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ABSTRACT

Motivation: Somatic copy number aberrations (SCNAs) are frequent

in cancer genomes, but many of these are random, passenger events.

A common strategy to distinguish functional aberrations from passen-

gers is to identify those aberrations that are recurrent across multiple

samples. However, the extensive variability in the length and position

of SCNAs makes the problem of identifying recurrent aberrations no-

toriously difficult.

Results: We introduce a combinatorial approach to the problem of

identifying independent and recurrent SCNAs, focusing on the key

challenging of separating the overlaps in aberrations across individuals

into independent events. We derive independent and recurrent

SCNAs as maximal cliques in an interval graph constructed from over-

laps between aberrations. We efficiently enumerate all such cliques,

and derive a dynamic programming algorithm to find an optimal se-

lection of non-overlapping cliques, resulting in a very fast algorithm,

which we call RAIG (Recurrent Aberrations from Interval Graphs). We

show that RAIG outperforms other methods on simulated data and

also performs well on data from three cancer types from The Cancer

Genome Atlas (TCGA). In contrast to existing approaches that employ

various heuristics to select independent aberrations, RAIG optimizes a

well-defined objective function. We show that this allows RAIG to

identify rare aberrations that are likely functional, but are obscured

by overlaps with larger passenger aberrations.
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Contact: braphael@brown.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Copy number aberrations (CNAs) are gains and losses of large

segments of the genome—ranging in size from a few kilobases to

whole chromosomes. Somatic CNAs (SCNAs) that occur during

the lifetime of an individual are a major contributor to cancer

development, particularly for solid tumors (Cancer Genome

Atlas Research Network, 2013; McLendon et al., 2008; The

Cancer Genome Atlas Network, 2012; Zack et al., 2013).
In the last decade, technologies with increasing resolution have

been introduced to measure CNAs. Cytogenetic techniques such

as comparative genomic hybridization were replaced by higher

resolution array-comparative genomic hybridization (aCGH)

and SNP genotyping arrays, and most recently these are being

supplanted by high-throughput sequencing platforms. The latter

identify CNAs as deviations from the expected number of reads

aligned to an interval of the reference genome (Chiang et al.,

2008; Xi et al., 2010), and depending on the sequencing depth
and technology, can measure CNAs to single-nucleotide reso-

lution. In parallel with the technological developments, numer-
ous computational methods have been developed to identify

CNAs in single samples (Chiang et al., 2008; Hup�e et al., 2004;
Olshen et al., 2004).

A key challenge in applying these technologies to cancer gen-
omes is that most SCNAs measured in tumor samples are

random, passenger events that do not contribute to the cancer
phenotype. A common strategy to distinguish functional, driver

aberrations from such random, passenger events is to identify
recurrent aberrations shared by multiple samples (Rueda and

Diaz-Uriarte, 2010). However, this is a notoriously difficult
problem because SCNAs vary widely in length and position

across different samples. For example, a tumor-suppressor
gene might be deleted by a small focal aberration in one

sample, while in another sample the same gene is deleted by a
whole chromosome loss. The varying size and starting/ending

positions of aberrations across samples create a complex pattern
of overlapping aberrations. This makes it difficult to determine

which gene or genomic locus (if any) is the target of the aberra-
tion, a necessary prerequisite for any statistical test of recurrence.

Early methods for finding recurrent SCNAs used the straight-
forward approach of finding the minimum common region of

aberrations across samples (Aguirre et al., 2004). Subsequently,
numerous methods with more complex models were introduced

(Ben-Dor et al., 2007; Beroukhim et al., 2007; Diskin et al., 2006;
Magi et al., 2011; Mermel et al., 2011; Morganella et al., 2011;

Niida et al., 2012; Sanchez-Garcia et al., 2010; Walter et al.,
2011). While these methods differ in important details, they all

use variations of two basic steps: (i) compute a score at each
genomic locus (typically a probe in microarray datasets) indicat-

ing the recurrence; (ii) examine correlations between recurrences
scores of nearby loci to separate the true target region from other

close, high-scoring regions. In addition, some approaches also
compute the statistical significance of the resulting predictions,

using either a fixed distribution or a permutation test that pre-
serves the lengths of SCNAs.

A major challenge in detecting recurrent SCNAs is that closely
located driver aberrations lead to correlations between the recur-

rence scores. For example, Figure 1 shows SCNAs in 20 samples.
The number of samples with an aberration at each locus gives a

recurrence score across the genome. However, these peaks are
correlated: e.g. the fifth peak results largely from intervals shared

with the fourth and third peaks. Methods that predict recurrent
SCNAs must address the problem of how to separate peaks, or

high scoring regions, into independent copy number events. One
of the most-widely used methods, GISTIC (Beroukhim et al.,

