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Abstract

Purpose of review—In this review, we highlight the importance of human herpesvirus 8

(HHV-8) lytic replication and the potential for antiviral therapies to prevent or treat HHV-8-

related neoplasms.

Recent findings—Dieases caused by HHV-8 infection include Kaposi sarcoma (KS),

multicentric Castleman disease (MCD), and primary effusion lymphoma (PEL), which occur

primarily in patients with HIV infection. KS is the most common AIDS-associated malignancy

worldwide. MCD and PEL occur less commonly but, like KS, are associated with poor treatment

outcomes. Like all herpesviruses, HHV-8 is capable of either latent or lytic infection of cells.

Although HHV-8 infection of tumor cells is predominately latent, accumulating data point to the

importance of both lytic phase viral gene products and production of infectious virus. Antiviral

agents that target herpesvirus DNA synthesis, such as ganciclovir, inhibit HHV-8 lytic replication

and can prevent KS. Several HIV protease inhibitors may interfere with tumor growth and

angiogenesis, and one PI, nelfinavir, directly inhibits HHV-8 replication in vitro.

Summary—Controlled trials are indicated to determine the clinical utility of antiviral

suppression of HHV-8 replication, and identify the optimal antiretroviral regimens, for the

prevention and treatment of KS.
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Introduction

Human herpesvirus 8 (HHV-8; also known as Kaposi sarcoma-associated herpesvirus,

KSHV) was identified in KS lesions by representational difference analysis in 1994 [1], and

belongs to the gamma group of human herpesviruses along with Epstein-Barr virus (EBV).

KS is the most common AIDS-defining malignancy in the world; in some parts of East

Africa, KS is the most common cancer in the general population [2]. Multicentric Castleman

disease (MCD) and primary effusion lymphoma (PEL) are uncommon neoplasms typically

associated with HIV infection. Emerging insights into the pathogenesis of these disorders

suggest that targeting viral functions- including lytic replication and the elaboration of lytic

gene products- may be a viable strategy for preventing disease and improving response to

therapy. A number of excellent reviews of HHV-8 pathobiology have been published

recently [3**,4,5]. Here, we will focus on the clinical importance of HHV-8 lytic

replication, and discuss the potential uses of antiviral therapies for the prevention and

treatment of HHV-8-related diseases.

Role of HHV-8 lytic replication in HHV-8-associated diseases

Like all herpesviruses, HHV-8 infection of cells results in one of two discrete viral

programs, latency and lytic replication. During latent infection, few viral genes are

expressed and the HHV-8 genome is maintained as an episome. The HHV-8 gene products

that are expressed in latently infected KS tumor (“spindle”) cells appear limited to LANA-1,

viral (v) cyclin, vFLIP, kaposins A, B and C, numerous miRNAs, and possibly ORF K1

(reviewed in [3**,4]). Each of these latent-phase proteins has functions that likely promote

tumorigenesis, including promoting cell growth and division, inhibiting apoptosis,

modulating inflammation, and inducing angiogenesis. Importantly, however, latent infection

of primary cells with HHV-8 does not result in immortalization [6,7,8,9].

Although spindle cells in KS lesions are predominately (∼99%) latently infected with

HHV-8, careful studies have consistently shown that a proportion undergoes lytic replication

and produce virions [10,11,12]. Most infected cell types in culture display a progressive loss

of the HHV-8 episomal genome within 5-10 divisions in the absence of genetic selection or

reinfection [13], such that the HHV-8 genome is eventually lost from most spindle cell lines

isolated from KS lesions [14,15,16]. This indicates that persistence of HHV-8 within KS

tumors requires ongoing lytic replication and infection of new cells [13]. The majority of

infected cells in PEL and MCD is also latent, but a greater proportion express lytic phase

genes compared to KS, with MCD demonstrating the highest frequency of lytic replication

(up to 25%) [11,12,17].

