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ABSTRACT

Motivation: De novo assemblies of genomes remain one of the most

challenging applications in next-generation sequencing. Usually, their

results are incomplete and fragmented into hundreds of contigs.

Repeats in genomes and sequencing errors are the main reasons

for these complications. With the rapidly growing number of

sequenced genomes, it is now feasible to improve assemblies by

guiding them with genomes from related species.

Results: Here we introduce AlignGraph, an algorithm for extending

and joining de novo-assembled contigs or scaffolds guided by closely

related reference genomes. It aligns paired-end (PE) reads and pre-

assembled contigs or scaffolds to a close reference. From the ob-

tained alignments, it builds a novel data structure, called the PE

multipositional de Bruijn graph. The incorporated positional informa-

tion from the alignments and PE reads allows us to extend the initial

assemblies, while avoiding incorrect extensions and early termin-

ations. In our performance tests, AlignGraph was able to substantially

improve the contigs and scaffolds from several assemblers. For in-

stance, 28.7–62.3% of the contigs of Arabidopsis thaliana and human

could be extended, resulting in improvements of common assembly

metrics, such as an increase of the N50 of the extendable contigs by

89.9–94.5% and 80.3–165.8%, respectively. In another test,

AlignGraph was able to improve the assembly of a published

genome (Arabidopsis strain Landsberg) by increasing the N50 of its

extendable scaffolds by 86.6%. These results demonstrate

AlignGraph’s efficiency in improving genome assemblies by taking

advantage of closely related references.

Availability and implementation: The AlignGraph software can be

downloaded for free from this site: https://github.com/baoe/

AlignGraph.

Contact: thomas.girke@ucr.edu

1 INTRODUCTION

Recent advances in next-generation sequencing (NGS) have

made it possible to sequence new genomes at a fraction of the

time and cost required only a few years ago. These improvements

now allow experimental scientists to integrate genome sequen-

cing approaches into their daily research. In the absence of a

close reference genome, whole-genome shotgun NGS sequencing

is the most common approach where a de novo assembly algo-

rithm is used to join reads into longer continuous contigs and

scaffolds. Most NGS de novo assemblers create a string or de

Bruijn graph representing the connections among the reads and

output the paths in the graph as assembled contigs. Examples of

these algorithms include Edena (Hernandez et al., 2008), Velvet

(Zerbino and Birney, 2008), ABySS (Simpson et al., 2009),
ALLPATHS-LG (Gnerre et al., 2011), SOAPdenovo (Li et al.,

2010; Luo et al., 2012), MaSuRCA (Zimin et al., 2013), CABOG
(Miller et al., 2008), Euler-USR (Chaisson et al., 2009) and

IDBA (Peng et al., 2010). This de novo assembly approach fun-
damentally differs from alignment-based resequencing

approaches, where the NGS reads are not assembled but aligned
against a similar reference genome using a variant tolerant short

read aligner and structural variant detection algorithms
(Ossowski et al., 2008; Zeitouni et al., 2010). Large parts of the

sequence of the target genome can then be reconstructed from
the mismatches, indels and rearrangements observed in the align-

ment results. De novo assemblies tend to be computationally
more challenging than alignment-based approaches. Additional

limitations include (i) the assembly results are often fragmented
into large numbers of contigs, (ii) the genome covered by the

assembled contigs/scaffolds is commonly incomplete and (iii)
the frequency of falsely assembled contigs can be high because

of chimeric joins. The most important reasons for these compli-
cations are usually sequencing errors, repeat sequences in the

target genome, non-uniform sequencing depth and limited read
length of NGS data. These error sources result in false-positive,

incomplete and branched paths in the assembly graph, and thus
greatly limit the lengths and completeness of the final contigs

(Chaisson and Pevzner, 2008; Peng et al., 2010; Zerbino and
Birney, 2008). Combining both de novo assembly and align-

ment-based approaches presents a powerful alternative when a
closely related reference genome sequence is available, but its

genetic differences relative to the target genome are too pro-
nounced to resolve them with an alignment approach alone

(Phillippy et al., 2008; Schatz et al., 2013; Schneeberger et al.,
2011). In this case, one can first assemble the reads into contigs

and then align them together with the reads to the reference. The
much longer contigs facilitate the identification of complex re-

arrangements, whereas the read alignments are useful for detect-
ing smaller variations in regions that are not covered by contigs.

Because of the rapidly increasing number of reference genomes
becoming available for most organism groups, this reference-

assisted assembly approach will soon become the default option
for many genome sequencing projects. Compared with de novo

assemblies, reference-assisted assemblies have many advantages.
First, the alignments of the contigs and reads against the close

reference provide valuable proximity information that can be
used to extend contigs with additional reads and to join contigs

even if they overlap only by a few nucleotides. Second, the prox-
imity information in the alignment can also be used to orient and

order contigs along the reference to build a scaffold map of the
entire assembly. Third, the alignment map can be used to evalu-

ate the quality of contigs and pinpoint potential misassemblies.*To whom correspondence should be addressed.
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Previous studies on reference-assisted assemblies include the
AMOScmp software (Pop et al., 2004a), an add-on tool for the
ARACHNE assembler (Gnerre et al., 2009) and custom work-

flows largely based on existing assembly software (e.g.
Schneeberger et al., 2011). The first two were designed primarily
for Sanger reads, whereas the latter has been used for NGS

genome assembly. Downstream of the primary assembly, scaf-
folding algorithms, such as RACA (Kim et al., 2013), can be
used to order and orient preassembled contigs to a connection

map by incorporating additional sequence information from
mate pair or PE reads and/or from closely related genomes
(Boetzer et al., 2011; Dayarian et al., 2010; Gao et al., 2011;