2007), introduced a greedy procedure that removes the*To whom correspondence should be addressed.
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aberrations contributing to the highest peak, and then rescores

the remaining SCNAs, continuing this iterative procedure until

no more significant peaks are found. While GISTIC has been

very successful in identifying recurrent SCNAs, the greedy nature

of the peel-off procedure reduces the sensitivity to discover real

secondary driver events if they are close to another primary

driver event.
JISTIC (Sanchez-Garcia et al., 2010) and GISTIC2 (Mermel

et al., 2011) proposed alternative peel-off procedures with better

performance. GISTIC2 uses an arbitrated peel-off procedure

that rescores secondary peaks by assigning weights to intervals

in proportion to the number of peaks in which they contribute

(Fig. 1). While this approach considers the correlations between

high-scoring peaks, these correlations are considered in an itera-

tive manner: there is no attempt to globally maximize an object-

ive function. We observed that the peel-off procedure could fail

to detect high-scoring recurrent regions that were composed of

numerous intervals that are shared with other recurrent regions,

e.g. peak 3 in Figure 1. The continued development of peel-off

procedures emphasizes the difficulty in identifying recurrent

SCNAs, particularly secondary aberrations that are nested

within larger aberrations. Indeed, the overlap between the pre-

dictions from different methods is generally fairly small (Yuan

et al., 2012). Moreover, the peel-off procedures implemented in

GISTIC, GISTIC2, JISTIC and related methods were originally

developed for microarray data and rely on markers (probes) to

define either boundaries or weights of peaks. This complicates

the application of these approaches to high-throughput sequen-

cing datasets.
At the same time, existing methods for identifying SCNAs do

not address the challenges of rare SCNAs that may not be stat-

istically significant on their own. Recent cancer genome sequen-

cing studies have shown that a relatively small number of genes

are mutated at high frequency in a cohort of cancer patients with

many genes mutated at lower frequencies (Garraway and

Lander, 2013). This ‘long tail’ phenomenon implies that rare

mutations/aberrations cannot be discarded and require further

scrutiny. A promising approach to address this long tail is to

analyze combinations of mutations/aberrations in various signal-

ing and regulatory pathways (Ciriello et al., 2012; Leiserson

et al., 2013; Vandin et al., 2011, 2012). While rare somatic mu-

tations may be directly incorporated in pathway analyses, there is

no corresponding approach to identify rare SCNAs: most

approaches focus on the problem of identifying SCNAs that

are individually significant.

To address the limitations of current approaches in detecting

rare and secondary aberrations, we were motivated to develop a

new approach that identifies both recurrent and independent

SCNAs by optimizing a score that considers the composition

and the correlation between all SCNAs on a chromosome

across a set of samples. We introduce RAIG (Recurrent

Aberrations from Interval Graphs), an algorithm to detect inde-

pendent and recurrent SCNAs by selecting an optimal subset of

maximal cliques in an interval graph. In contrast to existing

approaches that deconvolve the recurrence score, RAIG analyzes

the combinatorial structure of the underlying intervals, and thus

explicitly models the dependencies between the values of the re-

currence score. RAIG uses a dynamic programming algorithm to

optimize a rigorous objective function for the selection of recur-

rent aberrations. Moreover, RAIG is very efficient, as maximal

cliques in an interval graph can be efficiently enumerated. We

show that our RAIG algorithm performs very well on both

simulated data and data from several cancer types from The

Cancer Genome Atlas (TCGA). In particular, RAIG has

higher sensitivity in detecting rare SCNAs and secondary aber-

rations that are missed by iterative peel-off procedures, while

also retaining high specificity. RAIG is simple and fast, and

readily adaptable for high-throughput sequencing data.

2 METHODS

2.1 Interval graph representation of SCNAs

As in most methods for analyzing recurrent SCNAs, we begin with a

collection of segmented copy number profiles from a set of individuals.

Thus, we assume that the copy number data from each individual has

been parsed into a collection of putative deletion and amplification

Fig. 1. SCNAs in 20 samples with an interleaved pattern of overlapping intervals and three recurrent aberrations (Peaks 2, 3 and 4). Gray rectangles

represent locations of SCNAs in each sample. The aberration score (e.g. G-score or q-value fromGISTIC) is shown in yellow and has five distinct peaks.

Greedy algorithms such as GISTIC/GISTIC2 select the highest scoring Peak 2 and then peel off the constituent intervals leaving Peak 4 as the next

highest score (red line). Blue line indicates the distribution of score after selecting Peak 4 in the second peel off. Peak 3 is not identified, although there are

four intervals starting immediately before Peak 3 (left intervals), eight intervals ending immediately after Peak 3 (right intervals), and one interval

satisfying both conditions (unique intervals). Numbers under each peak name indicate the number of (left, unique, right) intervals for that peak, which we

use for scoring in RAIG (Section 2). Note that each peak corresponds to a maximal clique in the interval graph representation (Fig. 2)
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intervals, using one of the many algorithms to segment copy number data

into intervals of equal copy number (e.g. Chiang et al., 2008; Hup�e et al.,

2004; Olshen et al., 2004). Because we analyze interval data, rather than

probe data, our approach is readily applicable to microarray or high-

throughput sequencing approaches for measuring copy number.

The first step in determining recurrent SCNAs is to find regions of

common intersection between intervals across a subset of samples

(Fig. 2A). Here, we introduce a general approach to finding common

intersections. We model the intersections between segmented copy

number profiles using an interval graph G. For a chromosome arm A,

let G=(V,E) be a graph where each vertex v 2 V corresponds to an

interval in a sample and each edge e=ðu; vÞ 2 E joins intervals that inter-

sect (Fig. 2B). Interval graphs are a special class of graphs and a number

of important optimization problems, that are generally NP-hard, can be

solved efficiently on interval graphs (Golumbic, 2004), a fact we will

exploit in our algorithm below. Although interval graphs have been

used many times in bioinformatics since Benzer’s experiments in bacterial

genes in the 1950s (Benzer, 1959), to our knowledge they have not been

used to model the problem of finding recurrent SCNAs.

