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ABSTRACT

Motivation: The Expectation–Maximization (EM) algorithm has been

successfully applied to the problem of transcription factor binding site

(TFBS) motif discovery and underlies the most widely used motif dis-

covery algorithms. In the wider field of probabilistic modelling, the

stochastic EM (sEM) algorithm has been used to overcome some of

the limitations of the EM algorithm; however, the application of sEM to

motif discovery has not been fully explored.

Results: We present MITSU (Motif discovery by ITerative Sampling

and Updating), a novel algorithm for motif discovery, which combines

sEM with an improved approximation to the likelihood function, which

is unconstrained with regard to the distribution of motif occurrences

within the input dataset. The algorithm is evaluated quantitatively on

realistic synthetic data and several collections of characterized pro-

karyotic TFBS motifs and shown to outperform EM and an alternative

sEM-based algorithm, particularly in terms of site-level positive pre-

dictive value.

Availability and implementation: Java executable available for

download at http://www.sourceforge.net/p/mitsu-motif/, supported

on Linux/OS X.

Contact: a.m.kilpatrick@sms.ed.ac.uk

1 INTRODUCTION

Transcription factor binding site (TFBS) motifs are short DNA

sequence patterns that have important roles in genetic transcrip-

tional regulation. These patterns are of considerable interest to

biologists, as they are central to understanding the mechanisms

of gene expression. The discovery and further analysis of TFBS

motifs remains an important and challenging problem in bio-

informatics [examples from the recent ENCODE project include

Spivakov et al. (2012), Whitfield et al. (2012) and Yip et al.

(2012),]; as a result, there is continued interest in developing al-

gorithms for unsupervised discovery of TFBS motifs (Bailey

et al., 2010).
The majority of TFBS discovery algorithms are probabilistic

algorithms, which search the input data (usually a collection of

promoter regions of coregulated genes) for sequences that are

statistically over-represented. Deterministic algorithms make up

a large proportion of commonly used algorithms for motif dis-

covery. The deterministic Expectation–Maximization (EM) algo-

rithm is one of the earliest probabilistic motif discovery

algorithms (Lawrence and Reilly, 1990) and is the basis for a

number of others, including the benchmark motif discovery al-

gorithm MEME (Bailey and Elkan, 1994). However, the EM

algorithm has several well-known limitations. For example, the

EM algorithm is highly sensitive to its starting parameters.

Owing to this sensitivity and the use of a local search strategy,

the EM algorithm cannot be guaranteed to converge to the

global maximum of the likelihood function, instead converging

to an insignificant local maximum or saddle point of the likeli-

hood function. In general, the steps of the EM algorithm can

become either analytically or computationally intractable in

many practical situations.
The stochastic EM (sEM) algorithm is motivated by the limi-

tations of the deterministic EM algorithm, particularly the issues

of intractability. Celeux et al. (1995) note that the sEM algorithm

is generally more successful than the EM algorithm owing to

stochastic perturbations, which allow the sEM algorithm to

escape stable fixed points of the EM algorithm such as insignifi-

cant local maxima of the likelihood function. In addition to this,

retaining the underlying EM dynamics means that the sEM al-

gorithm generally converges in a relatively small number of iter-

ations in comparison with full stochastic methods.

Stochastic variants of the EM algorithm have been applied to

motif discovery previously; for example, the SEAM(Bi, 2007) and

MCEMDA (Bi, 2009) algorithms. However, the power of sEM in

a motif discovery context has not been fully explored. Most not-

ably, these algorithms are limited to the ‘one occurrence per se-

quence’ (OOPS) model, which places a constraint on the

distribution of motif occurrences within the input dataset.

Further, algorithms based on stochastic variants of EM have so

far not implemented features commonly found in other motif dis-

covery algorithms, including the ability to automatically deter-

mine the most likely motif width from a range of plausible values.
In this article, we present MITSU (Motif discovery by

ITerative Sampling and Updating), a novel algorithm for

TFBS motif discovery that combines a stochastic version of

the EM algorithm with a derived dataset, which leads to an im-

proved approximation of the likelihood function. Significantly,

this likelihood function is unconstrained with regard to the

number of motif occurrences in each input sequence. The algo-

rithm also incorporates MCOIN, an information-based heuristic

to automatically determine the most likely motif width

(Kilpatrick et al., 2013). MITSU is evaluated quantitatively on

realistic synthetic data and several collections of previously char-

acterized prokaryotic TFBS sequences and shown to outperform

an EM-based algorithm and the SEAM algorithm, most notably

in terms of site-level positive predictive value. The results of add-

itional tests demonstrate that MITSU has significant advantages

over current sEM-based approaches for motif discovery.

2 APPROACH

This article implements an approach based on sEM for the

purpose of TFBS motif discovery. Given a joint distribution*To whom correspondence should be addressed.
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pðX;Zj�Þ over observed variables X and latent variables Z,

governed by parameters �, the deterministic EM algorithm

(Dempster et al., 1977) maximizes the likelihood function

pðXj�Þ with respect to �. This likelihood function is intractable

directly, so two steps are iteratively applied until some conver-

gence criteria are reached to maximize the likelihood function.

