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ABSTRACT

Motivation: While the manually curated Gene Ontology (GO) is widely

used, inferring a GO directly from -omics data is a compelling new

problem. Recognizing that ontologies are a directed acyclic graph

(DAG) of terms and hierarchical relations, algorithms are needed that:

(1) analyze a full matrix of gene–gene pairwise similarities from

-omics data;

(2) infer true hierarchical structure in these data rather than enfor-

cing hierarchy as a computational artifact; and

(3) respect biological pleiotropy, by which a term in the hierarchy

can relate to multiple higher level terms.

Methods addressing these requirements are just beginning to

emerge—none has been evaluated for GO inference.

Methods: We consider two algorithms [Clique Extracted Ontology

(CliXO), LocalFitness] that uniquely satisfy these requirements, com-

pared with methods including standard clustering. CliXO is a new ap-

proach that finds maximal cliques in a network induced by progressive

thresholding of a similarity matrix. We evaluate each method’s ability

to reconstruct the GO biological process ontology from a similarity

matrix based on (a) semantic similarities for GO itself or (b) three

-omics datasets for yeast.

Results: For task (a) using semantic similarity, CliXO accurately recon-

structs GO (499% precision, recall) and outperforms other approaches

(520% precision,520% recall). For task (b) using -omics data, CliXO

outperforms other methods using two -omics datasets and achieves

�30% precision and recall using YeastNet v3, similar to an earlier ap-

proach (Network Extracted Ontology) and better than LocalFitness or

standard clustering (20–25% precision, recall).

Conclusion: This study provides algorithmic foundation for building

gene ontologies by capturing hierarchical and pleiotropic structure

embedded in biomolecular data.

Contact: tideker@ucsd.edu

1 INTRODUCTION

Ontologies have proven very useful for capturing and organizing

knowledge as a hierarchical set of terms and their interrelation-

ships. In biology, one of the most successful and widely used

ontologies is from the Gene Ontology (GO) project, a major

effort to represent gene functions in cellular level processes

across organisms (Ashburner et al., 2000; Gene Ontology

Consortium, 2001). GO is ‘the default source of functional an-

notations for virtually every experimental system and the gold

standard for measuring the success of bioinformatic methods’

(Dolinski and Botstein, 2013). It is extensively used by re-

searchers in a wide variety of situations, such as understanding

the function of genes discovered in a Genome Wide Association

Study (Holmans et al., 2009; Wang et al., 2010) or computation-

ally predicting functions for uncharacterized genes (Pena-Castillo

et al., 2008; Yan et al., 2010).
An important feature of GO is that the ontology structure is

constructed by a diverse team of scientists according to their best

abilities to curate the published scientific literature. As the

amount of cell biological literature increases, however, curating

the ontology structure has become a painstaking effort that is

proving difficult to scale up and systematize (Alterovitz et al.,

2010). Moreover, human curation necessarily favors biological

entities that have been well studied and misses the large propor-

tion of cell biology that is not yet known or has not yet been

curated. For these reasons, it is not possible to directly learn

about an uncharacterized gene or discover a new function

using GO, and one cannot quickly assemble an ontology

model for a new organism, let alone a specific cell type or disease

state.

Recently, it has been shown by some of us that a GO can be

inferred directly from molecular data as a complement to further

curation efforts (www.nexontology.org) (Dutkowski et al., 2013).

For ontology curators, this approach ‘is extremely valuable in

three ways. First . . . it finds connections missed by curators.

Second, it will save huge amounts of curation time by pointing

curators to the data that matter. Third, it provides a quality-

control check on the GO that is unbiased by the vagaries of

publication policies, as it is based only on the data themselves’

(Dolinski and Botstein, 2013). Furthermore, the ability to rapidly

generate ontologies from data opens up new possibilities for the

use of ontologies in general. ‘For example, data-driven ontolo-

gies generated from diseased and normal samples could be com-

pared. This would be a novel way to look at what goes awry in

particular disease states, providing the context and perspective of

complex, interrelated biological processes’ (Dolinski and

Botstein, 2013). Such an ontology model may also serve as the

basis for an intelligent, predictive agent, as one of us has

described elsewhere (Carvunis and Ideker, 2014). Despite these

possibilities inspired by an initial attempt (Dutkowski et al.,

2013) it remains an open question as to how best algorithmically

to infer an ontology from molecular data.
To understand the challenges involved in inferring an ontology

from data, we first must recognize that ontologies contain both

syntactic information (terms and their structural relations) as

well as semantic information (relations between terms have

defined meanings—in GO these include ‘is a’, ‘part of’ and ‘regu-

lates’ relations). Both our previous work and this work will focus

on inferring the syntactic information—the ontology terms, their

relations and the annotations of genes to terms. This syntactic

information is the most commonly used information by biolo-

gists using GO as a gold standard.*To whom correspondence should be addressed.
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GO is structured as a rooted, directed acyclic graph (DAG),
where gene annotations propagate up the hierarchy from child
terms to parent terms through ‘is a’ and ‘part of’ relations. For