A set of intervals containing a common region of intersection corres-

ponds to a clique in the interval graph G; i.e. a set of vertices with edges

between each pair, also known as a complete subgraph. Similarly, the

maximal set of intervals sharing a common intersection that cannot be

extended by adding an additional sample corresponds to a maximal

clique, a clique that cannot be extended with an additional vertex.

Finding all maximal cliques in general graphs is an NP-hard problem

(even finding a maximum clique in general is NP-complete), but one can

enumerate all maximal cliques in an interval graph in polynomial time

(Habib et al., 2000).

For each chromosome arm, we construct two separate interval graphs:

one for amplifications and one for deletions. We compute all maximal

cliques and order them according to their genomic location

C=ðC1;C2; . . . ;CmÞ. This ordering can be easily obtained by sorting

all interval endpoints, and scanning their common regions using a

sweep line algorithm from left to right [For instance see Habib et al.

(2000).] Similar to GISTIC2 (Mermel et al., 2011), we also define a

gene-level version of overlaps for deletions. That is, different portions

of a gene may be deleted in different individuals. We consider all such

events as deletions of the gene and thus we consider two deletion intervals

u and v as overlapping if at least one endpoint of u and one endpoint of v

are located within the same gene.

2.2 From maximal cliques to independent and recurrent

SCNAs

Each maximal clique Ck represents an aberration that is common to

multiple individuals, and corresponds to a peak in the recurrence score

plot (cf. Fig. 1). However, only a subset of these maximal cliques are

likely to be interesting SCNAs. For example, a single erroneous interval

in only one individual could create two maximal cliques from what

should be considered a single recurrent aberration. Figure 2 shows such

an example, where maximal clique C5 is determined by a single interval

v33 in sample 3. If this interval was deemed to be experimental error

rather than true SCNA and removed, then clique C5 would disappear.

Similarly, clique C3 is determined by a single interval v22 in sample 2. If

the endpoint of this interval was shifted slightly to the right (e.g. if the

segmentation was slightly off), then clique C3 would disappear. If both

errors occurred and C5 and C4 were removed, then C4 corresponds to the

single common region of SCNA in most samples.

Thus, in addition to considering maximal cliques, we should also ana-

lyze maximal cliques that result after the removal, or shifting of end-

points, of a small number of erroneous intervals. Because the removal

of intervals, or shifting of interval endpoints, affects neighboring cliques

on the genome, we consider blocks of consecutive cliques. We propose an

algorithm that finds an optimal partition of maximal cliques into blocks

according to both the number of intervals that contribute to each max-

imal clique and the dependencies between these contributions.

2.3 Algorithm

Our RAIG algorithm examines maximal cliques, or small blocks of con-

secutive maximal cliques in C, as potential recurrent SCNAs. We define a

block Bij as an ordered list (Ci,Ci+1, . . . ,Cj) of consecutive maximal cli-

ques. Below, we define the score for each block. Our goal is to select a

collection of non-overlapping blocks whose total score (i.e. the sum of the

scores of each block in the collection) is maximized under the constraints

that the size of the blocks is not too large and the score of each block in

the collection is above a threshold. In the following sections, we formally

define our scoring scheme and optimization problem. Then we present an

efficient algorithm to solve the problem.

2.3.1 Scoring blocks Let C=ðC1;C2; . . . ;CmÞ be the ordering of all

maximal cliques such that for every interval v, the maximal cliques con-

taining v are in consecutive order. Given the ordering C, for every clique

Ck, let ck be a coordinate such that ck belongs to all the intervals in Ck but

does not belong to any interval which is not in Ck. Note that because of

the definition of maximal cliques, for every k, such ck always exists and

we have c15c25� � �5cm.

For a given interval v, let av be its left endpoint and let bv be its

right endpoint, respectively. We refer to av and bv as the boundary

endpoints of the interval. Given a maximal clique Ck, we define LðCkÞ=

fvjck�15av � ckg and RðCkÞ=fvjck � bv5ck+1g. In other words, LðCkÞ

is the set of intervals whose left endpoints are located before ck but after

ck�1, while RðCkÞ is the set of intervals whose right endpoints are located

after ck but before ck+1. The sets LðCkÞ and RðCkÞ are the intervals that

make a contribution uniquely to clique Ck. Note that LðCkÞ \ RðCkÞ is

the set of intervals that are unique to Ck.