An initial estimate of the parameters is made, then the E-step

calculates the expected value of the log likelihood function, with

respect to the distribution of Z conditional on X under the

current estimate of the parameters �ðtÞ:

Qð�; �ðtÞÞ=EZjX;�ðtÞ ½lnpðX;Zj�Þ� ð1Þ

In the context of motif discovery, this can be viewed as calculat-

ing the probability for each width-w subsequence in the dataset

that it is an occurrence of the motif, or equivalently estimating

the position of occurrences of the motif within the input dataset.

The M-step then evaluates a new estimate of the parameters by

maximizing the expected value of the log likelihood function:

�ðt+1Þ=argmax
�
Qð�; �ðtÞÞ ð2Þ

In the context of motif discovery, this can be viewed as reesti-

mating the model parameters given the current estimates for the

motif position within the input dataset.
Stochastic variations of the EM algorithm first use Monte

Carlo methods to draw a set of samples zð1Þ; . . . ; zðmÞ
� �

from

the current approximation to the conditional predictive distribu-

tion pðZjX; �ðtÞÞ, before replacing the integral in the E-step of the

EM algorithm Equation (1) with a finite sum over the drawn

samples. The modified E-step is thus

Qt+1ð�; �
ðtÞÞ �

1

M

XM
m=1

lnpðX;ZðmÞj�Þ ð3Þ

The M-Step then requires maximizing the Q function as before.

This particular variation on the EM algorithm is known as the

Monte Carlo EM (MCEM) algorithm (Wei and Tanner, 1990).

Stochastic EM (Celeux et al., 1995) can be viewed as a special

case of MCEM, where only one sample is drawn at each iter-

ation. In this case, the latent variables Z characterize which one

of the mixture components is responsible for each point in the

dataset, effectively making a ‘hard’ assignment of data points to

mixture components, rather than the probabilistic weightings

used by the EM algorithm. In the context of motif discovery,

this would assign each data point to either the motif model or the

background model. Formally, the sampling step (S-step, analo-

gous to the E-step in EM) of the sEM algorithm replaces the

computation of the Q function in the E-step by the simpler com-

putation of pðZjX; �ðtÞÞ and simulation of a ‘pseudosample’ z(t).

The update step (U-step, analogous to the M-step in EM) up-

dates the model parameters �(t) on the basis of the ‘pseudo-com-

plete sample’ X; zðtÞ
� �

, in the same way as normal.
As noted above, one of the reasons for stochastic variations of

EM being generally more successful than EM is that they have

the ability to avoid insignificant local maxima of the likelihood

function. This is achieved by choosing whether to accept or reject

the new set of proposed model parameters in the U-step of the

algorithm. Through this accept/reject mechanism, there is a non-

zero probability of accepting new model parameters with a lower

likelihood than the current parameters at each iteration of the
algorithm (Celeux et al., 1995). In contrast, deterministic EM is

guaranteed not to decrease the likelihood and so may become

trapped in local maxima or saddle points of the likelihood

function.
One significant limitation of the SEAM algorithm is that only

the OOPS model is implemented. Bi (2007) suggests that the

OOPS model may be extended to the two-component mixture

(TCM) model (which is unconstrained with regard to the distri-

bution of motif occurrences) by first discovering a motif using

the OOPS model, then scanning the input sequences to discover

further occurrences. However, this strategy may not be statistic-

ally robust. In this article, we take an approach that extends the

OOPS model naturally to the ‘zero or one occurrences per

sequence’ (ZOOPS) model, based on the original model defin-
itions. We then continue this extension to a model that allows an

arbitrary number of motif occurrences in each input sequence,

using a previously described cutting heuristic.

3 METHODS

3.1 A sEM density for the OOPS model

The idea underlying existing algorithms for motif discovery, which im-

plement stochastic variants of EM (Bi, 2007, 2009), is to replace the

computation and maximization of Qð�; �ðtÞÞ by the much simpler compu-

tation of pðZi;j=1jXi; �
ðtÞÞ, drawing a number of samples Z(t) (S-step),

followed by an update to � based on the pseudo-complete samples (X,Z(t))

(U-step). A suitable density to represent an input sequence Xi is required.

We begin by confirming that the density used by Bi (2007) to represent an

input sequence using the OOPS model is consistent with the OOPS model

derived by Bailey and Elkan (1994).