Gritsenko et al., 2012; Pop et al., 2004b; Salmela et al., 2011).
The resulting scaffolds often contain gaps, which are unresolved
sequence areas between the original contigs. Dedicated gap-

filling algorithms can be used to partially fill these gaps
(Boetzer and Pirovano, 2012; Luo et al., 2012; Tsai et al.,
2010). More recently, components of reference-based strategies
have also been incorporated into some of the de novo assembly

suites themselves such as the cheat mode option of ALLPATHS-
LG (Gnerre et al., 2011) and IDBA-hybrid (unpublished).
This study proposes a novel algorithm, called AlignGraph, for

improving the lengths and completeness of contigs or scaffolds
by reassembling them with help provided by a reference genome
of a closely related organism. In contrast to existing reference-

assisted methods, AlignGraph is a secondary assembly algorithm
that loads the alignment information of PE reads and pre-
assembled contigs/scaffolds against the reference into a novel

assembly graph, called the PE multipositional de Bruijn graph,
that we specifically designed for facilitating secondary assem-
blies. By traversing this graph, the contigs or scaffolds of the

primary assembly can be extended and joined. AlignGraph dif-
fers from most scaffolding algorithms by extending contigs ex-
clusively with resolved rather than unresolved bases (Ns) and by

acting either upstream and/or downstream of them.
AlignGraph’s functionalities are unique by solving several

challenges in improving assembly results. As a de Bruijn

graph-based method, it solves limitations typical for many heur-
istic extension methods that are often used in the de novo assem-
bly area (Dohm et al., 2007; Jeck et al., 2007; Warren et al.,

2007). For instance, if there are multiple solutions for how to
extend a contig, then finding the correct one can be challenging
with most heuristic methods. Those ambiguous solutions, which

correspond to branched paths in the de Bruijn graph, are usually
caused by repetitive sequences in genomes and frequently lead to
early terminations of the contig extension process. The de Bruijn

graph method is often more efficient than heuristic methods in
finding the correct solution here because the contextual informa-
tion, required for resolving these ambiguities, is maintained in

the graph (Chaisson and Pevzner, 2008; Zerbino and Birney,
2008). This issue is not as pronounced in assemblies with much
longer Sanger reads, as those are more likely to span non-repeti-

tive regions with repetitive regions in between (Gnerre et al.,
2009). Thus, it is particularly important to address this problem
in assemblies with short reads. In comparison with the conven-

tional de Bruijn graph, our PE multipositional de Bruijn graph
has several additional advantages. First, many branched paths
can be eliminated directly in the graph with the help of the add-

itional PE read and alignment information. This simplifies the

identification of correct paths. Second, many false-positive paths,
caused by sequencing errors, can be eliminated by correcting
erroneous reads with correct reads that align to the same position

in the reference genome. Third, guided by the alignment infor-
mation to the reference genome, the PE multipositional de Bruijn

graph is less affected by regionally low read coverage that often
gives rise to incomplete paths in the conventional de Bruijn

graph. As a result, many incorrect extensions and early termin-
ations can be avoided.

2 METHODS

2.1 AlignGraph algorithm

This section describes the AlignGraph algorithm. Its workflow can be

divided into the following three major steps. Figure 1B illustrates these

steps with an example.

(i) Alignment maps. The PE reads are aligned against both the pre-

assembled contigs and the close reference genome; the contigs

are aligned against the reference.

(ii) Contig reassembly. The alignment mapping results are used to

construct a positional variant of the de Bruijn graph, called the

PE multipositional de Bruijn graph.

(iii) Graph traversal. The resulting graph is edited and traversed to

obtain extended contigs.

Throughout the text, the source genome of the PE reads and the pre-

assembled contigs is referred to as the target genome, whereas the genome

of the closely related species for guiding the contig improvement steps is

referred to as the reference genome. For simplicity, the following descrip-

tion of AlignGraph refers mostly to contigs, but it also applies to scaf-

folds containing a limited amount gaps.

Prerequisites Before the above steps, the user is expected to generate

genomic PE reads for the target genome of interest and to assemble them

with a de novoNGS genome assembler. Because most genome assemblers

perform better with PE than single-end data, AlignGraph also depends

on this sequence type. A major advantage of AlignGraph is its design to

work with most genome assemblers, but the quality of the initial de novo

assembled contigs is expected to impact the final results (see Section 3.2).

For optimal results, it is also important to follow the recommendations of

the chosen de novo assembler with respect to insert length of the sequen-

cing library, minimum coverage of the target genome with PE reads and

other recommendations. If scaffolds are inputted, it is usually beneficial

to fill them with a gap-filling algorithm before processing them with

AlignGraph (e.g. Boetzer and Pirovano, 2012). Another requirement

for AlignGraph is the availability of a closely related reference genome

sequence. Nearly complete reference genomes of high quality will yield

the best results, but partially sequenced genomes can be used as well.

(i) Alignment maps In the initial preprocessing step of AlignGraph,

the PE reads, used for the de novo assembly in the Prerequisite section, are

aligned to the contigs and to the reference genome, and the contigs are

also aligned to the reference genome. Aligning the reads to the contigs

simplifies their alignments to the reference by guiding them with the much

longer contigs as backbone (see below). Generating reliable alignments

among the PE reads and the contigs is relatively straightforward because

both are from the same genetic background, thus requiring a low level of

variant tolerance in the alignments. Aligning the contigs to the reference

genome demands a higher level of variant tolerance. However, because of

the relatively large length of the contigs, their alignments to the reference

can also be generated reliably, as long as the evolutionary distance be-

tween the target and reference genome is not too large. The current im-

plementation of AlignGraph uses Bowtie2 and BLAT for these two
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alignment steps, respectively (Kent, 2002; Langmead and Salzberg, 2012).