Analogously, given a block Bi,j (i.e. consecutive cliques Ci, . . . ,Cj),

we define LðBi;jÞ=fvjci�15av � ci and cj � bvg to be the set of inter-

vals whose left endpoint are located between Ci�1 and Ci, and similarly

RðBi;jÞ=fvjcj � bv5cj+1 and av � cig to be the set of intervals whose

right endpoints are located between Cj and Cj+1. To define a score

A

B

Fig. 2. (A) SCNAs (gray rectangles) in different samples with regions of

common intersections C1,C2, . . . ,C5 highlighted in different colors. (B)

The interval graph formed from SCNAs in (A). Each vertex vij represents

the j-th aberration in sample i. Two vertices are connected with an edge if

their corresponding aberrations intersect. Vertices are colored according

to the common intersections in which the aberration is involved
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W(Bi,j) for the block Bi,j, we suppose that the block resulted from a single

recurrent SCNA, defined by a single maximal clique Cp, called the pivot,

within the block Bi,j (i.e. i� p� j), and nearby cliques created by errone-

ous intervals/endpoints in some samples. Thus, to score the block Bi,j with

pivot Cp, we count all the intervals that cross the pivot Cp, whose left

endpoints are located after ci�1 but before ci (for all i� p, where ci is the

left boundary of the block), together with those intervals whose right

endpoints are located after cj but before cj+1 (for all j� p, where cj is

the right boundary of Bi,j) (Fig. 3A). Our score W(Bi,j) for the block

W(Bi,j) is the number of such pairs of left and right endpoints, maximized

over all possible pivot cliques. Formally, we define:

WðBi;jÞ=max
p:½i;j�

2�min ðj [
s:½i;p�
LðBs;pÞj; j [

e:½p;j�
RðBp;eÞjÞ: ð1Þ

We count pairs of boundary endpoints because intervals that are

unique to Bi,j are elements of both LðBi;jÞ and RðBi;jÞ, and also to

avoid asymmetry where the number of left and right endpoints differs

drastically.

2.3.2 Finding an optimal block partition In this section, we formally

define the problem of finding an optimal selection of non-overlapping

blocks and present an efficient algorithm to solve the problem. Each

selected block defines a target region of an independent SCNA.

Let P denote a selection of non-overlapping blocks Bi,j according to

the ordering C. Each such selection P corresponds to a collection of

independent SCNAs. Our goals is to identify not only recurrent

aberrations in many samples (primary events), but also rare, secondary

aberrations that might be obscured by complex and overlapping segments

with primary events. Thus, we comprehensively consider all potential

selections of non-overlapping blocks. We score the selection as the sum

of the scores of each of the blocks in P whose score is above a minimum

threshold �.

WðPÞ=
X

Bi;j2P;WðBi;jÞ��

WðBi;jÞ; ð2Þ

where W(Bi,j) is the score of a block Bi,j in the selection. The parameter �

is used to reduce the possibility of over-partitioning that could result from

individual cliques with low scores preventing the creation of larger blocks.

We aim to solve the following problem.

PROBLEM 1. Given an interval graph G with maximal cliques

C=ðC1; . . . ;CmÞ, a minimum block score �, and a maximum block size

r�m, find a selection P� of non-overlapping blocks such that for each block

Bi;j 2 P
�

(1) The score W(Bi,j)� �;

(2) The block size j� i+ 1� r;

and such that the score WðP�Þ is maximized over all such selections.

We solve this problem using dynamic programming. Let Z(j) be the

highest scoring selection of non-overlapping cliques from C1, . . . ,Cj. Then

we have the following recurrence:

ZðjÞ=
max i Zði� 1Þ+WðBi;jÞ

� �
if WðBi;jÞ � �;

Zðj� 1Þ; otherwise;

(
ð3Þ

where i= j� r+1, . . . ,j. We also have the initial condition Z(0)=0.

The recurrence derives the best selection of non-overlapping blocks in

the first jmaximal cliques of the ordering C, using the optimal solution of

the first j� 1 cliques. Since we take multiple consecutive cliques into

consideration, we have to consider an indicator i of the starting clique

of the block ending at j, where j� r+1� i� j. Then we can get the best

selection of the first i cliques by calculating the score for all possible i,

which is the score Z(i� 1) of the best selection prior to i, plus the score

W(Bi,j) of the block from i to j (Fig. 3B). Note that our algorithm is very

fast; knowing the ordering C1, . . . ,Cm of the maximal cliques and scores

W(Bi,j) of every block Bi,j in advance, the dynamic programming step

takes only O(mr), where r is the bound on the block size. Computing

the ordering C1, . . . ,Cm of the maximal cliques requires Oðmlog mÞ by

employing a sorting procedure and a simple line sweep algorithm. Note

thatm, the number of maximal cliques, is bounded by the total number of

intervals in all samples. Finally, computing the scores of all blocks Bi,j

with their sizes bounded by r takesO(mr2). Thus the total running time of

our method is Oðmlog m+mr2Þ.

2.4 Defining the target regions of aberrations

and assessing significance

The final tasks in the identification of recurrent SCNAs are: (i) to deter-

mine the target region, or genomic location, of the aberration; (ii) to

identify the statistical significance of the aberration. For a given block

W(Bi,j) in the optimal selection P�, a natural choice of target region is the

minimal common region (MCR) (Aguirre et al., 2004), or the smallest

region contained in the intersection of all intervals that contributed to the

score of the blockW(Bi,j). However, the MCR is often too restrictive, as it

is sensitive to the location of one or a small number of intervals; e.g. a

small, erroneous interval in one sample could produce a very small MCR.