We generalize the expression introduced by Bailey and Elkan (1994) to

define the expectation of the missing data for position j in sequence i

using the OOPS model as follows:

Z
ðtÞ
i;jXpðZi;j=1jXi; �

ðtÞÞ=
pðXijZi;j=1; �ðtÞÞXLi�w+1

l=1

pðXijZi;l=1; �ðtÞÞ

ð4Þ

where Li is defined as the length of input sequence i, and w is defined as

the motif width. Although Bi (2007) uses slightly different notation, we

confirm that the definition used is equivalent to that of Bailey and Elkan

(1994). Defining k as the set of nucleotides, that is, k 2 A;C;G;Tf g, the

conditional probability of sequence i given the hidden variables is defined

in both methods as follows:

pðXijZi;j=1; �ÞX

Y
l2"i;j

YT
k=A

�
IðXi;l=kÞ
0;k

YW
w=1

YT
k=A

�
IðXi;j+w�1=kÞ

w;k

ð5Þ

This may be viewed as the product of two terms: the first calculating the

probability of the background positions and the second calculating the

probability of the motif positions.

Here, we generalize the expressions used by Bailey and Elkan (1994) to

define the joint (log) likelihood function for the OOPS model as follows:

ln pðX;Zj�ÞX

XN
i=1

XLi�w+1

j=1

Zi;j ln pðXijZi;j=1; �Þ+N ln
1

Li � w+1

ð6Þ

Again, despite notational differences, this can be shown to be equivalent

to the expression as defined by Bi (2007).
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To define a suitable density to represent an input sequence, Bi (2007)

substitutes Equation (5) into Equation (4); cancelling the ‘background’

terms and taking logs for efficiency results in the expression,

Z
ðtÞ
i;j=pðZi;j=1jXi; �

ðtÞÞ=

1

�ðiÞ
exp

Xw
l=1

XT
k=A

IðXi;j+l�1=kÞ ln
�ðtÞl;k

�ðtÞ0;k

 !( )" #
ð7Þ

where �ðiÞ is a normalizing factor such that

XLi�w+1

j=1

pðZi;j=1jXi; �
ðtÞÞ=1

Discussion of the sEM S- and U-steps is deferred to the following section,

where they are presented in the context of the ZOOPS model.

3.2 Extending sEM to the ZOOPS model

Here, we follow a similar method to derive an expression representing a

sequence in the ZOOPS model. The ZOOPS model, introduced by Bailey

and Elkan (1994), assumes that the input sequences contain ‘zero or one

occurrences per sequence’. The ZOOPS model requires an indicator vari-

able that denotes whether a particular input sequence contains a motif oc-

currence. Here, the indicator variable Qi is defined as QiX
XLi�w+1

j=1
Zi;j.

That is, Qi= 1 if sequence i contains a motif occurrence and 0 otherwise.

The conditional likelihood for a sequence containing a motif occurrence

remains the same [Equation (5)]. The conditional likelihood for a sequence

that does not contain a motif occurrence is now defined as follows:

pðXijQi=0; �ÞX
YLi

l=1

YT
k=A

�
IðXi;l=kÞ
0;k ð8Þ

Defining an additional variable � as the prior probability of a motif occur-

ring in a sequence and assuming a uniform prior distribution for motif

occurrences within a sequence, it follows that the prior probability of a

position in sequence i being a motif start site is

pðZi;j=1j�Þ=
�

Li � w+1
ð9Þ

For simplicity, the model parameters are now collected and denoted as

�=ð�; �Þ. It is noted that themodel parameters now include the prior prob-

ability of a sequence containing amotif occurrence, in addition to themotif

andbackgroundmodels fromtheOOPSmodel. It canbe shown that the log

likelihood function for the complete data in the ZOOPS model can be

generalized as follows:

ln pðX;Zj�Þ=
XN
i=1

XLi�w+1

j=1

Zi;j ln pðXijZi;j=1; �Þ

 !

+
XN
i=1

ð1�QiÞ ln pðXijQi=0; �Þ

+
XN
i=1

Qi ln
�

Li � w+1

+
XN
i=1

ð1�QiÞ ln ð1� �Þ

ð10Þ

The expectation of the missing data for the ZOOPS model is therefore

Z
ðtÞ
i;j=

pðXijZi;j=1; �ðtÞÞ �ðtÞ

Li�w+1

pðXijQi=0; �ðtÞÞð1� �ðtÞÞ+

XLi�w+1

l=1

pðXijZi;l=1; �ðtÞÞ
�ðtÞ

Li � w+1

0
BB@

1
CCA

ð11Þ

It can be shown that substituting Equations (5) and (8) into Equation (11)

as required, then cancelling terms yields

Z
ðtÞ
i;j=

YW
w=1

YT
k=A

�w;k
�0;k

� �IðXi;j+w�1=kÞ

�

ðLi � w+1Þð1� �ðtÞÞ+

XLi�w+1

l=1

YW
w=1

YT
k=A

�w;k
�0;k

� �IðXi;l+w�1=kÞ

�

( )
0
BBB@

1
CCCA

ð12Þ

our expression representing a sequence in the ZOOPS model.