In contrast to this, aligning the relatively short PE reads to the reference

genome is a more challenging task owing to the difficulty of generating

reliable short alignments containing larger numbers of mismatches and

gaps. This problem does not apply to the reads aligning to the contigs

because their alignment positions to the reference genome can be inferred

from the more robust contig alignments. For the PE read to reference

genome alignment, it is important to choose a highly variant tolerant

short read aligner that is able to reliably align most of the short reads

to their true source locations in the reference genome while minimizing

the number of false-positive read placements. Clearly, the latter would

negatively impact the precision performance of AlignGraph by leading to

chimeric joins in the downstream contig extension steps. Although a wide

range of short read aligners has been developed over the past years (Li

and Homer, 2010), none of them has been specifically designed or opti-

mized for aligning short reads against reference genomes with sequence

differences more pronounced than those observed among genomes within

the same species. To minimize the above challenges, we have chosen for

this critical step the highly tunable Bowtie2 aligner with parameter set-

tings that we optimized for aligning PE reads from a target genome to a

reference genome sharing variable degrees of sequence similarity. The use

of PE read alignments in this step is also important because the additional

sequence information, provided by the second read in a PE, increases the

specificity of the alignment process compared with single-end reads, and

thus reduces the number of false read placements. To account for re-

arrangements among the two genomes, we use for the alignments of

the PE reads against the reference genome more relaxed insert length

variation settings than in the alignments against the contigs.

(ii) Contig reassembly with PE multipositional de Bruijn
graph The core functionality of AlignGraph is the extension of the

contigs by reassembling them using the alignment results obtained in

the previous step. To achieve this efficiently, we build from the alignment

maps a variant of the de Bruijn graph, here called the PE multipositional

de Bruijn graph. This method combines the PE de Bruijn graph

(Medvedev et al., 2011) and the positional de Bruijn graph (Ronen

et al., 2012), where we incorporate both PE read information and align-

ment positions into the graph (Pevzner et al., 2001). The former was

designed to generate more complete contigs in de novo assemblies and

the latter to correct contig errors in secondary assemblies. Our approach

solves several problems in improving assembly results that we briefly

discussed in Section 1 (see also Table 1). The following describes our

modified de Bruijn graph in more details, where we first introduce im-

portant concepts of conventional de Bruijn graph-based assembly

methods.

Background The most widely used method for genome assemblies

from short reads is the de Bruijn graph method (Pevzner et al., 2001).

A de Bruijn graph is a directed graph: two connected nodes represent

k+1 bases, where the first node represents the first k bases, and the

second node the second k bases (called k-mer). To construct a de

Bruijn graph, l� k+1 connected nodes are constructed from each read

of length l, and two nodes from different reads are joined if they share the

same k-mers. In theory, the graph contains a walk representing the full

sequence of the genome if traversed properly. However, this walk is hard

to obtain in practice because of false-positive, incomplete and branched

connections in the graph that are caused by errors in the reads and

A

B

Fig. 1. Overview of the AlignGraph algorithm. The outline on the top (A) shows AlignGraph in the context of common genome assembly workflows,

and the one on the bottom (B) illustrates its three main processing steps. (A) In Step 1, the PE reads from a target genome are assembled by a de novo

assembler into contigs (here c1; c2 and c3). Subsequently (Step 2), the contigs can be extended (blue) and joined by AlignGraph (e1 and e2). (B) The

workflow of AlignGraph consists of three main steps. (i) The PE reads are aligned to the reference genome and to the contigs, and the contigs are also

aligned to the reference genome. (ii) The PE multipositional de Bruijn graph is built from the alignment results, where the red and blue subpaths

correspond to the aligned contigs and sequences from PE reads, respectively. (iii) The extended and/or joined contigs (here e1 and e2) are generated by

traversing the graph

Table 1. Problems the PE multipositional de Bruijn graph solves in com-

parison with the conventional de Bruijn graph

Problem Consequence Solution

Repeat sequences Branched paths Distinguishes paths for repeti-

tive regions by incorporating

PE read and alignment pos-

ition information

Sequencing errors False-positive

paths

Corrects paths from erroneous

reads with correct reads

aligned to the same position

Low sequencing

depth

Incomplete paths Builds paths from reads in low

coverage areas supported by

reference
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repeats in the genome. The false-positive and incomplete paths are due to

false-positive k-mers with sequencing errors and missing k-mers from

regions of low sequencing depth, respectively. The branched paths are

caused by joins of k-mers from repetitive regions. Several variations of the

de Bruijn graph have been proposed to solve these limitations, especially

the branched paths, while preserving all of its genome information

(Medvedev et al., 2011; Peng et al., 2010; Ronen et al., 2012). The PE

de Bruijn graph (Medvedev et al., 2011) is built from PE reads, where

each k-mer contains k bases from the left pair plus its corresponding k

bases from the right pair. In contrast to this, the positional de Bruijn

graph (Ronen et al., 2012) incorporates read alignment information by

including in each k-mer the k bases plus its alignment position. With the

additional information assigned to the k-mers, k-mers from repetitive

regions can often be distinguished, and thus the number of branches in

the graph can be reduced. In addition, because the positional de Bruijn

graph is built from read alignments, false-positive and incomplete paths

can be largely avoided. We emphasize that the PE de Bruijn graph re-

quires the left pair forward-strand read and the right pair reverse-strand

read or vice versa, but it is difficult to know their orientation. This prob-

lem can be resolved if the PE de Bruijn graph is built from aligned reads,

where their orientation can be obtained from the alignments.