Thus, we define a less restrictive target region by removing t pairs of left

and right boundary endpoints. Formally, for a block Bi,j with pivotCp, let
~LðBi;jÞ be the descending ordered list of the positions of all left endpoints

in the set LðBi;jÞ, and let ~RðBi;jÞ be the ascending ordering list of the

A

B

Fig. 3. (A) The computation of the weightWðBj�2;jÞ for block Bj�2,j (blue

dashed rectangle) with pivot clique p= j. Intervals that do not cross Cp

(indicated by red cross) are considered noise, and ignored. The score for

the blockWðBj�2;jÞ is calculated from the left endpoints (green) and right

endpoints (orange) of the remaining intervals. (B) Example of recurrence

Z(j) to compute optimal collection of non-overlapping blocks terminating

at the maximal clique j. Dashed green, solid red and dotted purple rect-

angles represent the possible selections of blocks Bj�2;j; Bj�1;j and Bj,j,

respectively, with the corresponding terminal clique from the previous

step of the recurrence. Scores WðBj�1;jÞ and WðBj;jÞ are computed

using endpoints indicated by red and purple circles, respectively. In this

case, WðBj;jÞ is the optimal selection
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position of all right endpoints in the set RðBi;jÞ. The MCR of the block

Bi,j is the first element of ~LðBi;jÞ and the first element of ~RðBi;jÞ. For

a given value t, we choose the region between the (t+1)-th element of
~LðBi;jÞ and the (t+1)-th element of ~RðBi;jÞ.

Finally, similar to other approaches (Beroukhim et al., 2007; Diskin

et al., 2006; Sanchez-Garcia et al., 2010; Walter et al., 2011), we assess the

statistical significance of our predictions using a permutation test. We

used the cycle shift permutation from DiNAMIC (Walter et al., 2011)

that preserves the number and length of SCNAs in each sample, while

permuting their positions. The cycle shift permutation also preserves any

positional correlations between aberrations within a sample. We per-

formed the cycle shift permutation on all samples to define a permuted

collection of intervals R. Then for a predicted region Bi,j, we define the

permutational P-value as

pðBi;jÞ=
#R such that maxB2P�

R
WðBÞ �WðBi;jÞ

total number of permutations
: ð4Þ

Note that this P-value is conservative as we compare the observed

score to the maximum score of block in the permuted data. Finally, we

compute a q-value using the Benjamini–Hochberg method.

3 RESULTS

3.1 Simulated datasets

We first compared RAIG with four other approaches: GAIA

(Morganella et al., 2011), JISTIC (Sanchez-Garcia et al., 2010),
GISTIC (Beroukhim et al., 2007) and GISTIC2 (Mermel et al.,

2011) on simulated data. We used simulated data from

Morganella et al. (2011) that offers three SCNA scenarios and

two different noise models of increasing complexity that model
both uncertainty in the amplitude and the position of SCNAs

(both amplifications and deletions) in samples. A description of

the parameters of these simulations is in the Supplementary

Material. For each Scenario, we simulated a chromosome of

1000 probes considering SCNA widths of 100, 200 and 400,
and intensity noises 0, 0.25, 0.5, 0.75 and 1. To take the

amount of overlap with the true SCNA into consideration, we

count a prediction as correct if the predicted SCNA has 30%

reciprocal overlap with the true SCNA. As we varied the param-
eters of each method, we computed the precision as the fraction

of predictions that are correct and the recall as the fraction of

true SCNAs that are predicted. Supplementary Table S2.1 gives

the parameter settings for each method.
All methods performed very well (	90% recall and precision)

on the first noise model for all three scenarios (Supplementary
Fig. S1). On the second noise model, RAIG was the top per-

former across all three Scenarios achieving 99.2% recall and

98.2% precision in Scenario I, 87.9% recall and 99.8% precision

in Scenario II (Supplementary Fig. S1), and 88.9% recall and

99.3% precision in Scenario III (Fig. 4A). In comparison,
other methods cannot achieve such high recall and precision

based on 30% reciprocal overlap with the true SCNA. JISTIC

performed better than the other three methods, achieving 87.2%

recall and 85.3% precision in Scenario III (Fig. 4A), but was still
below RAIG.

Other measures of performance are the sensitivity, defined as
the fraction of genomic locations covered by true SCNAs that

overlap predictions, and the specificity, defined as the fraction of

genomic locations covered by predictions that overlap true

SCNAs. Unlike recall and precision, these measures do not

consider the number of predictions, and thus a method that frag-

ments SCNAs into many smaller predictions can perform well on

sensitivity and specificity. On the more complicated second noise

model, RAIG has better sensitivity than other methods and also

achieves high specificity: 99.3%, 97.8% and 97.6% in Scenarios

I, II and III, respectively (Supplementary Fig. S1).
To compare each method’s ability to identify overlapping sec-

ondary aberrations, we used two additional simulations. First,

we generated a third simulated dataset consisting of three over-

lapping SCNAs, analogous to peaks 2, 3 and 4 in Figure 1. In

this simulation, a simulated chromosome contains three recur-

rent aberrations of length 200 probes across 25 samples. The

three aberrations are at the median position of the chromosome

to minimize edge effects and with a fixed distance 25 probes

between them. We introduced normally distributed amplitude

noise (�=0.25) and spatial noise obtained by resizing and shift-

ing the middle aberration as in Morganella et al. (2011). Finally,

we simulated 100 chromosomes for this dataset and examine its

precision and recall for different approaches.