The S-step of the sEM algorithm is implemented as described previ-

ously (Bi, 2007), drawing a sample ji
0 from Equation (12) for each input

sequence i 2 f1; :::;Ng. The U-step of the sEM algorithm requires the

construction of a proposal model �0 based on the samples from the S-

step. The parameter updates provided by Bi (2007) are altered here to

account for the fact that not every sequence may contain a motif occur-

rence. The expected values of the Qi variables are used to weight the

samples from each sequence i. Here we define the parameters of our

proposal model as

�w;k
0 =

XN
i=1

IðXi;ji
0+w�1=kÞQ

ðtÞ
i +�k

XN
i=1

XT
k=A

IðXi;ji
0+w�1=kÞQ

ðtÞ
i +�

ð13Þ

for w 2 1; . . . ;Wf g and k 2 A;C;G;Tf g. The parameters of the back-

ground model are not updated, but could be reestimated if required. �=XT

k=A
�k is a vector of pseudocounts, equivalent to a Dirichlet prior

distribution. We also require an update for the other parameter �. It

can be shown that the proposal value for the fraction of sequences con-

taining a motif occurrence is just that, based on the values of Q
ðtÞ
i calcu-

lated in the S-step:

� 0=
1

N

XN
i=1

Q
ðtÞ
i ð14Þ

As in SEAM (Bi, 2007), the Metropolis algorithm is used to decide

whether to keep our updated parameters. The energies of the current and

proposal models, Gð�ðtÞÞ and Gð�0Þ, respectively, are calculated (how this

is done is described in Section 3.4) and the change in energy calculated:

"G=Gð�ðtÞÞ � Gð�0Þ: ð15Þ

The Metropolis ratio is defined as

�Mð�
0; �ðtÞÞ=min 1; expð�"GÞ

� �
ð16Þ

A random number u�Unif 0; 1½ � is drawn and the parameters updated to

the proposal parameters only if u is less than or equal to the Metropolis

ratio, that is,

�ðt+1Þ
w;k =

�w;k
0; if u � �Mð�

0; �ðtÞÞ;

�ðtÞw;k; otherwise;

(
ð17Þ

for w 2 1; . . . ;Wf g and k 2 A;C;G;Tf g and

�ðt+1Þ=
� 0; if u � �Mð�

0; �ðtÞÞ;

�ðtÞ; otherwise:

(
ð18Þ

3.3 Removing the ZOOPS constraint

The ZOOPS model still enforces constraints on the distribution of motif

occurrences; it is assumed that each input sequence contains at most one
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occurrence of a motif. However, there are many biological examples of

promoter sequences that contain multiple copies of the same TFBS

(Bembom et al., 2007). This is the primary motivation for the TCM

model introduced by Bailey and Elkan (1994), which allows an arbitrary

number of non-overlapping motif occurrences in each input sequence.

The likelihood function for the TCM model is more computationally

complex than those for the OOPS and ZOOPS models. As a result, exact

methods based on the TCM model have been avoided in favour of more

tractable approximations (Bembom et al., 2007). The TCM model pro-

posed by Bailey and Elkan (1994) uses a derived dataset consisting of all

overlapping subsequences of width w from the original dataset. Some

proportion of these subsequences are motif occurrences; the remainder

are background. While the subsequences in this derived dataset are ne-

cessarily overlapping, the likelihood function is based on a sample of

independent sequences (Bembom et al., 2007). An additional smoothing

step is required to reduce the degree to which two overlapping subse-

quences can both be assigned to the motif component of the model.

Keles et al. (2003) propose an alternative cutting heuristic, which in-

volves deriving a different dataset from the original, then applying the

ZOOPS model to each of the derived sequences. The main advantages of

this method are that no additional steps are required to deal with the

assumption of independence, and the approximation to the likelihood

function is improved. This method is improved by Bembom et al.

(2007) and we implement a similar method here. Briefly, the original

dataset is cut into subsequences of a given length U, such that each sub-

sequence contains the first (w 1) positions of the next subsequence. The

ZOOPS model is then applied to this derived dataset. The previous stu-

dies implementing this heuristic have shown that the method is fairly

robust with respect to the choice of cut length U but have suggested

that this parameter may be optimized using cross-validation (Bembom

et al., 2007; Keles et al., 2003). Here, the cut heuristic is implemented as

an inner loop within the motif discovery algorithm (Section 3.5). The

ZOOPS model is applied to derived datasets with varying values of U,

and the parameter settings that yield the highest energy value are returned

as the best motif model. We show in Section 4.3 that the cut heuristic in

combination with the ZOOPS model successfully allows discovery of

multiple copies of the same motif within a single input sequence, in the

context of motif discovery using sEM.

3.4 Defining an energy function

The original energy function used in the SEAM algorithm (Bi, 2007)

becomes problematic when used with the cut heuristic used to implement

discovery of multiple motifs within a single input sequence. The main

problem stems from the fact that the energy function

Gð�Þ=N
XT
k=A

�0;kln �0;k+
XW
j=1

XT
k=A

�j;kln �j;k

 !
ð19Þ

is scaled by the number of input sequences N; this is assumed to be

constant in the SEAM algorithm and means that energies cannot be

compared between datasets with differing values of N. Using the cutting

heuristic means that the value of N may double, or triple, depending on

the cut length (U). A way of fairly comparing motif energies is required.