PE multipositional de Bruijn graph We derive the PE multipos-

itional de Bruijn graph as a combination of the PE de Bruijn graph and

the positional de Bruijn graph. Each k-mer of the PE multipositional de

Bruijn graph is composed of three left/right element pairs: the k bases of

each the left and the right read pair (called left or right k bases), the

alignment position of each the left and the right k bases to the contigs

and the alignment position of each the left and the right k bases to the

reference genome. Two k-mers can be joined if they have similar k bases

and close alignment positions within the constraints defined in the for-

mulas below. Formally, let s be the k bases from the left read pair and s0

the corresponding k bases from the right read pair, then the k-mer of PE

multipositional de Bruijn graph is a 6 tuple (s; s0; c; g, c0; g0), where c is

the alignment position of s to the contigs, g is the alignment position of s

to the reference genome, c0 is the alignment position of s0 to the contigs

and g0 is the alignment position of s0 to the reference genome. Two k-mers

(si; si
0; ci; gi; ci

0; gi
0) and (sj; sj

0; cj; gj; cj
0; gj

0) can be joined if con-

strains (1)–(6) are met:

mismatchðsi; sjÞ5� ð1Þ

mismatchðsi
0; sj
0Þ5� ð2Þ

jci � cjj5� or ci=� 1 or cj=� 1 ð3Þ

jgi � gjj5� ð4Þ

jci
0 � cj

0j5�+2D or ci
0=� 1 or cj

0=� 1 ð5Þ

jgi
0 � gj

0j5�+2D ð6Þ

where � and " are small numbers with the default values 5 and 25, re-

spectively, and D is the variability of the insert length I of the PE reads.

The variability D is equal to max fIu � I; I� Ilg, where Iu and Il are the

upper and lower limits of I, respectively. The variables in the above for-

mulas are explained below.

�: To join two k-mers and tolerate sequencing errors, we allow a

small number of mismatches � between si and sj and between si
0

and sj
0 in (1) and (2), respectively.

": We allow a small shift " between each pair of alignment positions

in (3)–(6) because the same k bases si and sj (or si
0 and sj

0) from

different reads may align to different but close positions in the con-

tigs or genome, as discussed in Ronen et al. (2012).

2D: We allow a shift 2D of si
0 and sj

0’s alignment positions to the

contigs in (5) and to the reference genome in (6). The maximum and

minimum alignment distances between a read pair are I� l+D and

I� l�D, respectively, where l is the read length, assuming the same

read length for bothmembers in a pair. Thus, themaximumalignment

distance of two right reads with left reads aligned at the same position

is ðI� l+DÞ � ðI� l�DÞ=2D. This distance is equal to the distance

between any two k-mers from the sameposition in the right read pairs,

so the maximum distance between si
0 and sj

0 will be 2D.

–1: si and sj (or si
0 and sj

0) can be joined if one or both of them are

aligned directly to the reference genome rather than guided by the de

novo contigs. In those cases, we assign –1 as alignment position to the

contigs. This is important because we allow contig extensions only if

the alignable and unalignable bases to contigs can be joined.

It is important to guarantee that each k-mer corresponding to an inser-

tion of a read alignment has a position in the reference genome. To

achieve this, we append the inserted k-mer to the end of the genome

sequence. In our implementation of the PE multipositional de Bruijn

graph, we first iteratively load sections of the reference genome into

memory. Then we perform the following operation. We test for each

k-mer in each aligned read at genome position g, whether there is already

a k-mer at g and whether the new k-mer can be joined with it. If so then

we join the two k-mers; otherwise, we attach the new k-mer to position g.

The connection between two k-mers is recorded by using pointers, and

the read coverage for each k-mer is stored along with it. Figure 2 illus-

trates the main advantages of the PE multipositional de Bruijn graph

compared with the positional de Bruijn graph with several examples

(see also Table 1). This includes the contig-guided PE read alignment

against the reference genome resulting in a larger number of alignable

reads, and thus a more complete de Bruijn graph (Fig. 2B), as well as the

reduction of branched paths in the graph by distinguishing reads from

different repetitive regions (Fig. 2C and D). For space reasons, the ad-

vantages over the conventional de Bruijn graph in reducing false-positive

and incomplete paths are not shown. The PE multipositional de Bruijn

graph can converge to the positional de Bruijn graph by relaxing the

above constraints (2), (3), (5) and (6). In our tests, the former shows

usually an up to 5% better performance than the latter with respect to

several sensitivity measures (see below for definitions). This improvement

is considerable because the number of branches that are only resolvable

by the PE multipositional de Bruijn graph is usually not large.