Requiring a minimum of 30% reciprocal overlap between true

and predicted aberrations, we found that RAIG outperformed

all other methods (Fig. 4B). In particular, RAIG obtained 97%

recall and 99% precision. In comparison, GISTIC, JISTIC and

GAIA all obtained a recall of 66.7% in its favorable case, with

100% precision. The reason for the low recall is because these

methods detected the outer two SCNAs, but could not detect the

middle SCNA, due to their use of iterative/greedy peel-off pro-

cedures. The arbitrated peel-off procedure used in GISTIC2 per-

formed better (recall of 77.3% and 99.1% precision) since it gave

more weight to the middle aberration, but its performance was

still significantly below RAIG.
Finally, we generated a simulated dataset using that same ap-

proach that was used in the GISTIC2 publication (Mermel et al.,

2011) to demonstrate the superiority of the GISTIC2 arbitrated

peel-off procedure over the earlier greedy peel-off procedure used

in GISTIC. In this simulation, we follow the steps in the

GISTIC2 publication (Mermel et al., 2011) to generate simulated

chromosomes in 500 samples, including a primary driver event, a

secondary driver event and passenger events presenting in 10%,

5% and 85% of samples. Each passenger event is chosen

randomly from the collection of 4508 cancer samples from

Pan-cancer dataset (Weinstein et al., 2013) and placed on the

chromosome with uniformmidpoint. We considered recently dis-

covered Pan-cancer driver events (Zack et al., 2013) as the known

driver events for generating lengths and amplitude of driver

SCNAs. We considered different overlaps between the primary

and secondary driver events from 100% (complete dependence

where all intervals contain both aberrations) to 0% (complete

independence where no intervals contain both aberrations). For

each overlap fraction, we created 1000 simulated datasets, each

with 500 samples, and examined its percentage recovery of the

secondary driver event. When the overlap between primary and

secondary driver events is low (550%), RAIG has a clear advan-

tage over GISTIC2 in recovering more secondary driver events

than GISTIC2 (Fig. 4C). In the more difficult case where the

overlap between primary and secondary and driver events is high

(450%), RAIG and GISTIC2 recover similarly low proportions

of secondary events.
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3.2 Cancer datasets

We compared RAIG with other approaches on three recent

cancer datasets from TCGA: 563 Glioblastoma Multiforme

(GBM) samples, 490 Kidney Renal Clear Cell Carcinoma

(KIRC) samples and 847 Breast Invasive Carcinoma (BRCA)

samples. We downloaded segmented copy number data from

Broad Institute’s Genome Data Analysis Center (GDAC). We

considered only focal events by setting a cutoff to distinguish

broad from focal events, i.e. only considering SCNAs whose

lengths are590% of chromosome arm. We compared the recur-

rent regions identified by three different methods: GISTIC2,

GAIA and RAIG, running each of the first four methods with

their default settings and selecting predictions with q-value50.5.

For the parameters of each method, please see Supplementary

Table S2.1.
Overall, we find that while RAIG and GISTIC2 predict ap-

proximately the same number of SCNAs, the SCNAs predicted

by GISTIC2 are410–20-fold larger (Table 1). We observe a fair

amount of overlap between the predictions from different meth-

ods, and also many predictions that were unique to a single

method or pairs of methods (Fig. 5, Supplementary Fig. S2).

Since the driver aberrations in these samples are not known, to

compare the performance of the methods we also examined the

fraction of each predicted SCNA that overlaps genes from the

Sanger Institute Cancer Gene Census (Forbes et al., 2011), a list

of known cancer genes. Because the SCNAs predicted by RAIG

are smaller than other methods, we find fewer census genes.

However, a significantly larger fraction of RAIG’s predictions

overlap census genes, suggesting that RAIG has high specificity.

Moreover, many of the additional census genes found by

GISTIC2 and GAIA are in large SCNAs that contain many

genes—both census genes and non-census genes. We further

detail these results in the following sections.

3.2.1 GBM RAIG detected 71 recurrent amplifications and 50
recurrent deletions, compared with 70 amplifications and 50 de-

letions for GISTIC2 and 44 amplifications and 160 deletions for

GAIA. Comparison of the predictions revealed 24 regions

reported by all three methods (Fig. 5A, Supplementary Fig.

S2A, Supplementary Table S1.1). Most of these shared regions

contain well-known cancer genes and are highly consistent with

the previous studies (Beroukhim et al., 2007; McLendon et al.,

2008), including amplifications in PDGFRA, MET, CDK6,

MYCN, SOX2, MDM4, MDM2 and CDK4; amplifications

close to EGFR; and deletions in NF1, CDKN2A, CDKN2C

and PTEN.
RAIG, GISTIC2 and GAIA predictions included 25, 78 and

50 census genes, respectively. However, the increase in number of

census genes for GISTIC2 and GAIA comes with a cost:

GISTIC2 and GAIA predictions are longer on average than

RAIG predictions and GAIA makes many more predictions

(Table 1). Thus, we computed the number of census genes iden-

tified per Mb in predicted regions and found that RAIG predic-

tions were significantly enriched for census genes: including

nearly 1.41 genes/Mb compared with 0.19/Mb for GISTIC2

and 0.3/Mb for GAIA. Seen another way, the percentage of

prediction covered by a census gene is significantly greater for

RAIG (32.6%) compared with the other methods (1.9% and

3.7%). Supplementary Figure S4A compares the lengths of

RAIG and GISTIC2 predictions containing several well-known

genes including PTEN, CDKN2A and MDM4. Overall, we find

that RAIG makes smaller predictions that are more focused on

the known target genes of the aberrations compared with

GISTIC2 and GAIA.
We also found that several of the predictions that are unique

to RAIG contain genes with reported associations to cancer,

although not in the Cancer Gene Census. One example is a

focal deletion of RSU1, a suppressor of RAS. RAS loss of func-

tion plays a key role in GBM (Tsuda et al., 1995). RSU1 dele-

tions are rare (found in only 10 of the 563 samples) and these

deletions accumulate at C-terminus of RSU1 (Supplementary

Fig. S5). Another rare aberration unique to RAIG is an ampli-

fication of VEGFA (found in only 18 of the 563 samples), a

signature gene of the ‘mesenchymal’ GBM subtype that was

more highly expressed in one of signaling patterns in GBM

(Brennan et al., 2009).