We are further interested in the properties of the energy function, par-

ticularly how it varies with changing motif conservation and varying

values of �. Here, we propose a modification to the original energy func-

tion such that

Gð�Þ=
1

�N

XT
k=A

�0;k ln �0;k+
XW
j=1

XT
k=A

�j;kln �j;k

 !
ð20Þ

This modified energy function is maximized with a perfectly conserved

motif occurring in each input sequence, and the �N factor cancels in the

case of datasets derived by the cut heuristic. It can be shown that the

following useful properties hold:

(1) If two motifs are perfectly conserved, the motif with the higher

number of occurrences will have a higher energy.

(2) Given two motifs of equal prevalence and unequal motif conser-

vation, the motif discovery algorithm will tend to discover the

motif with the higher energy (equivalently, the higher motif

conservation).

(3) All else being equal, a higher proportion of sequences containing a

motif occurrence will yield a higher energy.

We adopt this modified energy function in MITSU but note that other

alternative energy functions may be possible; because the sEM accept/

reject mechanism is based on a difference of energies, substituting other

energy functions based on the model entropy should have little effect on

this mechanism.

3.5 MITSU algorithm

The pseudocode of MITSU is given as follows:

procedure MITSU algorithm

create Markov background model

for w=wmin to wmax do

for cut length in {set of cut lengths}do

for n random seeds do

for �=1=
ffiffiffiffi
N
p

to 1 by� 2 do

run sEM on cut dataset using ZOOPS model at width w:

until convergence do

S-step (Equation 12)

U-step (Equations 13–18)

end

end

end

return the best motif model over n random seeds & varying �
end

return the best motif model over all cut lengths

end

estimate most likely width ŵ using MCOIN

return motif model and list of predicted sites for ŵ

end MITSU algorithm

Although satisfactory convergence results for sEM and related algo-

rithms have been obtained (Diebolt and Robert, 1990, 1994), designing a

stopping rule for sEM is challenging; Jank (2005) notes that a simple

deterministic stopping rule may be triggered by what is a chance fluctu-

ation stemming from the S-step of the algorithm. Following the recom-

mendations of Booth and Hobert (1999), we implement a deterministic

stopping rule for several iterations to reduce the chance of a premature

stop. After each iteration, the Euclidean distance between the previous

and current motif models is calculated. If this distance is below a given

threshold for three successive iterations, the algorithm is deemed to have

converged; we choose the threshold here as 103. Stochastic EM generally

takes longer to converge than deterministic EM (on tests with the CRP

dataset used in Section 4.3, deterministic EM was approximately five

times faster than MITSU, based on testing 1000 random seeds).

However, as noted above, sEM usually converges faster than full stochas-

tic methods. We accept this longer running time in exchange for increased

accuracy in terms of predicted motif occurrences. We compare the con-

vergence of MITSU with that of deterministic EM in Section 4.2.

Motif occurrences are predicted using a Bayes-optimal classifier that

has been described previously by Bailey and Elkan (1994). Following the

ZOOPS model, we predict at most one motif occurrence per sequence in
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the cut dataset; the cut heuristic means that more than one occurrence per

sequence may be predicted when these predictions are mapped back to

the original dataset.

4 RESULTS AND DISCUSSION

Here, we summarize and discuss the results of a number of tests

that illustrate the advantages of a sEM-based approach for motif

discovery and the performance advantages of MITSU in particu-

lar. Algorithmic performance is assessed through mean site-level

sensitivity (sSn), mean site-level positive predictive value (sPPV)

and the area under the receiver operating characteristic (ROC)

curve (AUC). These measures are commonly used to assess the

performance of motif discovery algorithms, for example, in the

studies of Hu et al. (2005) and Tompa et al. (2005). Following

these studies, a predicted motif site is defined as a true-positive

result if it overlaps the true site by at least a quarter of the motif

width.

4.1 Stochastic EM outperforms deterministic EM

MITSU was evaluated quantitatively using a mixture of realistic

synthetic and previously characterized real data. Datasets were

constructed as described previously (Kilpatrick et al., 2013).

Briefly, five large data collections each consisting of 1000 datasets

were constructed using synthetic motifs of varying conservation

and realisticEscherichia coli background sequence extracted from

the EcoGene database (Rudd, 2000). A sixth data collection con-

sisting of 20 datasets was constructed using known E.coli TFBS

sequences extracted fromRegulonDB (Gama-Castro et al., 2011).

Finally, a data collection consisting of nine datasets was con-
structed using known TFBS motif sequences from diverse pro-

karyotic species. These motif sequences were discovered by ChIP

methods. Background sequences for these datasets were con-

structed using synthetic data, altering the probability of choosing

each nucleotide to reflect the species GC-content as required.