example, in the biological process (BP) branch, ‘M phase of
mitotic cell cycle’ and ‘interphase of mitotic cell cycle’ are
child terms beneath ‘mitotic cell cycle’. Since GO is a DAG,

any term can have multiple parents and/or multiple children.
Allowing for multiple children per term is necessary to capture
the biological truth that many molecular machines have more

than two subunits, or that a BP such as the interphase of cell
cycle can be split into more than two phases (G1, S, G2).
Multiple parents are necessary to capture the biological prin-

ciple of pleiotropy—the reuse of genes and/or subunits, or the
classification of a BP into multiple higher categories of process
(e.g. ‘Sulfur Amino Acid Metabolic Process’ is a child of both

‘Cellular Amino Acid Metabolic Process’ and ‘Sulfur
Compound Metabolic Process’). In order to faithfully infer an
ontology of genes like GO, we need an algorithm able to infer a
DAG.

In previous work, we developed a multistep algorithm for con-
structing a Network Extracted Ontology (NeXO), which infers a
DAG structure from data summarized in the form of a molecular

interaction or gene similarity network (Dutkowski et al., 2013).
This algorithm first infers a binary tree using the HAC-ML al-
gorithm (Park and Bader, 2011). Then, splits without network

support are collapsed, creating nodes with more than 2 children.
Finally, a post-processing step searches for additional parent–
child relationships between existing nodes, allowing for a single

node to have multiple parents.
The NeXO algorithm does not use quantitative information

about gene interaction or similarity, i.e. it assumes an input net-

work for which the edges are unweighted. However, typical
genome-scale data such as gene expression correlation populate
a full matrix of similarity scores between pairs of genes where all

of the information is contained in the weights. While threshold-
ing these data is one way to interpret them as unweighted net-
works, this results in information loss not only below but also

above the threshold, as hierarchical structure embedded in the
weights is collapsed. Furthermore, when combining multiple
types of data (as will be undoubtedly required for construction

of a complete ontology of gene function), it is useful to give
greater weight to gene pairs which have evidence of similarity
in multiple datasets (Kim et al., 2014). Since the NeXO algorithm

is unable to use valuable information contained in the weights of
edges in an input network, it is instead forced to rely on setting a
proper threshold below which all information is ignored and

above which relative weights are lost.
The essence of the DAG inference problem is to detect com-

munities of genes that span a wide range of sizes/scales and can

nest hierarchically as well as share arbitrary subsets of members.
Furthermore, the algorithm should be able to construct a DAG
using the information contained in weighted networks, and it

should be capable of operating on a nearly complete, weighted
graph with a genome-scale number of nodes (thousands) and
edges (millions). A number of existing clustering algorithms ad-

dress parts of this challenge. For example, there are many com-
monly used hierarchical clustering algorithms which use
similarity or distance scores as input and infer a nested hierarchy

of clusters (Florek et al., 1951; Sneath and Sokal, 1973; Sokal

and Michener, 1958; Sørensen, 1948; Ward, 1963). These meth-

ods, however, rely on iterative joining of pairs of terms, resulting

in forced construction of a binary tree. Clusters cannot overlap

(i.e. have multiple parents for a single node) or have42 children,

and the number of clusters inferred is fixed at n�1 where n is the

number of terminal nodes.

There have recently been a handful of algorithms which con-

struct hierarchies with overlapping clusters, by creating a first

level of overlapping clusters with terminal nodes and then com-

bining these base clusters into higher level clusters (Becker et al.,

2012; Kovacs et al., 2010; Kumpula et al., 2008; Sales-Pardo

et al., 2007). These algorithms all present solutions that allow

multiple parents and multiple children at the initial level of clus-

ters, and some operate on weighted networks. However, these

methods restrict each higher level cluster to having a single

parent. This aspect inherently limits the types of relations that

can be discovered by these methods.
Another relevant method has been proposed that hierarchic-

ally clusters links in a graph rather than edges (Ahn et al., 2010).

This method is quite flexible and allows for each node in the

graph to appear in multiple clusters via participation in multiple

edges. Such a method still restricts the types of clusters it creates,

however. First, an edge can only participate in a single cluster at

each level of the hierarchy (although a pair of nodes may inci-

dentally participate in multiple clusters via other edges).