Numerous lytic viral gene products are detected in KS tumors and mediate central aspects of

KS pathobiology. Proteins expressed by spindle cells during lytic replication directly or

indirectly mediate several aspects of KS pathogenesis, including inflammation (vGPCR,

vIL-6, K15), angiogenesis (vIL-6, vGPCR, K1, vCCL1, vCCL2), cell growth (vIL-6,

vGPCR, K1), and inhibition of apoptosis (vCCL1, vCCL2, vBcl2, vIRF1, K1), among

others (reviewed in [3**,5]). Of note, lytically infected cells are destroyed, and thus their

effects in KS lesions should be limited to either increasing the number of infected cells or
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paracrine effects of lytic viral gene products. Similarly, MCD appears to be driven largely

by the paracrine effects of HHV-8 lytic phase proteins (e.g. vIL-6) [18].

HHV-8 DNA is detected more frequently and at higher copy numbers in plasma of KS

patients compared to controls with asymptomatic HHV-8 infection [19,20,21*,22*]. A large

proportion of this HHV-8 DNA in plasma is encapsidated in virions [21*,23], indicating an

association between KS and systemic viral replication and dissemination. HHV-8 viremia

appears to be in the causal pathway for KS, rather than a consequence, since HHV-8 viremia

predicts subsequent KS in cohorts of asymptomatic people with HHV-8 and HIV co-

infection [24,25]. In addition, ganciclovir, which inhibits HHV-8 lytic replication, prevents

incident KS (see below). Thus, lytic replication in viral reservoirs, likely the oropharynx

[22*] and lymph nodes [26], may seed the blood and increase infection of spindle cell

precursors. Based on this body of evidence (Table 1), therefore, HHV-8 replication appears

central to the pathogenesis of KS.

Utility of measuring HHV-8 replication in the management of HHV-8-

associated disease

HHV-8 testing could have three potential clinical applications: diagnosing HHV-8-related

disease, assessing the risk of developing disease, and predicting treatment success (Table 2).

Each possibility is reviewed in turn.

Viral testing to diagnose HHV-8-related neoplasms

In spite of its value for epidemiologic studies, serologic diagnosis of HHV-8 infection is

rarely informative in clinical practice, given the relative lack of sensitivity of most assays

(reviewed in [34,35]) combined with the fact that the majority of HHV-8 infected

individuals remain asymptomatic. HHV-8 testing of biopsy specimens of suspected PEL or

MCD lesions is required for diagnostic purposes [36]. Immunohistochemical staining for

nuclear staining of LANA is most commonly performed, although PCR detection of HHV-8

DNA is also reasonable. HHV-8 testing of KS biopsy material by immunohistochemistry or

PCR is not essential, but may be helpful if the diagnosis is in doubt. HHV-8 PCR testing of

blood or other specimens for the diagnosis of HHV-8-related neoplasms has limited utility,

but may be supportive when biopsy is not feasible. Although detected more often than in

people with asymptomatic infection, HHV-8 viremia is only present in between ∼10-60% of

KS patients [19,21*,22*,24,25]. HHV-8 viremia in a patient with suspected PEL or MCD

would be suggestive, but not definitive, and absence of viremia would not preclude either

diagnosis.

HHV-8 testing to assess risk of incident disease

PCR testing of viral DNA can provide a quantitative measure of HHV-8 lytic replication,

which has been correlated with the risk of subsequent KS [24,25]. Therefore, it is likely that

HHV-8 viral load measurement could be used to guide selective prophylaxis or preemption

strategies to prevent progression from asymptomatic infection to disease, as is used for EBV

and cytomegalovirus in transplant patients [37,38]. In order to develop such applications,
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however, the predictive value of levels of HHV-8 replication in specific patient populations

must be better defined.

HHV-8 testing to predict response to therapy or recurrent disease

The quantity of HHV-8 DNA in clinical samples has been correlated with disease

progression and response to treatment in KS [28,39,40,41**], and may prove useful in

guiding type or duration of therapy. Symptomatic flares of MCD are universally associated

with the detection of HHV-8 DNA from the peripheral blood [42,43,44], and declines in

HHV-8 DNA levels in blood is associated with treatment response. Additional longitudinal

studies are needed to determine how best to base management decisions on measures of

HHV-8 replication in these diseases.