Tables 1–3 summarize the results of the tests on these data collec-
tions. For comparison, we also include the results of a determin-

istic EM-based motif discovery algorithm (Kilpatrick et al., 2013)

and SEAM. AUC results are not available for SEAM, as con-

structing a ROC curve requires ordering all subsequences accord-

ing to their probability of being a motif occurrence. This is not
possible in SEAM as a result of the method of prediction used.

4.1.1 Realistic synthetic data Based on the results on realistic

synthetic data shown in Table 1, we note that sSn and sPPV
decrease with decreasing motif conservation for all three tested

algorithms. We have noted this behaviour previously in deter-

ministic EM (Kilpatrick et al., 2013) and attribute the decrease in

sSn to fewer sites being predicted overall and the decrease in

sPPV to the background sites better matching the motif sites
as conservation decreases, leading to an increase in the number

of false-positive results.

We note that, in the majority of tests, the results of MITSU
outperform those of both the deterministic EM algorithm and

SEAM, particularly with regard to sSn and sPPV. The increased

performance at lower levels of motif conservation is particularly

notable. The success of MITSU is attributable to making fewer,

Table 1. Realistic synthetic data: classification results

Conservation (mean bits/col) Deterministic EM SEAM MITSU

sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC

2.00 0.84 0.25 0.99 1.00 1.00 — 0.70 0.74 0.97

1.49 0.26 0.07 0.98 0.93 0.93 — 0.90 0.97 1.00

1.08 0.02 0.01 0.96 0.49 0.49 — 0.68 0.77 0.99

0.76 0.00 0.00 0.94 0.09 0.09 — 0.17 0.19 0.94

0.51 0.00 0.00 0.93 0.06 0.06 — 0.07 0.08 0.93

Note: sSn, sPPV and AUC for five collections of realistic synthetic data with varying levels of motif conservation. Best results are printed in bold. In these tests, motif discovery

was carried out only at the known motif width.

Table 2. Escherichia coli data: classification results

Conservation(mean bits/col) Deterministic EM SEAM MITSU

sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC

‘High’ (1.36) 0.81 0.22 0.96 0.67 0.67 — 0.54 0.75 0.98

‘Low’ (0.78) 0.63 0.41 0.96 0.65 0.65 — 0.57 0.71 0.97

Overall (1.13) 0.74 0.30 0.96 0.66 0.66 — 0.55 0.73 0.98

Note: sSn, sPPV and AUC for 20 datasets created using previously characterized E.coli TFBS sequences. Best results are printed in bold. In these tests, motif discovery was

carried out only at the experimentally determined motif width.
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but more accurate, predictions. The predictions made are gener-

ally more cautious; previous false-positive predictions are now

more likely to be classified as true-negative predictions. This sig-

nificant reduction in the number of false-positive predictions ex-

plains the large increase in the sPPV values.
We also note that the sSn and sPPV results for the sEM-based

algorithms are less biased. The results for the deterministic EM

algorithm, particularly at high levels of motif conservation, are

skewed towards increasing sSn; that is, fewer false-negative pre-

dictions were made at the expense of having more false-positive

predictions. SEAM and MITSU are more unbiased in this

respect, producing fewer false predictions in general.

4.1.2 Escherichia coli and prokaryotic ChIP data Tables 2 and 3
present the results of tests on previously characterized E.coli

TFBS sequences and TFBS sequences from diverse prokaryotes

determined by ChIP experiments, respectively. The general trend

remains the same: both sSn and sPPV decrease with decreasing

motif conservation. We have reported previously that determin-

istic EM-based motif discovery achieves better classification re-

sults on previously characterized E.coli data than could be

expected given realistic synthetic data of a similar conservation

(Kilpatrick et al., 2013). Again, we attribute this improvement in

performance to the differences in motif structure. Whereas the

conservation of the synthetic motifs used here is independent of

position, Eisen (2005) notes that real TFBS motifs with low

mean conservation often have clusters of well-conserved pos-

itions; we believe that differences in the distribution of high

and low conservation across true motifs in comparison with syn-

thetic motifs explains the improvement in performance on real

data. We note a similar trend here with the results of SEAM and

MITSU, particularly at lower levels of motif conservation.
As with the realistic synthetic data, MITSU is shown to in-

crease sPPV by making fewer, more accurate, predictions

(Table 2). We note that the sSn values are decreased to lower

than the corresponding values from deterministic EM and (to a

lesser extent) SEAM. This is a side effect of predicting fewer sites

overall: ‘borderline’ predictions that may have been classified as

true-positive results previously are now classed as false-negative

results owing to the more cautious predictor. However, as with

the realistic synthetic data results, we note that the sSn and sPPV

values for MITSU are now less biased. Although MITSU uses a

Bayes-optimal classifier for site prediction, the results of the

E.coli tests here suggest that a better balance between sSn and

sPPV may be achieved with a different predictor. However, we

note that the complexity of the computational problem and the

wide structural variety of TFBS motifs may mean that it is not

possible to improve on all measures in all cases.
MITSU is shown to be particularly effective in cases where

the deterministic EM-based algorithm returned poor results.