(iii) Graph traversal returns extended contigs To remove errors,

the de Bruijn graph needs to be edited before its traversal. The three

major types of errors are tips, bubbles and erroneous connections

(Chaisson and Pevzner, 2008; Peng et al., 2010; Zerbino and Birney,

2008). Most of them are caused by errors in the reads. A tip is a short

path with a dead end, whereas a bubble consists of two short paths

sharing the same start and end nodes. Most of the tips and bubbles can

be corrected by joining k-mers with 5� mismatches. The remaining

errors can be removed by applying a coverage cut-off filter similar to

the strategies used by most de novo assemblers. Because of the add-

itional information encoded in the modified de Bruijn graph, one can

use here a relatively small coverage threshold. After these error removal

steps, the PE multipositional de Bruijn graph is traversed, using a

breadth-first strategy, to generate the final contigs. Each traversal

stops at a branch position and an extended contig is returned. After

returning the extended contigs, the remaining unextended contigs (iden-

tical with initial de novo contigs) are provided to the user in a separate

file. Finally, contigs with sufficient PE read connections and a path

between them can be joined. Occasionally, those connections can be

missed by the above filtering step because of too low read coverage

in local areas of the connecting path.
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A

B

C

D

Fig. 2. Advantages of the PE multipositional de Bruijn graph compared with the positional de Bruijn graph. In the target genome given on the top, A

and A0; C and C0; E and E0; G and G0 are repetitive regions. Each PE read of length 2� 4bp is sequenced with one pair from region ABCDA0C0 and the

other from the corresponding position of region EFGHE0G0 (the pair from EFGHE0G0 is omitted for simplicity). In comparison with the target genome,

the reference genome has a repeat-free region ABC similar toABCDA0C0 and a region EFGHE0 similar to EFGHE0G0. The reads from regionABCDA0C0

are assembled with a de novo assembler into a contig starting from CDA0C0, but regions A and B are not assembled because of low sequencing depth,

repeats or other problems. When aligning the contig to the reference genome, the repetitive regions C and C0 are both aligned to C in the reference

genome, and the insertion D is assigned to the end of the reference. In (A) reads are aligned directly to the reference genome to build the initial positional

de Bruijn graph, and in (B–D) the reads are aligned to the preassembled contigs and then aligned to the reference to build first the extended positional de

Bruijn graph and then the PE multipositional de Bruijn graph. (A) The initial positional de Bruijn graph is built here with 3-mers. Some reads cannot be

aligned to the reference genome because of sequence differences in the target genome, as indicated here by 3-mers with –1 as alignment position.

The repetitive regions A and A0 (or C and C0) are collapsed into one path in red in the graph. (B) The initial positional de Bruijn graph is constructed with

help from the read-to-contig alignment information. The read-to-reference genome alignment information yields a more complete positional de Bruijn

graph, but the repetitive regions A and A0 (or C and C0) are still collapsed resulting in branch points. (C) An extended positional de Bruijn graph is built

by incorporating into each 3-mer the read alignment position to the contig. As a result of this operation, the repetitive regions C and C0 can be

distinguished into two paths, where the 3-mers have different alignment positions in the contig, but A and A0 are still collapsed. (D) The PE multi-

positional de Bruijn graph is constructed by incorporating into each 3-mer their PE read alignment positions to the reference genome (the right three

bases and their alignment position to the contig is omitted here). With this information the repeats A and A0 can be distinguished into two paths, as the

3-mers have different PE alignment positions in the reference genome. The final graph contains only one single path allowing to output an extended

contig corresponding to the region ABCDA0C0 in the target genome
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2.2 Software implementation

AlignGraph is implemented in C++ for Linux operating systems. Its

required input includes the PE reads, the preassembled de novo contigs

and the reference genome. Its output includes the extended contigs as well

as the remaining non-extended contigs. AlignGraph runs the alignment

steps with BLAT and Bowtie2 automatically, but both need to be in-

stalled on the system. AlignGraph’s run time is currently 23–57min per

million aligned reads. In the performance tests of this study, the memory

usage was 36–50GB, and it stays5100GB even for entire mammalian

genomes. These requirements are more moderate than those of most de

novo assemblers (Luo et al., 2012).

3 EVALUATION

3.1 Experimental design

Background To evaluate AlignGraph’s efficiency in improving

genome assemblies, we performed a series of systematic perform-

ance tests. For this, we downloaded publicly available assemblies

and/or assembled genomic PE read sets from organisms of vari-

able genome complexity with seven widely used de novo assem-

blers, extended the resulting contigs with AlignGraph, and then

evaluated the improvements with a set of standard metrics for

comparing assembly results (Table 2). In these tests, it was im-

portant to choose the NGS read samples from organisms where

the genome sequence of both the target genome and a close ref-

erence genome are known. This way one can evaluate the com-

pleteness and correctness of the results against a true result rather

than one that is unknown or only partially known. To also

assure the improvements obtained by AlignGraph are not

simply the result of insufficient optimizations of the upstream

de novo assembly, we included preassembled contig and scaffold

sets that are widely accepted by the community as benchmark

datasets for evaluating assembly software. Today’s requirements

for assembling genomes from NGS were met by choosing read

samples with �75bp and PE read information. In total, we per-

formed assembly tests on the following three sample sets.

3.1.1 Arabidopsis thaliana sample The first sample set was from
the model organism Arabidopsis thaliana, which is a flowering

plant with a compact genome of 130Mb in size. The PE read set

chosen for this test is from a genomic Illumina NGS library with

a read length of 2� 75bp. As de novo assemblers, we included in

this test Velvet and ABySS, which we chose here as software

representatives performing well on single library data and be-

cause of their good sensitivity and precision performance (Lin

et al., 2011). The VelvetOptimiser tool was used to optimize the

parameter settings for the Velvet assembly. ABySS was run with

the same k-mer length as Velvet, whereas the remaining param-

eters were set to their defaults. To extend the preassembled con-

tigs with AlignGraph, we used the publicly available genome

sequence from the related Arabidopsis lyrata species as reference

[Table 2(a)]. The latter was chosen because it constitutes a more

challenging reference genome for testing AlignGraph’s perform-

ance in improving genome assemblies than the references used in

the other tests below. This is the case for the following reasons

(Hu et al., 2011): A.lyrata and A.thaliana diverged410 million

years ago; their genomes differ by many regional rearrange-

ments; the sequence similarity in the common regions of their

genomes is only 80%; and the A.lyrata genome sequence is still
incomplete and fragmented into many scaffolds.