Use of HHV-8 DNA synthesis inhibitors

A large number of drugs that block herpesvirus DNA synthesis have been reported to inhibit

HHV-8 replication (Table 3) [45,46,47,48,49]. Of these agents, ganciclovir (or its oral pro-

drug valganciclovir) is the only one proven to either suppress HHV-8 replication in vivo or

prevent the development of KS in randomized trials. In a randomized placebo-controlled

cross-over trial, valganciclovir was shown to reduce HHV-8 oral shedding frequency by

46% and quantity by 0.44 log copies/mL [50]. Ganciclovir treatment of CMV retinitis in

HIV-infected patients statistically significantly reduced the incidence of KS by 75% when

given orally and 93% when given intravenously compared to intraocular treatment alone, in

a randomized trial [33]. Numerous observational studies have also suggested that

ganciclovir and foscarnet, but not acyclovir, may prevent KS [29,30,31,32]. Thus, there is

ample evidence for using valganciclovir to prevent KS in high-risk individuals.

Operationally, however, it is not yet clear who might benefit most from preventive use of

antivirals (see above).

The efficacy of antivirals for the treatment, as opposed to prevention, of KS is less clear.

Case reports have suggested that cidofovir or foscarnet may have improved KS treatment

outcomes [55,56,57]. However, data from small observational studies did not indicate better

KS outcomes with inhibitors of HHV-8 DNA synthesis [40,58]. Furthermore, the largest

trial of cidofovir to date, which included 7 patients with KS, found no apparent effect on

progression or HHV-8 viremia [51]. Even if continuous HHV-8 lytic replication is important

for the persistence of KS tumors, it is possible that once KS has developed these drugs may

not suppress HHV-8 replication effectively enough to have clinical benefits. In this case,

more potent antiviral regimens could improve outcomes. Alternatively, it may be that

despite complete inhibition of viral DNA synthesis, expression of early lytic gene products

(e.g. vIL-6 and vGPCR) may still occur at levels sufficient to support KS progression

[59,60]. The impact of antivirals on KS treatment might be augmented if combined with

agents that induce the activation of HHV-8 latently infected cells to undergo lytic replication

in vitro, such as valproic acid, hydroxyurea, or glycyrrhizinic acid [61,62], but such

approaches have not been validated in clinical trials to date. A final potential role for

antivirals might be as secondary prophylaxis after a response to ART and/or chemotherapy

in order to reduce the risk of relapse [63], which has not yet been evaluated in clinical trials.
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The benefit of various antiviral treatment strategies for other HHV-8-related diseases,

particularly MCD, is suggested by some reports [44,64,65,66,67,68], but not others [69], and

definitive data do not exist to recommend specific therapies.

The effects of antiretroviral therapy (ART) on HHV-8-related diseases

In resource-rich areas, the widespread availability of ART has resulted in a dramatic decline

in KS incidence [70]. Rates of KS began slowing with the advent of zidovudine

monotherapy, and then fell precipitously with the use of “highly active” ART combining

nucleoside reverse transcriptase inhibitors (NRTIs) with a non-NRTI (NNRTI) or protease

inhibitor (PI). The mechanisms by which ART prevents KS have not been entirely defined,

but it is clear that restoration of immune function plays a central role. HIV itself may also

promote the development of KS through actions of Tat (reviewed in [71,72]).