Secondly, the hierarchical clustering of the edges allows only

for binary joins between edges and therefore each lower level

cluster will be joined with exactly one other cluster at each

step. This process creates e�1 clusters, where e is the number

of edges in the input graph. While the original paper proposes a

method for determining a single optimal cut in the hierarchy for

determining clusters, how to determine all levels of the hierarchy

that are meaningful and not an artifact of construction remains

an open question.
The LocalFitness algorithm, which has recently been proposed

in the physics community, is to our knowledge the only previous

approach that constructs a DAG from an unweighted or

weighted network and has a principled way of determining

which clusters are robust (Lancichinetti et al., 2009). This

method constructs clusters at a given level in the hierarchy by

optimizing a fitness function for each of many potentially over-

lapping clusters built out from multiple seed nodes. The fitness

function includes a parameter that is tuned to find clusters at

multiple levels of the hierarchy. Graph partitionings that are

stable across comparatively wide ranges of this parameter are

used.
Here we present a basic formulation of the ontology inference

problem followed by a description of a new method, called

Clique Extracted Ontology (CliXO), for ontology inference

based on progressive identification of maximal cliques. We evalu-

ate CliXO in comparison with LocalFitness as well as several

other methods such as the NeXO algorithm and standard clus-

tering. Methods are evaluated based on their ability to recon-

struct the GO from two starting datasets: (a) pairwise semantic

similarities, which are derived directly from GO itself, and

(b) three different -omics datasets (genetic interaction profile cor-

relation, gene expression correlation and an integrated -omics

dataset for yeast).
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2 METHODS

2.1 Basics

Define an ontology-graph as a weighted DAG G=[T, N, E, w, r] with the

following properties:

� The nodes in G are terminal (set T; no outgoing edges), or non-

terminal (set N). Non-terminal nodes in the ontology are also

called terms. G has a single root r 2 N from which all nodes can

be reached.

� Ultrametric property: a non-terminal node u in G has constant dis-

tance, denoted w(u), to all its terminal descendants, denoted by L(u).

� Witness property: for non-terminal node u, and all terminal nodes

a =2 L(u), there exists b 2 L(u) such that w(a, b)42w(u).

� jGj is the total number of non-terminal nodes in G.

� For any pair of terminal nodes a, b, let w(a, b) denote the shortest

path between a, b in G.

� Define a Least Common Ancestor lca(a, b) such that

w(a, b)=2w(lca(a, b)).

Figure 1A shows an example of an ontology graph, with non-terminal

nodes 0, . . . , 6 and terminal nodes A, . . . , H. This model of an ontology

allows for the grouping of elements (terminal nodes) into coherent clus-

ters of elements (i.e. non-terminal nodes) that are closer to each other

than to other nodes based on pairwise distances between elements.

2.1.1 The Ontology DAG reconstruction problem (perfect case)

INPUT: A set of terminal nodes (i.e. genes) T, and a distance matrix M

between all pairs in M (as shown in Figure 1B).

OUTPUT: An ontology-graph G with T as the set of terminal vertices and

for all a, b 2 T, w(a, b)=M(a, b).

The input distances M rarely satisfy the ontology distances perfectly

and therefore, in the imperfect case, we must compute the ontology DAG

that best represents M.

2.1.2 The Ontology DAG reconstruction problem (imperfect
case)

INPUT: A set of terminal nodes (i.e. genes) T, a distance matrix M be-

tween all pairs and a user-provided noise parameter �.

OUTPUT: An ontology-graph G with T as the set of terminal vertices, and

which maximizes jGj while satisfying the following:

(1) For all a, b 2 T, w(a, b)�M(a, b).

(2) For non-terminal node u, and all terminal nodes a =2 L(u), there

exists b 2 L(u) such that M(a, b)42w(u)+�.

(3) For each non-terminal node u, there must be at least one pair of

terminal nodes a, b 2 L(u) for which 2w(u)+�52w(v) for all v

with a, b 2 L(v), v 6¼ u.

(4) For all u 2 N, w(u)=2 maxa,b 2 L(u) M(a, b)
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Fig. 1. CliXO method. (A) An example ontology with genes A–H and terms 0–6. (B) Semantic similarity scores calculated from the ontology in (A).

(C) Example showing reconstruction of the ontology in (A) from the similarity scores in (B). As the threshold is decreased, edges that equal or exceed the

threshold are added to the graph. At each new threshold, maximal cliques in the graph, corresponding to terms are found and added to the inferred

ontology
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2.1.3 Distance versus similarity scores We note that in many cases,

the relationship between terms is presented in the form of a similarity

matrix, rather than a distance matrix. The two are interchangeable for the

algorithms proposed below. For example, subtract the similarity scores

from a large constant to get a valid distance function between two terms.

2.2 CliXO algorithm

We consider a simple heuristic as described in Figure 1C. Consider an

undirected graph U with nodes 2 T and no edges. Let S be a stack of all

pairs (a, b) sorted by distances M(a, b), with the smallest value at the top.