3.1.2 Human sample from Genome Assembly Gold-standard
Evaluations The second sample set is from the community pro-

ject GAGE (Genome Assembly Gold-standard Evaluations),
from which we selected the sample for the human chromosome

14 (Salzberg et al., 2012). Its Illumina sequences consist of PE
reads with a length of 76–101bp from three different libraries.
We downloaded the preassembled contig sets provided by the

GAGE project for the five assemblers that ranked highest in
the benchmark tests by Salzberg et al. (2012) in assemblies

from multiple genome libraries with variable insert lengths.
Those included ALLPATHS-LG, SOAPdenovo, MaSuRCA,
CABOG and Bambus2. As reference sequence for guiding

AlignGraph, we used the chimpanzee genome. For
ALLPATH-LG in its cheat mode, we reassembled the contigs

ourselves because this assembler exhibits a better sensitivity and
precision performance when providing a closely related reference
genome. Here it was important to compare the performance of

ALLPATHS-LG with AlignGraph when both are guided by the
same reference genome.
In addition to contigs, we evaluated AlignGraph’s perform-

ance in improving the scaffold sets provided by the GAGE pro-
ject for the same human sample set. Before their reassembly with

AlignGraph, we reduced the number of unresolved sequence re-
gions (gaps filled with ambiguous N bases) in the scaffolds by

applying the GapFiller algorithm, which is currently one of the
most efficient gap-filling methods (Boetzer and Pirovano, 2012).
To also evaluate the influence of the similarity shared among

the reference and target genomes on AlignGraph’s performance,
we included tests with four reference genomes of variable simi-
larity to the human genome. The reference genomes chosen for

this test were from gorilla, orangutan, gibbon and macaque. The
genome sequence from gibbon was the only one that is still in-

complete containing scaffolds rather than fully assembled
chromosomes.

3.1.3 Published genome In addition to the tests above, we were

interested in evaluating to what extent AlignGraph can improve
the genome sequence generated with another reference assisted
assembly approach. For this test, we chose the published genome

sequence from Landsberg erecta (Ler-1; Schneeberger et al.,
2011). The latter is a strain of A.thaliana, which is too diverged

from the known references to resolve its genome sequence with a
simple resequencing approach. Thus, Schneeberger et al. (2011)
assembled its genome with a reference-assisted pipeline approach

that included ALLPATHS-LG and several refinement steps.

3.1.4 Data sources The genome sequences used in the above
tests were downloaded from the following community sites:

A.thaliana from TAIR, A.lyrata from JGI, Landsberg erecta
from 1001 Genomes and human and other primates from
Ensembl. From the GAGE site, we downloaded the PE read

sets and the preassembled contigs and scaffolds for the human
chromosome 14 sample (Salzberg et al., 2012). The PE read sets

from A.thaliana and Landsberg erecta were downloaded from
NCBI’s Sequence Read Archive and the 1001 Genome site, re-
spectively. The A.thaliana read set contained 32 million 2� 75bp

PE reads (accession: SRR073127), the human read set contained
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62 million 2� 76–101bp PE reads and the Ler-1 read set con-

tained 73 million 2� 40–101bp PE reads.

3.1.5 Performance measurements Most of the performance

measures used by this study are adapted from the GAGE project

(Salzberg et al., 2012). To evaluate the completeness of the con-

tigs, we aligned them to the target genome with BLAT. If a

contig could not be aligned as a single global alignment, it was

split according to the local alignment results into the smallest

possible number of subcontigs. The resulting contigs are called

true contigs. The precision measures include the number of mis-

assemblies per million base pairs (MPMB) and the average iden-

tity between contigs and target genome. Misassemblies caused by

misjoin errors result in chimeric contigs. Their number can be

calculated as the number of splits necessary to obtain the true

contigs. Thus, MPMB = m
L � 106, where m is the numbers of

Table 2. Performance evaluation of AlignGraph

Upstream

assembler

Contig set N Contigs4 N505 N covered

bases6
Average

length7
Maximum

length8
MPMB9 Average

identity10 (%)