Figure 1 displays ROC curves for the E.coli TorR motif as dis-

covered by both the deterministic EM and MITSU algorithms.

This motif was poorly discovered by the deterministic EM algo-

rithm (sSn=0.10, sPPV=0.03, AUC=0.83); however,

MITSU increases performance over all measures (sSn=0.30,

sPPV=0.50, AUC=0.98). As noted above, the significant im-

provement in sPPV is attributable to predicting fewer sites over-

all, reducing the number of false-positive results. In this case, the

improvement in sSn is a result of an improved motif model,

which better fits the known occurrences. Sequence logos repre-

senting the motifs discovered by both algorithms are shown in

Figure 2. Similar improvements in performance are also seen for

the E.coli FruR and RscB motifs.
Table 3 shows that for the diverse prokaryotic motifs, MITSU

outperforms deterministic EM and SEAM in terms of all three

performance measures. We note that the increase in sPPV is

most significant. This result may be of particular interest to

biologists, as it means that fewer false-positive results are pre-

dicted: sites which are predicted now are therefore more likely to

be true TFBS occurrences. As with the E.coli motifs above, we

notice significant increases in performance for motifs that were

relatively poorly discovered by deterministic EM, for example,

the E.coli CRP and RutR motifs and the Bacillus subtilis Spo0A

motif.
Further tests were carried out in which the MCOIN heuristic

was used to determine the most likely motif width from a range

of plausible widths (�4bp of the experimentally determined

Table 3. Diverse prokaryotic data: classification results

Conservation (mean bits/col) Deterministic EM SEAM MITSU

SSn Sppv AUC sSn sPPV AUC sSn sPPV AUC

0.99 0.75 0.67 0.99 0.86 0.86 — 0.88 0.92 1.00

Note: sSn, sPPV and AUC for nine datasets created using real prokaryotic data determined through ChIP experiments. Best results are printed in bold. In these tests, motif

discovery was carried out only at the experimentally determined motif width.

Fig. 1. ROC curves (plotted for 0� sFPR� 0.5) for the E.coli TorR

motif discovered by the deterministic EM algorithm (left) and MITSU

(right). Curve colour illustrates the threshold of pðZi;j=1jXi;j; �Þ, from

highest (red) to lowest (blue)
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motif width). When the true motif width is unknown, the per-

formance of MITSU is decreased slightly; the overall results on

the E.coli dataset and the diverse prokaryotic dataset when using

the MCOIN heuristic (sSn=0.43, sPPV=0.68, AUC=0.97

and sSn=0.85, sPPV=0.88, AUC=1.00, respectively) show

that MITSU continues to outperform both deterministic EM

and SEAM in terms of sPPV and AUC, but decreases in sensi-

tivity compared with the previous results (Tables 2 and 3).

4.2 Stochastic EM escapes local maxima

One major motivation for the sEM algorithm is the fact that the

deterministic EM algorithm cannot be guaranteed to converge to

the global maximum of the likelihood function and may instead

converge to a saddle point or local maximum of the likelihood

function. While sEM also cannot be guaranteed to converge

to the global maximum of the likelihood function, it can be

demonstrated that the stochastic perturbations of sEM allow

sEM-based algorithms to escape local maxima, which trap de-

terministic EM-based algorithms, in a motif discovery context.
We construct a dataset comprising 10 sequences of 200 nt in

length, each sequence containing a single occurrence of a per-

fectly conserved motif of width 8 bp. As before, E.coli intergenic

sequences extracted from EcoGene were used as background

positions. Despite the relative simplicity of the dataset, we

expect that there will be a large number of local maxima in the

likelihood function, corresponding to patterns that are better

conserved than the background but less well conserved than

the motif of interest.
Energy traces for two runs of both the deterministic EM al-

gorithm and MITSU are shown in Figure 3. Both algorithms are

initialized with the same parameter values and allowed to run to

convergence. Both traces illustrate one of the major differences

between deterministic and sEM: while each iteration of determin-

istic EM is guaranteed not to decrease the likelihood, sEM has a

non-zero probability of accepting new model parameters that

decrease the likelihood, to escape local maxima of the likelihood

function. The top trace illustrates a case where deterministic EM

converges to a local maximum at around Gð�Þ=� 0:52. In

contrast, although sEM spends �40 iterations around

Gð�Þ=� 0:70, a small jump that decreases energy at iteration

53 is followed by several iterations, which dramatically increase

the energy. Using our stopping rule, sEM converges at

Gð�Þ=� 0:14, the energy corresponding to perfect discovery

of the known motif. The lower trace in Figure 3 shows a case

where both algorithms converge to Gð�Þ=� 0:14. This trace

illustrates that deterministic EM generally converges faster

than sEM, which can spend a relatively large number of iter-

ations exploring lower energies before converging. However,

we see this slower convergence as a small trade-off in exchange

for more accurate motif models and binding site predictions, as

shown in the top energy trace.