Algorithm CLIXO(S)

Input: Stack S of sorted distances

Output: Non-terminal nodes in the ontology-graph

1. CG = {}

2. while (S 6¼ {})

3. (a, b) = top(S); t = M(a, b)

4. while (M(a, b) == t)

5. (a, b) = Pop(S)

6. Add edge (a, b) to U

7. Ccur = Set of maximal cliques in U

8. CG = CG [ Ccur
9. (CG forms the set of non-terminal nodes in G)

Note that each maximal clique in U corresponds to a node of the

ontology graph, with an obvious hierarchy. We use an algorithm pro-

posed by Chiba and Nishizeki (1985) to compute all maximal cliques in

time O(m� a(U)) where m is the number of edges in U, � is the number of

maximal cliques in U and a(U) is the arboricity of U (a(U)5n where

n= jTj). While output-efficient, the number of cliques can be large.

Moreover, the algorithm may output the same cliques repeatedly.

We modify the algorithm above to maintain only informative maximal

cliques defined as follows. At any time in the algorithm, a pair of terminal

nodes a, b is explained if a and b are both elements of a single clique which

is already in CG. A clique is necessary if it contains a pair of terminal

nodes c, d which is not contained in any other single clique in Ccur.

A clique C 2 Ccur is informative if it is both necessary and contains at

least one pair of non-explained terms. Only informative cliques are added

to CG.

Next, we check cliques dynamically for maximality and informative-

ness. DefineN(a) as the set of vertices adjacent to a inU. Let Ca represent

the set of maximal cliques in Ccur containing a. Consider Steps 5 and 6,

where (a, b) is popped off S and edge (a, b) is added to U. For each clique

C0 2 Ca, we create a new clique C0 \ N(b) [ {b}. Similarly, for each clique

C0 2 Cb, we will create a new clique C0 \ N(a) [ {a}. These are the only

new cliques. Each new clique Cnew is checked for maximality. If maximal,

add each Cnew to Ccur, and remove from Ccur all cliques in Ca or in Cb

that are contained in (i.e. a subset of) a Cnew. Finally, when we are ready

to increase the threshold [all (a, b) matching the current threshold have

been popped], we check all cliques in Ccur and retain only the informative

ones. CliXO with dynamic checking for maximality and informativeness

can compute all informative maximal cliques in O(Mn�) where M is the

number of non-zero edges in M, n= jTj and � is the number of inform-

ative cliques in the final output G. Practically, ���, where � is the total

number of all maximal cliques at each unique t in U, and this results in

significant performance increase.

2.2.1 Imperfect case In the imperfect case, the only change is in Step 8

of the CliXO algorithm. Instead of adding all informative cliques in Ccur

to CG each time a new threshold is reached, we add to CG only those

informative cliques C in Ccur for which maxa,b 2 C M(a, b)5t� �.

This algorithm can perfectly distinguish between signal and noise when

� is smaller than s, the smallest distance between any child–parent node

pair in the ontology and larger than a noise value n(G), determined by the

following procedure. For each term u 2 G, order by value all M(a, b)

where a, b 2 u. n(u) for a non-terminal node u is the maximum difference

between adjacent values in this ordered list and n(G)=maxu2 N n(u). It

is not possible to directly determine n(G) without knowing the true ontol-

ogy structure, but it is a useful concept for understanding �. On a con-

ceptual and practical level, n(G) can be estimated as roughly 2� the

standard error of measured pairwise distances (e.g. when the experiments

used to measure distance are replicated both technically and biologically).

� can be set to this estimated n(G).

It may not always be possible to set � so that n(G)5�5s because

sometimes n(G)4s. In this case, if �5n(G), it will result in the creation

of extraneous terms that are a subset of a ‘real’ term. If �4s then any

‘real’ child node c that is close to its parent node p, i.e. 2(w(p)�w(c))5�,

will not be included in the ontology. One practical strategy for dealing

with this case is for the user to focus on a particular small, well-known

section of the ontology (e.g. a molecular machine like the proteasome)

and observe it over various levels of �. If many extraneous terms seem to

be being created, then � is likely too low. If known levels of the hierarchy

are being collapsed, then � is likely too high.

2.2.2 Missing edges (false negatives) We expect that in real mo-

lecular data, there will be a number of missing edges—i.e. measurements

for a, b 2 T whereM(a, b)�w(a, b) in the ‘true’ ontology. These missing

edges will cause splitting of maximal cliques into highly overlapping

smaller cliques. For example, a ‘true’ term of size k with just one missing

edge in the measured distances M will result in two smaller terms of size

k+1 in the DAG inferred from M.