(a) Contigs of A.thaliana genome

Velvet All1 30 037 3515 82 844 417 2668 27 792 22.2 95.2

Extendable2 8615 4148 28 007 451 3262 27 398 0.3 97.6

Extendable+AlignGraph3 5751 7876 32 467 110 5521 49 768 1.6 94.8

ABySS All 30 972 2559 69 432 667 2206 29 760 13.4 97.2

Extendable 11 693 2820 28 885 212 2454 16 343 0.5 98.7

Extendable+AlignGraph 8427 5484 35 859 786 4151 25 321 1.1 95.8

(b) Contigs of human chromosome 14

ALLPATHS-LG All 4383 38590 83 849 397 19 201 240 764 0.3 98.9

Extendable 1674 39851 35 746 095 20 806 200 495 0.1 98.9

Extendable+AlignGraph 785 71847 36 441 001 45 358 305 880 0.0 97.5

ALLPATHS-LGc All 3856 43856 83 860 939 21 818 275 446 0.2 99.3

Extendable 1296 45719 31 457 201 24 346 275 446 0.1 99.5

Extendable+AlignGraph 608 86613 34 614 465 54 406 294 615 0.0 96.9

SOAPdenovo All 10 865 16855 80 135 941 7623 147 494 5.9 94.9

Extendable 5613 17412 45 246 077 8223 141 981 0.9 96.4

Extendable+AlignGraph 3469 32881 52 861 640 15 271 219 841 0.5 95.0

MaSuRCA All 19 034 5767 75 497 302 3802 53 837 13.9 98.9

Extendable 9241 6047 38 842 517 4199 51 249 0.2 99.2

Extendable+AlignGraph 5665 11590 43 930 184 7666 66 758 0.4 98.1

CABOG All 3118 46523 84 989 190 27 401 296 888 0.3 97.3

Extendable 1692 45669 46 499 763 27 089 296 888 0.0 98.7

Extendable+AlignGraph 701 101907 50 527 605 70 362 443 952 0.1 97.6

Bambus2 All 11 219 8378 64 011 072 5764 449 449 3.1 89.9

Extendable 6995 7521 37 857 989 5439 62 798 0.3 97.6

Extendable+AlignGraph 2722 19989 39 147 357 14 176 86 154 0.5 96.5

(c) Scaffolds of human chromosome 14

SOAPdenovo All 3902 391693 85 417 248 24 397 1 852 152 1.0 82.9

Extendable 901 387309 40 296 035 47 526 1 019 659 0.1 84.5

Extendable+AlignGraph 767 544209 47 823 279 63 525 2 246 638 0.1 81.0

MaSuRCA All 721 580822 65 433 305 63 876 2 943 966 1.3 57.2

Extendable 101 289703 5 554 781 52 820 1 516 804 0.0 81.9

Extendable+AlignGraph 78 316946 6 986 224 86 552 1 573 741 0.0 83.4

CABOG All 471 387876 81 163 688 176 590 1 944 475 0.1 91.9

Extendable 146 358688 29 372 033 200 539 1 905 529 0.0 98.2

Extendable+AlignGraph 67 906407 33 708 925 481 712 2 051 503 0.0 94.1

Bambus2 All 569 319334 64 378 693 116 582 1 477 847 0.1 77.4

Extendable 66 272436 6 949 338 119 858 641 463 0.0 92.0

Extendable+AlignGraph 80 377905 8 963 132 114 852 812 353 0.1 85.4

(a) Genomic PE reads from A.thaliana were assembled with Velvet and ABySS. The resulting contigs were extended with AlignGraph using as reference the genome sequence

from A.lyrata. (b–c) The subsequent panels contain assembly results for the human chromosome 14 sample from the GAGE project where the chimpanzee genome served as

reference. (b) Contig assembly results are given for the de novo assemblers ALLPATHS-LG, ALLPATHS-LGc (in cheat mode), SOAPdenovo, MaSuRCA, CABOG and

Bambus2. (c) Scaffolded assembly results are given for SOAPdenovo, MaSuRCA, CABOG and Bambus2. The results are organized row-wise as follows: the number of initial

contigs obtained by each de novo assembler1, the ‘extendable’ subset of the initial contigs that AlignGraph was able to improve2, and the extension results obtained with

AlignGraph3. The additional columns give the number of contigs4, N50 values5, the number of covered bases6, the average7, and maximum8 length of the contigs, the number

of misassemblies per million base pairs (MPMB)9, and the average identity among the true contigs and the target genome10. More details on these performance criteria are

provided in Section 3.1.5.
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misassemblies, and L is the cumulative length of the contigs. The

average identity between true contigs and the target genome is

calculated as

P
n ti � liP

n li
where ti is the identity for contig i, and li

is the length of contig i (05i � n). In this formula, the identity ti
of the true contigs i is calculated as the number of aligned bases

over the length of the alignment. The sensitivity measures include

the N50 value and the number of covered bases. The former

is the contig size at 50% of the total number of contig bases,

and the latter is the total number of genome bases covered by the

contigs. Two additional measures are the average length and

maximum length of the true contigs. In all tests, we considered

only contigs with a length of at least 1000 bp but used the entire

set (including the shorter ones) in AlignGraph’s extension steps.

3.2 Results

3.2.1 Extension of A.thaliana contigs The performance test re-
sults for the A.thaliana dataset are given in Table 2(a). In com-

parison with the initial contig sets assembled by Velvet or

ABySS, AlignGraph extends 28.7–37.8% of them when guided

by the A.lyrata genome as reference. The resulting set of ex-

tended contigs contains 27.9–33.2% less sequences because

AlignGraph has joined many of the initial contigs. This leads

to improvements of the N50, the number of covered bases, aver-

age contig length and maximum contig length for the extendable

contig set by 89.9–94.5%, 15.9–24.1%, 69.3–69.2% and 54.9–

81.6%, respectively. These improvements are accompanied

only by minor increases of MPMB errors. The MPMB values

of the extendable and extended contigs are usually much lower

than for the complete set because of their pre-filtered nature that

improves their quality. As expected the average identity also

drops slightly (2.8–2.9%) because with increased length of the

assembled sequences, internal sequence variations accumulate

and complicate the alignment of the extended contigs against

the target genome. A similar trend can be seen in the results

below for the much longer scaffolds where the average identity

is always lower for all of the tested assemblers [Table 2(c)]. For

all three sample sets (Sections 3.2.1–3.2.4), the AlignGraph re-

sults contain a comparable number of sequence variations to the

target genomes as the results of de novo assemblers (data not

shown). This indicates a high sequence quality of the reassembled

contigs.