4.3 MITSU successfully discovers multiple motifs in a

single sequence

As noted in Section 3.3, the cut heuristic in combination with the

ZOOPS model allows discovery of multiple motif occurrences

Fig. 3. Energy traces for two runs of both the deterministic EM algo-

rithm (blue) and MITSU (red) on a synthetic dataset containing a per-

fectly conserved motif of width 8bp. Algorithm convergence is marked

with ‘�’ in both cases. We note that the sEM algorithm allows MITSU to

escape local maxima of the likelihood function, which can trap determin-

istic EM (top)

Fig. 2. Sequence logos representing the E.coli TorR motif as discovered

by the deterministic EM algorithm (top) and MITSU (bottom)
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within a single input sequence. We present a proof of principle

using the well-known CRP dataset, used by Bi (2007), Lawrence

et al. (1993) and Stormo and Hartzell (1989), among others.

Briefly, CRP is a prokaryotic transcription factor that is import-

ant in the regulation of genes involved in energy metabolism. The

CRP dataset consists of 18 sequences, each of which is 105 nt in

length. The dataset contains 24 CRP binding sites determined by

footprinting experiments or sequence similarity to confirmed

binding sites; each sequence in the dataset contains one or two

sites. Each binding site is 22 bp in length. Figure 4 (top) shows

the CRP motif sequence logo constructed from the 24 binding

sites in the dataset; we note that the low conservation and

gapped nature of the CRP motif increases the challenge of com-

putational discovery.
We compare MITSU against MEME and assume that the true

motif width is known; both algorithms are run at this width.

MITSU was run with the cut length U equal to half the length

of each input sequence. The results of this test show that MITSU

predicted 28 binding sites (sSn=0.71, sPPV=0.61,

AUC=0.99) and successfully predicted both binding sites in

the CE1CG, ARA and LAC sequences. The middle logo in

Figure 4 represents the motif discovered by MITSU. Based on

this result, MITSU compares well with MEME, which predicted

18 binding sites and failed to discover more than one site in a

sequence using the TCM model when the total number of sites

was not provided (sSn=0.71, sPPV=0.94). Fourteen of the

sites predicted by MEME were also predicted by MITSU. The

bottom logo in Figure 4 represents the motif discovered by

MEME when the number of known sites was not provided.

This motif is shifted by 3bp compared with the motif constructed

from the known binding sites. When the total number of sites

was used as additional information, MEME predicted 24 binding

sites and successfully predicted both binding sites in the CE1CG,

DEOP2 and MALK sequences (sSn= sPPV=0.83). Sixteen of

the sites predicted by MEME were also predicted by MITSU.
Comparing the sequence logos representing the motifs dis-

covered by MITSU and MEME shown in Figure 4, we note

that the positions in the motif discovered by MITSU are gener-

ally underweighted compared with the known motif and that the

positions in the motif discovered by MEME are generally over-

weighted. This difference in weighting is due to the number of

sites predicted by each algorithm. Both algorithms return the

same number of true-positive predictions; the number of false-

negative predictions is also equal, leading to identical sSn results.

MITSU predicts more false-positive sites than MEME, which

leads to an underweighting of the positions in the model dis-

covered by MITSU compared with that discovered by MEME.

This also provides an explanation for the decreased sPPV result

(0.61 versus 0.94, respectively). While there is room for improve-

ment, the cutting heuristic is shown to successfully reproduce the

TCM model in principle without additional heuristic optimiza-

tions to improve performance.

5 CONCLUSION

Computational discovery of TFBS motifs remains an important

and challenging problem in bioinformatics. MITSU is a novel

algorithm for motif discovery, based on sEM. MITSU has a

clear advantage over deterministic algorithms in that it is less

likely to converge to insignificant local maxima of the likelihood

function owing to the sEM algorithm, improving results. We

show that the sEM algorithm allows MITSU to escape these

local maxima and converge to models with higher energies.

MITSU also has advantages over existing sEM-based motif dis-

covery algorithms as it is unconstrained with regard to the dis-

tribution of motif occurrences within the input dataset and

incorporates useful features commonly found in modern motif

discovery algorithms, such as automatic determination of motif

width.

Results of tests on several collections of realistic synthetic data

and two collections of previously characterized prokaryotic data

show that MITSU consistently outperforms deterministic EM

and the SEAM algorithm for motif discovery in terms of site-

level positive predictive value and generally performs at least as

well in terms of overall correctness of results, based on ROC

analysis. We note that the results returned by MITSU also

often increase site-level sensitivity. Using the well-known CRP

dataset, we demonstrate that MITSU combines a cut heuristic

with the ZOOPS model to effectively reproduce a TCM model

without the compromise of additional ‘smoothing’ steps.
Future work will implement probabilistic (or ‘soft’) erasing to

discover multiple different motifs within a single dataset and will

investigate exploiting the Metropolis accept/reject mechanism to

incorporate relevant model-level biological knowledge. Such

heuristics will be important in further optimizing performance,

as is the case for established motif discovery algorithms.
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