2.2.3 Algorithm: Missing Edges We maintain the properties of the

noisy measurements case. However, we now add a user-defined param-

eter � and the ability to edit M, the input distance matrix, when we infer

that an edge is likely missing (i.e. is a false negative). � is a parameter

where 05�	 1. Two cliques Ci and Cj are considered highly overlapping

by the algorithm if for all a 2 Ci [ Cj,

jNðaÞ \ ðCi [ CjÞj

jCi [ Cjj � 1
� �:

We modify the CliXO algorithm, again in Step 8. Before an informative,

maximal clique Ci 2 Ccur is added to CG, we check all other Cj 2 Ccur for

high overlap with Ci. For any Cj found to be highly overlapping with Ci,

we also check for any Ck 2 Ccur that are highly overlapping with Cj.

Recall w(C)=maxa,b2C M(a, b). For all such highly overlapping pairs

of cliques Ci and Cj, we then setM(a, b)=max(w(Ci), w(Cj)) for all a, b 2

(Ci [ Cj) with M(a, b)4max(w(Ci), w(Cj)). We add all edges adjusted in

M to U and update Ccur.

2.2.4 Other algorithms considered We evaluate ontologies inferred

using the NeXO algorithm (Dutkowski et al., 2013), the Local Fitness

Algorithm (Lancichinetti et al., 2009), and several standard hierarchical

clustering algorithms including the Unweighted Pairwise Group Method

(UPGMA; Sokal and Michener, 1958), the Weighted Pairwise Group

Method (WPGMA; Sneath and Sokal, 1973), Ward’s minimum variance

method (Ward, 1963), Complete Linkage (Sørensen 1948), and Single

Linkage (Florek et al., 1951).

2.3 Evaluation of reconstructed ontologies

2.3.1 Ontology alignment Ontologies were aligned as in Dutkowski

et al. (2013). Briefly, given two ontologiesO1 with n1 terms andO2 with n2
terms, an ontology alignment A is a mapping of terms between ontologies

such that each term in O1 maps to at most one term in O2 and vice versa.

Term mapping in our alignment procedure is evaluated using a score
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function that considers the similarity of the sets of genes assigned to terms

(intrinsic similarity) and the similarity of the ontology hierarchy sur-

rounding each term (relational similarity). Each pair of terms which is

aligned receives an alignment score ranging from 0 to 1 where 1 represents

identity in both intrinsic and relational similarity.

To calculate false discovery rate (FDR) of term alignment, we first

create n ontologies with the same structure as the inferred ontologyOi but

with all gene labels randomly permuted. The FDR of a term alignment at

a given score t is then:

FDRðtÞ=

1
n

Xn

i=1

NRi
ðtÞ

NðtÞ

Where NRi
ðtÞ is the number of terms in the random permutation i that

have an alignment score �t, and N(t) is the number of terms in the

ontology Oi that have an alignment score �t. Terms are binned by size

for the FDR computation, and we set a minimum score threshold value

t� 0.1 for large terms and higher threshold values for small terms so as to

maintain an FDR55% within each size group.

The alignment procedure also respects the preservation of structural

relationships across ontologies being aligned. It does this by ensuring that

there are no conflicts between individual mappings in the final alignment.

There are two versions of the alignment—in the permissive version, a

conflict exists between mappings (e1, e2) and (e1
0, e2

0) where e1, e1
0 2 O1

and e2, e2
0 2 O2 if there is a parent–child criss-cross—that is, either e1 is a

descendant of e1
0 in O1 and e2 is an ancestor of e2

0 in O2, or e1
0 is a

descendant of e1 in O1 and e2
0 is an ancestor of e2 in O2. In the strict

version, there is a conflict if e1 is a descendent of e1
0 in O1 and e2 is not a

descendent of e2
0 in O2. The permissive version places most value on the

alignment between individual nodes, whereas the strict version also re-

quires that the relations between nodes are preserved.

2.3.2 Precision and recall of inferred ontologies For evaluating

inferred ontologies, we first align the inferred ontology I to the gold

standard ontology G, in our case GO. This gives us an alignment A.

We then determine precision and recall as

precision=
jAj

jIj
; recall=

jAj

jGj

where jAj is the number of terms aligned with t� 0.1 and FDR55%.

3 RESULTS AND DISCUSSION

3.1 Ontology inference from semantic similarity

We began by testing performance using input similarity data

that are perfectly consistent with the target ontology. For this

task, we calculated the Resnik semantic similarity (Resnik, 1995)

of all gene pairs in the BP branch of GO to form a complete,

weighted graph. Using these data, CliXO was able to nearly

identically infer the original ontology, with498% of BP terms

identically reconstructed (Fig. 2A) and 100% of inferred terms

aligned to a term in BP (Fig. 2B). The other algorithms tested,

including several common hierarchical clustering methods which

build trees and a method for directly creating a DAG (Local

Fitness), struggled with this task by comparison. The Local

Fitness algorithm, while capable of operating on a complete,

weighted graph, struggles to distinguish the borders of terms,

instead joining true terms into larger groups which do not recap-

itulate the true ontology (recall55%, precision530% by align-

ment). The hierarchical clustering methods behave similarly to

each other (with the exception of single linkage which performs

worse). While these methods often reconstruct BP terms (recall
of �20% terms identical, �70% terms aligned), these methods