One recurring and controversial hypothesis is that the individual antiretroviral components

of ART regimens, specifically PIs, may have differential effects on HHV-8 or tumorigenesis

that affect KS development or response, independently of their effects on HIV replication

and immune reconstitution. It should be stressed that a number of observational studies have

found similar rates of KS incidence and response between HIV-infected patients treated with

PI-based and NNRTI-based ART [28,73,74,75,76*]. However, these studies were all limited

by small numbers of KS cases and/or incomplete detail regarding the type and use of ART

regimen. Some of these same data suggest that complete remission of KS may occur more

often in patients treated with PIs despite similar control of HIV infection (HIV RNA and

CD4 T-cell levels) [28]. In addition, numerous KS relapses have been reported after

switching from PI-based to NNRTI-based ART regimens without virologic or immunologic

deterioration [77,78,79]. In the absence of convincing clinical evidence for the superiority of

PIs for KS, there has been much interest in the fact that individual PIs variably affect

angiogenesis, cell division and invasion, and apoptosis (reviewed in [80,81]). Some of these

actions by PIs appear to be mediated through inhibition of the PI3K/Akt signaling, which is

upregulated both by latent HHV-8 infection and by vGPCR [82,83]. The attractiveness of

the PI3K/Akt pathway as a target for KS treatment is illustrated by the success of the

immunosuppressant rapamycin (sirolimus), an inhibitor of mTOR (a signaling molecule that

is downstream of and activated by PI3K/Akt) that is remarkably effective for KS in

transplant patients [54] and has activity against PEL cell lines [84]. Interestingly, a recent

study shows that rapamycin inhibits expression of HHV-8 RTA in vitro, blocking virion

production [53**]. Other mechanisms by which PIs may interfere with HHV-8

tumorigenesis include inhibition of matrix metalloprotease and proteasome activities.

Notably, these properties have sparked an interest in the use of PIs for other cancer types,

leading to clinical trials for a wide variety of solid tumors (reviewed in [80,85]).

Another intriguing possibility is that some antiretrovirals directly affect HHV-8 replication.

Among several PIs screened for their ability to inhibit HHV-8 replication using a

recombinant virus assay, only nelfinavir showed potent activity at concentrations that are

achieved in plasma with standard oral dosing (Table 3) [52**]. PIs act on the HIV aspartyl

protease, an enzyme not encoded by human herpesviruses. However, nelfinavir modulates

numerous basic cellular processes [80], one or more of which might disrupt HHV-8
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replication. The NRTIs zidovudine and stavudine are phosphorylated by the HHV-8

thymidine kinase (ORF 21) [86,87], but appear to have minimal effects on HHV-8

replication in vitro [52**].

The varied effects of different PIs on HHV-8 replication, tumor growth, and angiogenesis

indicate the possibility that all ART regimens may not be equally effective for preventing or

treating KS. This could explain why observational studies that combine all PIs together,

perhaps diluting a benefit of a subset of these agents, may not have discerned an effect of PI-

based compared to NNRTI-based ART regimens, especially when the number of events is

small [28,73,74,75]. Disappointingly, unlike in the U.S. and Europe, rates of KS in sub-

Saharan Africa have not declined appreciably even where ART has been provided to a large

proportion of those requiring treatment [88]. The vast majority of ART delivered in sub-

Saharan Africa has been nevirapine (NNRTI)-based, raising the possibility that different

first-line regimens might offer an advantage in KS-endemic populations. Controlled trials

are needed to determine which individual ART regimens are optimal for the prevention and

treatment of KS. Although the use of PI-based ART as first line treatment of KS has already

been adopted by some clinicians [89], there are currently no controlled studies to support

this practice or guide the choice of individual PI. An uncontrolled trial of indinavir in 28

patients with refractory Classic (HIV-negative) KS observed tumor regression in a minority

of subjects [90*], and a phase 3 randomized trial of ART containing a PI combination

(ritonavir-boosted lopinavir) versus a NNRTI (efavirenz) for mild-moderate AIDS-KS is

ongoing in Uganda (ClinicalTrials.gov Identifier: NCT00444379). Additional trials are

required to determine how best to use available agents- and to guide the development of new

therapies- to improve KS outcomes.