Fig. 4. (A and B) Precision–recall curves for five methods on simulated data. Each point represents the precision and recall at a different prediction

threshold: q-value of each method. (A) Second noise model of the third scenario from (Morganella et al., 2011). (B) Simulated dataset of peel-off

example: e.g. Peaks 2, 3, and 4 in Figure 1. (C) Comparison of RAIG and GISTIC2 in recovering an independent secondary driver event as a function of

the fraction of intervals shared by the primary and driver event, a simulation described in Mermel et al. (2011)
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3.2.2 KIRC RAIG predicted 12 recurrent amplifications and

24 recurrent deletions (using gene-level overlap scoring for dele-

tions), compared with 9 amplifications and 17 deletions for

GISTIC2 and 20 amplification and 35 deletions for GAIA.

Comparison of the predictions revealed six regions reported by

all three methods (Fig. 5B, Supplementary Fig. S2B,

Supplementary Table S1.2). Most of these shared regions contain

well-known cancer genes and are highly consistent with the pre-

vious studies (Cancer Genome Atlas Research Network, 2013).

These include deletions of tumor–supressor genes CDKN2A at

9p21, PIK3CA at 3q26, RUNX3 at 1p36 (Beroukhim et al.,

2009), chromatin remodeling gene ARID1A at 1p36.11, and

PTPRD at 9p23. ARID1A was recently reported to be a new

prognostic marker in KIRC (Lichner et al., 2013). However,

while GISTIC2 predicts a large 31.2Mb deletion at 1p36.33-

p35.2 that includes ARID1A and 7 other census genes, RAIG

predicts a more specific 2.24Mb deletion containing only

ARID1A (Fig. 6A). A similar example is amplification of

MDM4, which is contained in a large 88.2Mb amplification

predicted by GISTIC2, but a 1.18Mb amplification in RAIG

(Fig. 6B).
Some of the recurrent regions identified by at least two meth-

ods have been reported in previous studies, e.g deletions in

NEGR1 at 1p31, NRXN3 at 14q24 and PTEN at 10q23

(Cancer Genome Atlas Research Network, 2013) identified by

RAIG and GISTIC2. Two well-known arm-level SCNAs in

KIRC are amplification of 5q and deletion on 3p. RAIG refined

these arm-level events into several independent SCNAs including

aberrations containing GBE1, PTPRG, CADM2 and ROBO1/2

on 3p. The latter three genes have previously reported roles in

Fig. 5. Intersections between genomic positions predicted to be recurrent SCNAs by GAIA, GISTIC2 and RAIG in (A) GBM, (B) KIRC and (C)

BRCA datasets. Percentages are according to the union of genomic positions predicted by all methods. Red and blue numbers next to names of methods

indicate the number of amplifications and deletions, respectively

Table 1. SCNA predictions by RAIG, GISTIC2 and GAIA on GBM, KIRC and BRCA datasets

Datasets GBM KIRC BRCA

Methods RAIG GISTIC2 GAIA RAIG GISTIC2 GAIA RAIG GISTIC2 GAIA

No. of predictions (amp/del) 71/50 70/51 44/160 12/24 9/17 20/35 47/41 62/51 114/132

Avg. size of regions (kb) 146.43 3297.72 803.00 1998.66 30331.24 4367.74 417.27 5713.15 2965.26

No. of census genes 25 78 50 22 102 42 19 89 125

No. of census genes/Mb 1.41 0.19 0.30 0.31 0.12 0.17 0.52 0.14 0.17

Pct. of census gene overlap 32.6 1.9 3.7 5.02 1.5 1.8 50.3 1.9 2.1

Supplementary Figure S3 gives histograms of the sizes of predicted region. Pct. of census gene overlap gives the percentage of the total predicted SCNAs that are covered by

genes from Sanger’s Cancer Gene Census.

Fig. 6. Predicted aberrations for RAIG (red) and GISTIC2 (orange)

containing several known cancer genes. Gray bar indicates genome

with large gray and blue boxes indicating genes and census genes, respect-

ively. Supplementary Figure S4 shows all cancer census genes common to

both methods
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cancer. However, these smaller aberrations were not significant,
likely due to the whole arm aberrations that lead to a relatively

flat permutational distribution using the cycle-shift permutation.

While these rare aberrations were not statistically significant on

their own, they can be analyzed in combination with other mu-

tations/aberrations using pathway and network analyses (Ciriello

et al., 2012; Leiserson et al., 2013; Vandin et al., 2011, 2012).