suffer from the creation of numerous extra terms. Since they
create a binary tree, they are forced by construction to create

terms even if they are not supported by the data. This greatly
damages the precision of these methods. The ontologies created

by these methods contain roughly 3� as many terms as the true
ontology. CliXO, on the other hand, finds the borders of each

term from the data—it is not forced to create terms where they

do not exist.
The NeXO algorithm, while not able to operate on a complete

graph, can be run on these data by applying a threshold at a

semantic similarity value and keeping only edges above this
threshold. While this results in information loss, especially

about larger ontology terms and substructure of smaller terms,

NeXO is capable of at least approximating many terms (�40%
recall, �70% precision by alignment) when using a network with

edges consisting of the top 10 000 semantic similarity scores
(these top scores actually perfectly specify the terms of size 10

genes or fewer, as the vast majority of edges in the semantic
similarity network are due to larger terms). Still, the terms pro-

duced by the NeXO algorithm are only an approximation of the
true terms (precision, recall510% by identity). Furthermore, the

precision slips dramatically with almost no gain in recall as

the threshold is lowered and NeXO uses more edges (recall
42%, precision 62% by alignment using the top 20 000 edges;

recall 43%, precision 49% by alignment using the top 100 000
edges).
The 83 GO BP terms not identically reconstructed by CliXO

are those where information loss occurs in the conversion to

semantic similarities. There are two such possible cases. First,
two highly overlapping terms are indistinguishable from one

larger term if the genes in the overlap already belong to a term
with higher similarity. For example, if {a, b, c, d}=T1,

{a, b, c, e}=T2, {d, e} 2 T3, then CliXO cannot distinguish T1

from T2. Therefore, one term with {a, b, c, d, e} will be created.

Second, a term is ‘invisible’ in the semantic similarity data if all
gene pairs in that term also belong to higher similarity terms.

CliXO cannot discover these ‘invisible’ terms.

3.2 Accounting for noise

Of course, we cannot expect to have experimental data that
exactly model a semantic similarity measure. We expect three

types of noise in experimental data—false positives, false nega-

tives and Gaussian noise.
The simplest of these cases is false positives (cases where a gene

pair is falsely assigned a high similarity). Assuming that false

positives are randomly scattered throughout the network, we
can expect that these false positives are unlikely to form and/or

complete a clique. Rather, these will lead to the creation of small

maximal cliques, usually containing only the two genes with the
false positive measurement between them. In some cases, a par-

ticularly well-placed false positive may create an extraneous
clique of size 3. For this reason, we choose to ignore terms of

size 2 and 3 when our algorithm is run on experimental data.
Gaussian noise in measurement will cause gene pairs that all

belong to the same ontology term to have slightly different mea-
sured similarities. To simulate this, we added Gaussian noise

centered at 0 with varying SDs to the calculated Resnik semantic
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similarities and then inferred the ontology. Without the � par-

ameter (�=0), CliXO incorrectly infers many intermediate

terms (leading to low precision, Fig. 3A) in addition to the cor-

rect terms (leading to high recall, Fig. 3B). When the � parameter

is included and optimized (Section 2.2.1), then the CliXO algo-

rithm is able to distinguish signal from noise. This allows for

stable performance of CliXO even in the presence of noise. It

should be noted that the median signal in this ontology is actu-

ally two orders of magnitude above the minimum signal, so even

at a relative noise of 0.1, some terms in the ontology are already

completely washed out due to noise. For all values where noise is

less than minimum signal, CliXO with the � parameter is able to

perfectly reconstruct the input ontology.
False negatives are cases where two genes belong to the same

term but the edge between them either does not exist or has an

extremely small similarity. The effect of a missing edge from a

clique of size k genes is to split that clique into two smaller

cliques of size k� 1 genes that share k� 2 genes. To account

for these missing edges, our method incorporates the parameter

� which causes the algorithm to find and merge highly overlap-

ping cliques (Section 2.2.3). Without this parameter (equivalent

to �=1), CliXO immediately infers far too many terms, result-

ing in very low precision even with only 1–10% of edges missing

(Fig. 3C). With �=0.5, CliXO is able to maintain very high

precision and recall even with large percentages of edges removed

(precision and recall remain480% with half of all edges removed

and450% with 80% of all edges removed, Fig. 3C, D). It should

be noted that there is a slight hit in recall by using �=0.5 when

no edges are removed—this is because there are a small number

of real terms in the ontology which qualify as highly overlapping,

and these terms are erroneously merged. Still, recall remains

�90% with precision near 100%.
A thought experiment may reveal why the algorithm is robust

