataset at hand, but incorporate other prior know-
ledge in an optimal way. The knowledgebase that we utilize in
this work may contain noise as well, however, this noise should

be independent of a particular trial population as it tries to de-
scribe general biological facts.
Another potential criticism of the Bayes-CRE method is the

focus on IFNG, LPS and TNF as key regulators in the assessed
datasets. Clearly, these nodes are well-known regulators of
immune system and inflammatory processes and would have

been picked as relevant by experts in the fields. We evaluated
the performance of only using IFNG downstream genes as
defined by our knowledgebase. The results are slightly inferior

to Bayes-CRE features, but roughly comparable (Supplementary
Fig. S3). In contrast to the manual trial and error approach of
defining potential downstream genes based on expert opinion

per dataset, the Bayes-CRE approaches provides a comprehen-
sive assessment of relevance of all encoded knowledge in the
knowledgebase. In our cases, it correctly identified many relevant

potential regulators of involved processes facilitating acceptance
of the derived classifiers. This points to a need for public, read-
ily available repositories of causal biological knowledge to derive

better classifiers and interpret biological datasets more quickly.
Protein–protein-interaction databases like IntAct (Orchard
et al., 2014) are in the process of adopting their curation process

to include causal relationships (S. Orchard, personal
communication).
The use of other (non-causal) prior knowledge sources is cer-

tainly promising as well. However, we feel that the causal rela-
tionships used in this study are well-suited to summarize
downstream transcriptional activity into fewer features that are

biologically relevant. This might be harder to achieve based on
protein–protein-interaction data as no directionality exists in the
network and the relationships are not directly related to tran-

scriptional activity. In future work we plan to add large-scale
datasets with more complex notion of causality into our meth-
odology as they become available.

It was surprisingly hard to collect public data for this study as
we required trials of at least 20 human subjects with a defined
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clinical binary outcome, i.e. (i) responders and non-responders,

(ii) at least some detectable difference in gene expression at base-

line between the two groups and (iii) the availability of a similar

but entirely independent trial for testing purposes. We expect this

situation to change over the coming years as more and more

trials generate relevant molecular data and are made available

for public research. However, the size of the trials will remain

limited as the generation of molecular data is only a small frac-

tion of the cost and overall costs of large clinical trials remain

astronomical. This situation will make approaches using prior

knowledge even more relevant.

In future work, we plan to test the methods on more datasets

as they become available, extend the method to allow for con-

tinuous phenotypes and take placebo response for drug trials

into account. The latter should be possible by integrating placebo

arms of clinical trials into the regularized regression framework.

However, we were not able to find suitable publicly available

datasets to test such extensions at this point. This will be import-

ant to distinguish diagnostic signatures that are predictive of

disease progression from signatures that are predictive of drug

response itself.
In summary, we have presented a method for prediction of

clinical phenotypes based on genome-wide expression data that

makes use of a large collection of causal relationships defined

from the literature. Features selected by the L1-regularized re-

gression method correspond to upstream molecular entities that

can readily be interpreted biologically and subsume sets of tran-

scriptional changes in a useful manner. The method performs

well in the analyzed datasets and, importantly, gives stable per-

formance estimates across cross-validation as well as independ-

ent test set runs. Given that more and more clinical trials

involving heterogeneous populations will become available,

methods such as the one presented here can help to make the

vision of precision medicine a reality.
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