3.2.3 BRCA RAIG detects 47 amplifications and 41 deletions
(using gene-level overlap scoring for deletions) compared with 62

amplifications and 51 deletions for GISTIC2 and 114 amplifica-

tions and 132 deletions for GAIA (Fig. 5C, Supplementary Fig.

S2C, Supplementary Table S1.3). Altogether, there are 28 regions
common to the three methods (Supplementary Fig. S2C). These

regions include previously reported recurrent SCNAs (The

Cancer Genome Atlas Network, 2012) such as: focal amplifica-

tion of regions containing CCND1, ERBB2, MYC, MDM4 and

ZNF703; amplified regions near ZNF217, GATA3 and FOXA1;

and focal deletion of regions containing FOXP1, CSMD1, RB1,
PTEN, CDKN2A, PTPRD, MAP2K4 and MLL3. Moreover,

RAIG and GISTIC2 identified an amplified region containing

ESR1; activating mutations in ESR1 were recently reported to be

a key mechanism in breast cancer (Robinson et al., 2013).
We observe a similar result as in the GBM dataset. While

GISTIC2 and GAIA predictions contain more census genes,

their predictions are larger. The result is that RAIG has �3-

fold census genes/Mb than the other methods (Table 1). Seen
another way, the percentage of prediction covered by a census

gene is significantly greater for RAIG (50.3%) compared with

the other methods (1.9% and 2.1%). For example, GISTIC2

predicts a 13.6Mb deletion with census genes FOXP1 and

MITF, while RAIG predicts a specific deletion with the size

0.62Mb containing only FOXP1 (Fig. 6C). A similar example
is deletion of MAP2K4, which is contained in a relatively large

0.56Mb deletion in GISTIC2 output but a 0.06Mb deletion in

RAIG (Fig. 6D).
RAIG identified some important regions listed as follows

which are not identified by the other methods. A notable ex-

ample is a rare deletion of RUNX1 (Fig. 7) in 33 samples

(jL(C)j=16 and jR(C)j=21). Deletion of RUNX1 is consistent

with previous reports of inactivating mutations in RUNX1 in
breast cancer (Banerji et al., 2012).

4 DISCUSSION

We introduce RAIG, an algorithm to find independent and re-

current SCNAs. We demonstrate that RAIG performs well com-

pared with the existing methods on synthetic and real datasets.

On simulated datasets, RAIG achieved the highest precision and
recall, and also made smaller, more focused predictions. On real

datasets, RAIG predicted independent and recurrent SCNAs in

a significantly smaller fraction of the genome than the widely

used GISTIC2 algorithm and the GAIA algorithm. Overall,

the overlap between different methods is modest, demonstrating

the difficulty in identifying recurrent SCNAs. RAIG showed the
highest enrichment of known cancer genes from The Cancer

Gene Census, suggesting that RAIG has high specificity. While

it is difficult to estimate the sensitivity of each method on real

data, we found that a number of the genes that were unique to

RAIG are known cancer genes. Finally, the efficient clique enu-

meration and optimization steps make RAIG perform more than

thousand times faster than other methods, although total run-

ning times are influenced by the type of nature of the statistical

test that is performed (Supplementary Table S2.2).
At the same time, RAIG does miss some SCNAs that likely

contain important cancer genes. In examining these cases, we

found that the majority had relatively few boundary endpoints

that surround the maximal clique containing these genes.

However, the amplitude of the SCNAs in these samples was

very high. One example is FGFR1 in BRCA, where the average

frequency and amplitude are 0.12 and 0.98, respectively. We

found that other intervals (with lower amplitude) obscure the

high-amplitude intervals containing FGFR1. GISTIC2 use copy

number amplitude in addition to number of samples for its re-

currence score. Further improvements to RAIGmay be obtained

by running with higher amplitude thresholds, or by incorporat-

ing amplitude into the objective function optimized by RAIG;

e.g. by creating a weighted score for intervals according to their

amplitude. To test the former hypotheses, we ran RAIG on the

BRCA dataset using only intervals whose amplitude was40.5.

RAIG returned a region on 8p containing FGFR1 and two other

genes.
Since RAIG considers all possible partitions of the data, it is

able to detect rare SCNAs and secondary events that are

obscured by complex, overlapping rearrangements and missed

by iterative peel-off procedures used in all existing methods.

Although such rare aberrations are not statistically significant

on their own, one of the outcomes from recent cancer sequencing

studies is the demonstration of extensive mutational heterogen-

eity in cancer with driver mutations distributed over a large

number of genes (Vogelstein et al., 2013). Thus, obtaining a

comprehensive view of the mutations that drive cancer requires

the analysis of combinations of rare and common mutations in

pathways and interaction networks (Cerami et al., 2010; Ciriello

et al., 2012; Leiserson et al., 2013; Vandin et al., 2011, 2012;

Vaske et al., 2010).

Fig. 7. Rare deletion identified by RAIG in RUNX1 in BRCA. Genes are

dark gray rectangles at top while RAIG prediction is orange rectangle.

Contributing SCNAs are those interval that contribute to the scoreW for

the recurrent region (maximal clique), while other SCNAs are intervals

that do not contribute score. There are 5 left, 11 unique and 10 right

intervals indicated by light blue, dark blue and cyan in the CNA panel,

respectively, that contribute to the RUNX1 score, i.e. LðBÞ=16 and

RðBÞ=21
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