with a fixed � over a wide range of missing edges. The operation

to infer missing edges is based on finding pairs of highly over-

lapping cliques and filling in missing edges between them. If a

single edge is missing from an otherwise complete clique C, this

will create two highly overlapping cliques C1, C2 
 C which will

each contain one unique element. C1 and C2 will be merged by

the algorithm to create C. If a second edge is removed which does

not share a vertex with the first, then these two cliques will now

each split into two cliques (for a total of four cliques—C11, C12


C1 and C21, C22 
 C2). Even if � is set so that C11 is not con-

sidered highly overlapping with C21 or C22, still C11 will first be

joined with C12 to form C1 while C21 and C22 are joined to form

C2. C1 and C2 will then be found to be highly overlapping and
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are therefore joined to make C. As more edges are removed from

the original clique C this will simply lead to extra rounds of

clique merging before C is recovered (this breaks down a bit as

missing edges share vertices, but with a � set appropriately low

this can be overcome). Because of this thought experiment and

the experimental results in Figure 3C and D where the algorithm

displays robustness to a wide range of missing edges with

�=0.5, we have set �=0.5 for all experiments using -omics

data. We recommend this setting for all use cases where missing

edges are expected.

3.3 Ontology inference from -omics data for yeast

With CliXO performing well even in the presence of noise and

significant levels of false negatives, we turned to the problem of

inferring an ontology directly from experimental data. For this

purpose, we used three -omics datasets—genetic interaction (GI)

profile Pearson correlations as provided by Costanzo et al.

(2010), gene expression (GE) profile correlations across all

arrays in the Stanford Microarray Database (Hubble et al.,

2009) and YeastNet v3 (Kim et al., 2014), a recently released

functional gene network which combines evidence from multiple

experimental sources to provide a weighted functional relation-

ship between genes. All three of these datasets provide quantita-

tive weights that correlate with the semantic similarities

calculated from GO BP (Fig. 4A, C and E).
We noted that in all three of these datasets, there is a tight and

strong correlation with the GO BP semantic similarity values at

the very highest end. However, this tight correlation loosens as

the edge weights in the -omics data decrease, as seen by wider

ranges of scores and also several consecutive levels of scores in-

distinguishable from the lowest scores. This indicates increasing

levels of false positives as the edge weights decrease. At this point

we note that the CliXO algorithm outputs terms in order of

decreasing weight, where a term weight is equal to the lowest

similarity edge between any two genes in that term. This, com-

bined with the decreasing reliability of the -omics data as the

edge weights decrease, means that a single run of CliXO with a

fixed � outputs terms in order of reliability, with the most reliable

first. As such, a precision–recall curve can be calculated for a

single CliXO ontology where a single point represents the align-

ment to GO of a CliXO ontology containing all terms above a

given term weight. These precision–recall curves for CliXO at a

fixed � are shown in Figure 4B, D and F, with the top left points

representing a term weight equivalent to the top 10000 edges and

the bottom right point representing all terms for GI and

YeastNet v3 and a term weight equivalent to the top 100000

edges in the GE network.
We applied CliXO and several other algorithms to the prob-

lem of inferring the ontology from each of these three -omics

datasets and aligned the resulting ontologies to GO BP. We

report precision–recall curves for a range of � values, where

lower � creates more terms and results in higher recall but at

the cost of lower precision. For genetic interaction profile cor-

relations, CliXO was the clear winner, with all � values resulting

in precision–recall curves with higher precision–recall (50–10%,

3–8% by strict alignment) than competing methods including

LocalFitness (15% precision, 5% recall), UPGMA (8%, 6.4%)

and NeXO (10%, 5% at threshold of top 10000 edges).

Next, several algorithms were run on the Pearson correlations

of gene expression profiles across all arrays in the Stanford

Microarray Database. All methods scored relatively poorly for

the recall of GO BP terms (53%). This is likely because these

profiles were calculated across all arrays, causing information

from individual experiments (which each represent relatively

few arrays of the total) to be lost. The CliXO algorithm, how-

ever, was the only algorithm capable of separating the informa-

tion present from noise, producing precision as high as450%

(Fig. 4D) for some parameter settings, greatly outperforming

other algorithms (510% precision).
We next applied all algorithms to YeastNet v3. In this test, all

versions of CliXO (precision 17–41%, recall 31–21% by strict

alignment) and the NeXO algorithm with an optimized threshold

of the top 20000 edges (precision �24%, recall �28% by strict

alignment) outperformed other methods tested (Fig. 4F).
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larity scores from data versus BP Resnik Semantic Similarity.