Conclusion

Despite our increased understanding of HHV-8 pathobiology, the exact mechanisms by

which HHV-8 infection causes KS, MCD, and PEL remain unclear. KS and MCD in

particular differ from classical cancers in ways that in part reflect the requirement for

ongoing lytic replication. This paradigm squarely frames HHV-8 replication as a therapeutic

target for the prevention or treatment of these diseases. Importantly, several drugs that

inhibit HHV-8 replication, including (val)ganciclovir and nelfinavir, are already in wide

clinical use for other indications and can therefore be easily evaluated and repositioned for

the specific management of KS. Other PIs may have specific benefits for KS by interfering

with cellular processes that are driven by HHV-8 infection. However, the role of HHV-8

DNA synthesis inhibitors and the optimal ART regimen for prevention and treatment of KS

have yet to be defined. Given the enormous burden of KS in sub-Saharan Africa and the

poor outcomes of current standard therapies, controlled clinical trials are urgently needed to

evaluate these approaches.
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Key points

1. Lytic replication plays a central role in HHV-8 tumorigenesis, particularly in KS

and MCD.

2. (Val)ganciclovir inhibits HHV-8 replication and prevents KS, but additional

studies are required to characterize the patient populations in whom the benefits

of antiviral suppression outweigh the cost and toxicity.

3. PIs have numerous cellular effects that may interfere with HHV-8 replication

and tumorigenesis, but these activities vary significantly among individual

agents within the PI class, and the superiority of PI-based ART regimens for KS

remains unproven.

4. Controlled trials are urgently needed to evaluate the role for HHV-8 DNA

synthesis inhibitors as well as to determine the optimal ART regimens for

preventing and treating KS in people with HIV infection.
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Table 1
Evidence suggesting a causal role for HHV-8 lytic replication in the pathogenesis of
Kaposi sarcoma

1 A proportion of HHV-8-infected spindle cells in KS lesions are consistently found to undergo lytic replication [10-12].

2 Lytic replication is required for the maintenance of the HHV-8 genome in spindle cells [13].

3 Gene products expressed during lytic replication mediate angiogenesis and inflammation central to KS pathogenesis (reviewed in
[3**]).

4 HHV-8 viremia is a strong predictor for the development of KS, and has been associated with a poor response during KS treatment
[19,20,23-25,32,90].

5 Ganciclovir or foscarnet for treatment of cytomegalovirus reduce the incidence of KS [45-49].
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Table 2
Clinical Utility of Assays to Detect HHV-8 in Biologic Specimens

Clinical scenario Specimen type Frequency of HHV-8 Detection Clinical Utility of Test

Asymptomatic HHV-8 infection Peripheral blood Among seropositive people, HHV-8
detection by PCR ranges from 0% in
the US and Europe to 30% in areas
where KS is endemic

Insensitive for determination of HHV-8
infection status; correlated with risk of
subsequent KS

KS Tumor HHV-8 is detectable in >95% of KS
tumors

Immunohistochemistry, in situ hybridization
or PCR may assist in the diagnosis of KS

Peripheral blood ∼10-60% of patients with KS will
have HHV-8 DNA detected in
peripheral blood

Levels of viremia during treatment may be
correlated with poor outcomes

PEL Pleural or ascitic
fluid

HHV-8 DNA is reliably detected in
the effusions of patients with PEL

Detection of HHV-8 by
immunohositochemistry, in situ
hybridization or PCR in effusion is required
for definitive diagnosis

Peripheral blood HHV-8 DNA is frequently detected
in the peripheral blood of persons
with PEL

Unclear

MCD Lymph node HHV-8 DNA is reliably detected in
lymph node biopsies in cases of
MCD in HIV+ patients

Detection of HHV-8 by
immunohositochemistry, in situ
hybridization or PCR establishes specific
diagnosis, and can guide therapy (i.e. use of
antiviral therapy)

Peripheral blood Detection of HHV-8 DNA in blood
of persons with MCD is correlated
with symptoms and is usually
undetectable between “flares”

Helpful in determining etiology of
constitutional symptoms in MCD patients
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