3.2.2 Extension of human contigs and scaffolds from GAGE The
test results for the human chromosome 14 contigs are given in

Table 2(b). Of the contigs assembled by ALLPATHS-LG, 38.2%

can be extended and the extension result contains 53.1% less

contigs because of the joins generated by AlignGraph. These

improvements are more pronounced than in the above experi-

ment with A.lyrata as reference because the genomes of human

and chimpanzee share a much higher sequence similarity than the

genomes of A.thaliana and A.lyrata. The N50, the number of

covered bases, average contig length and maximum contig

length for the extendable contig set consistently improve by

80.3, 1.9, 118.0 and 52.6%, respectively. Similar results could

be obtained with the other de novo assemblers SOAPdenovo,

MaSuRCA, CABOG and Bambus2. After AlignGraph process-

ing, their extendable contigs improved for the same four

evaluation metrics by 88.8–165.8, 3.4–16.8, 82.6–160.6 and

30.3–54.8%, respectively. If ALLPATHS-LG is run in its cheat

mode by guiding it with the same reference genome as

AlignGraph, then both the sensitivity and precision measures

of the ALLPATHS-LGc contigs improve compared with the

assembly without a reference. Nevertheless, AlignGraph is still

able to extend 33.6% of the ALLPATHS-LGc contigs, and the

extension results contain 53.1% less contigs, whereas the four

evaluation metrics improve by 89.4, 10.0, 123.5 and 7.0%, re-

spectively. These improvements indicate that the reference-as-

sisted approach used by AlignGraph is more efficient than the

one from ALLPATHS-LG in its cheat mode at the contig as-

sembly stage.

AlignGraph’s performance results on the scaffolds from the

same human chromosome 14 dataset are given in Table 2(c). The

scaffold sets from SOAPdenovo, MaSuRCA, CABOG and

Bambus2 contain much smaller numbers of sequences than

their corresponding contig sets. Nevertheless, AlignGraph is

able to extend 11.6–31.0% of them and improve the N50 value

and the number of covered bases by 9.4–152.7 and 14.8–29.0%,

respectively. The extension results for the scaffold set of

Bambus2 contain a slightly larger number of sequences (14)

than the extendable set. The reason for this is that many of

them are short, and AlignGraph extends them often to scaffolds

with a length above the 1000 bp requirement, thus increasing the

number of reported scaffolds (see Section 3.1.5). This trend also

explains the slightly lower average length of the extended scaffold

set from Bambus2.

3.2.3 Influence of similarity of reference genome To assess
AlignGraph’s performance with reference genomes of variable

similarity to the target genome, we post-processed the de novo

assemblies of the human dataset with AlignGraph using as ref-

erence the genome sequences from five different primates. The

columns in Table 3 list these organisms according to their evo-

lutionary distances to the human genome (increasing from left to

right). To avoid confusions, exact sequence similarity values to

the human genome are not provided because there are many

possibilities to calculate them, which can lead to different results.

As expected, the performance measures degrade with the evolu-

tionary distance between the target and reference genomes.

Although the first four reference genomes show respectable im-

provements, the macaque genome seems to be too diverged from

Table 3. Performance with reference genomes of variable similarity

Percentage of Chimpanzee Gorilla Orangutan Gibbon Macaque

Aligned readsa 94.5% 91.6% 88.9% 49.9% 24.9%

Extendable contigsb 51.0% 36.4% 24.9% 6.7% —

Improved N50c 109.9% 84.0% 73.2% 65.3% —

The tests were performed on the human chromosome 14 sample where the listed

primate genomes served as reference. The results include the percentage values of
aalignable reads, bExtendable contigs relative to the initial set cImprovements of the

N50 values relative to the extendable contigs. Because of space limitations, the latter

two rows contain averaged percentage values for the five assemblers ALLPATHS-

LG, SOAPdenovo, MaSuRCA, CABOG and Bambus2.
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human to achieve any major improvements. However, this per-

formance drop is mainly due to the difficulty of aligning short

reads to a highly diverged reference. Future improvements in

NGS read length and alignment algorithms are likely to enhance

AlignGraph’s performance in this regard.

3.2.4 Improvements to published genome The test results for the

published Landsberg erecta genome are shown in Table 4. The

initial scaffold set used in this test consisted of 1676 sequences.

AlignGraph extended 27.6% of these scaffolds, whereas the ex-

tended set contains 20.3% fewer scaffolds. In addition,

AlignGraph improves the N50 value, the number of covered

bases, the average contig length and maximum length values

for the extendable scaffolds by 86.6, 8.1, 35.7 and 8.1%, respect-

ively. These improvements demonstrate AlignGraph’s usefulness

in improving published genome sequences, even for those that

have been carefully curated by their authors.

In summary, the above performance tests demonstrate

AlignGraph’s efficiency in improving the results of a variety of

de novo assemblers and species with variable genome complexity

by taking advantage of closely related reference genomes.

4 CONCLUSIONS AND FUTURE WORK

This study introduces a novel de Bruijn graph-based algorithm

for improving de novo genome assemblies guided by sequence

information from a closely related species. The chosen PE

multipositional de Bruijn graph approach provides an elegant

and efficient solution to this problem. Our performance results

demonstrate that the implemented AlignGraph software is able

to improve the results of a wide range of de novo assemblers for

complex genomes even with relatively diverse and suboptimal

guide sequences as reference. Moreover, our results demonstrate

AlignGraph’s usefulness for improving unfinished genome

assemblies. Another advantage is that AlignGraph can be used

in combination with most existing de novo assemblers. In the

future, we will expand AlignGraph in the following areas: (i)

we will provide support for additional variant-aware alignment

tools for both PE read and contig data, such as GSNAP and

GMAP, respectively, (ii) de novo assembly functionality will be

added to AlignGraph to further optimize assemblies at many

stages of the reference-assisted workflow, (iii) utilities will be

incorporated for detecting and resolving misassemblies either in

the initial contigs or in the extensions and (iv) the processing of

scaffolds with large gaps will be improved.
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