A=Genetic Interaction (GI) profile Pearson correlation as provided

by Costanzo et al. (2010); C=Gene expression (GE) Pearson correlation

from Stanford Microarray Database (SMD); E=YeastNet v3. (B, D, F)

Precision–recall plot for ontologies reconstructed using various methods

and evaluated by strict alignment to GO BP. Data from GI profile cor-
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CliXO with varying � is shown by color change. At a given � parameter,
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network
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We note that while NeXO with an optimized threshold par-

ameter is capable of matching CliXO in precision and recall, the

performance of the NeXO algorithm is much more sensitive to

this parameter choice than CliXO is to the choice of either � or a

term weight threshold. In fact, the performance of the NeXO

algorithm degrades quite rapidly as its threshold is loosened

(Fig. 4F). Furthermore, the NeXO algorithm is quite inconsist-

ent in its output as the threshold is varied. When compared with

the best NeXO using the top 20000 edges in YeastNet v3, no

other versions of NeXO reproduced44% of the terms exactly,

and less than half of the terms aligned strictly (Fig. 5A). Without

a reliable gold standard, it would be quite difficult to set this

threshold for NeXO reliably.
CliXO, on the other hand, simply offers the user a tradeoff

between precision and recall with its parameters. As � increases,

so does precision at the cost of decreased recall. Furthermore, the

CliXO algorithm is quite consistent as its parameters are varied,

in contrast to the NeXO algorithm. As more terms are con-

sidered (lower edge weight threshold), all previously created

terms are unaffected (Fig. 5A). Varying � also preserves the ma-

jority of terms, with460% identical and480% aligned strictly to

CliXO with �=0.01 (Fig. 5B). This behavior allows the user to

have confidence that CliXO is producing reliable output over a

range of parameter settings. Furthermore, the effect of tuning

these parameters is predictable.

The CliXO inferred ontology with �=0.01 infers 1833 terms

from the top 30000 edges in YeastNet v3 with a precision of

30% and a recall of 25% by strict alignment. The resulting struc-

ture is in fact a DAG and not a tree, as many nodes have mul-

tiple parents (Fig. 6A) and multiple children (Fig. 6B). Genes are

more likely to be annotated directly to multiple parents (range

1–12, median 2) than internal nodes (range 1–3, 32 have multiple

parents). Created terms range is size, roughly following a power

law distribution as expected (Fig. 6C). The inferred ontology

aligns not only to terms in the BP branch of GO, but also to

the cellular component (CC) and Molecular Function (MF)

branches. Overall, 44% of the 1833 terms in this inferred ontol-

ogy align to at least one of the branches in GO at an FDR of

55% using strict alignment (Fig. 6D).
It should be noted that YeastNet v3 learns functional relation-

ships from data in a supervised fashion, with GO BP term

comembership serving as the gold standard for training.

Therefore, there is some circularity in reconstructing GO BP

from this network. However, comparisons between reconstruc-

tion methods are still valid. Furthermore, the training takes place

only at the level of the weight for each experiment type, so there

is ample opportunity for a gene pair to score highly despite no

known relationship in GO.

3.4 Further applications of CliXO algorithm

Here we have explored the de novo construction of ontologies

from pairwise similarity data and compared several potential

algorithms to do so. We have also introduced a new algorithm,

CliXO, which performs well at this task and also may have fur-

ther applications. First, CliXO may be useful as a way to com-

bine manually curated ontologies with -omics data to create an

updated ontology. For example, semantic similarities calculated

from a manually curated ontology could be adjusted based on

support in -omics data, followed by reconstruction of the ontol-

ogy using CliXO. The updated ontology could then be aligned to

and compared with the original ontology, revealing areas where -

omics data supports changes to the original ontology.
Furthermore, CliXO can be viewed as a generic algorithm to

convert pairwise similarity measurements between individual
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entities into a hierarchical DAG where terms represent groups of
entities which are similar to each other and a single entity may
belong to more than one term. The exact meaning of the result-
ing structure will change depending on the similarity measure-

ment used, but in general there will be an intuitive understanding
of the result. For example, one could take a similarity measure-
ment between cancer patients’ genomes and then use the CliXO

algorithm to construct a hierarchical DAG where each term rep-
resents a group of patients that are genetically similar to each
other—i.e. genetic subtypes of cancer. As another example, one

could take measurements of connection similarity in a social
network and use CliXO to discover social groups in this network.
We leave these applications for future work.

4 CONCLUSION

Here we have explored the requirements for inferring an ontol-
ogy from a similarity matrix and available methods for doing so,

as well as proposed a new method, CliXO. We found that CliXO
outperforms other methods when a reliable similarity matrix is
available. When using -omics data, we found that CliXO outper-
forms other methods on two of three datasets tested and ties the

NeXO algorithm on the third, where both were able to success-
fully infer an ontology similar to GO BP. Furthermore, CliXO
proved significantly more stable than NeXO to changes in par-

ameters. This study provides the algorithmic foundation for
building gene ontologies by capturing hierarchical and pleio-
tropic structure embedded in biomolecular data.
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