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Abstract

Bariatric surgery has emerged as the most durably effective treatment of type 2 diabetes (DM).

However, the mechanisms governing improvement in glucose homeostasis have yet to be fully

elucidated. In this review we discuss the various types of surgical interventions and the multitude

of factors that potentially mediate the effects on glycemia, such as altered delivery of nutrients to

the distal ileum, duodenal exclusion, gut hormone changes, bile acid reabsorption, and amino acid

metabolism. Accumulating evidence that some of these changes seem to be independent of weight

loss questions the rationale of using body mass index as the major indication for surgery in

diabetic patients. Understanding the complex mechanisms and interactions underlying improved

glycemic control could lead to novel therapeutic targets and would also allow for greater

individualization of therapy and optimization of surgical outcomes.
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Introduction

Type 2 diabetes mellitus (DM) is a chronic and progressive disease marked by insulin

resistance and eventual reduction in insulin secretion [1, 2]. Despite an overall improvement
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in diabetes care from 1999 to 2010, 47.5 % of diabetic patients still do not meet the targets

for glycemic control [3, 4••].

Weight gain and obesity are clearly established causes of type 2 diabetes (DM) [5]. The rise

in obesity has been associated with an increase in the prevalence of diabetes [6]. Weight loss

improves glycemic control in obese patients with DM, but conventional medical

management often fails to achieve sustained weight loss in severely obese patients [5].

Bariatric surgery has emerged as one of the most effective methods of achieving sustained

weight loss and inducing long-term improvement in DM and its comorbidities [7, 8••, 9••,

10, 11]. Multiple studies have demonstrated the greater efficacy of bariatric surgery

compared with medical therapy in achieving the treatment goals recommended by the

American Diabetes Association (ADA) [8••, 9••, 12••, 13–15, 16••]. While bariatric surgery

is currently reserved for patients with BMI higher than 40 kg/m2 or higher than 35 kg/m2

with significant comorbidities, the International Diabetes Federation has recently

recommended consideration of bariatric surgery for patients with a BMI of 30–35 kg/m2

when traditional medical management is unable to achieve adequate diabetic control [17••].

This review will discuss the impact of bariatric surgery on DM and potential mechanisms

for improved glycemic control.

Effect of Bariatric Surgery on Glycemic Control

Rapid improvement in DM following bariatric surgery has been described anecdotally as

early as the 1970s [18]. In 1995, Pories et al reported the long-term efficacy of bariatric

surgery in achieving diabetes “remission” in 608 morbidly obese patients who underwent

gastric bypass, with a 96.3 % follow-up rate over 14 years [19]. A later meta-analysis

reported that DM was completely resolved in 76.8% of patients, however, a more recent

analysis of randomized controlled trials indicates that figures may be lower [7, 20].

Dixon et al published the first randomized trial to compare the effect on DM of surgical vs

medical weight loss interventions. Sixty patients with BMI >30 kg/m2 but <40 kg/m2 with

recently diagnosed DM(less than 2 years) were randomized to laparoscopic adjustable

gastric banding (LAGB) vs medical intervention. Of the 92 % patients who completed the 2

year follow-up, 22/29 (75.8 %) in the surgical group vs 4/26 (15%) in the conventional

group achieved diabetes remission, as defined by fasting glucose <126 mg/dL and

hemoglobin A1c (HbA1c) ≤6.2 % after discontinuation of medications. Remission was

associated with amount of weight loss and lower baseline HbA1c levels [15].

More recently, several groups have published randomized controlled trials comparing

bariatric surgery to medical management of DM. In a prospective randomized trial,

Mingrone et al compared Roux-en-Y gastric bypass (RYGB) and biliopancreatic diversion

(BPD) to medical therapy in obese patients (BMI≥35 kg/m2) with DM. At 2 years,

achievement of fasting glucose <100 mg/dL and HbA1c <6.5 % after stopping medications,

did not occur in any medically treated patients, but occurred in 75 % of the RYGB and 95 %

of the BPD patients. There was no association of diabetes remission with age, BMI, sex, or

duration of DM [8••]. Schauer et al randomized 150 patients with DM to either medical

treatment per ADA guidelines alone or medical treatment plus RYGB or sleeve gastrectomy.
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One year later, only 12% of the medically treated patients vs 42 % RYGB and 37 % sleeve

gastrectomy patients achieved diabetes remission with HbA1c <6 % as defined by the study

[9••]. The Diabetes Surgery Study, a prospective, multi-center, and multinational trial

randomized 120 obese patients (BMI 30–39.9 kg/m2) with mean HbA1c of 9.6% to

intensive lifestyle modification or to a combination of RYGB with intensive lifestyle

modification. At 1 year, weight loss was 7.9 % of initial body weight and HbA1c was 7.8 %

in the medical arm; in the surgery arm, weight loss and HbA1c were 26.1% and 6.3%,

respectively. In regression analyses, improved glycemia was mostly driven by the degree of

weight loss.

The variability in remission rate among earlier studies and these more recent studies likely

reflect differences in study design and surgical as well as lifestyle interventions, baseline

characteristics of patients, duration of follow-up, and the criteria used to define remission

[21••, 22]. When the ADA definition of remission (fasting glucose <100 mg/dL and HbA1c

<6 % of at least 1 year’s duration in the absence of active pharmacologic therapy) [21••] was

retrospectively applied to data collected prospectively in 3 bariatric centers, the total rate of

complete remission was 34.4 % for all bariatric surgery, which included RYGB, sleeve

gastrectomy, and gastric banding; for RYGB, the remission rate by ADA criteria was 40.6 %

[21••, 22]. Preoperative BMI did not correlate with diabetic control postoperatively.

Although numbers are relatively low, it appears that outcome is similar in individuals with

BMI <35 kg/m2. The efficacy of bariatric surgery in achieving “remission” is further

complicated by the difficulty of defining “remission” in diabetes, as hyperglycemia exists on

a continuum. Also implicit within the definition of remission is the possibility of recurrence,

and the period of time afterwhich remission may be considered effectively a cure has been

arbitrarily chosen [21••]. A proposed model (DiaRem) for the prediction of diabetes

remission gave greatest weight to preoperative use of insulin and has not been validated

prospectively [23].

The durability of the surgical effect on glycemic control is less clear due to lack of long-

term studies, and in particular with newer procedures such as sleeve gastrectomy. The

Swedish Obese Subjects (SOS) survey was the first long-term, prospective, nonrandomized

controlled trial to compare bariatric surgery vs conventional medical treatment on diabetes.

After 2 years of follow-up, 72 % of the patients with diabetes at baseline were in remission

(defined by cessation of diabetes medications or fasting plasma glucose <126 mg/dL) after

gastric banding, vertical banded gastroplasty, or RYGB; however, 50 % of the diabetic

patients in remission at 2 years had relapsed after 10 years [11, 16••]. Similarly, other groups

have found recurrence rates ranging from 19 % to 35.1 % in bariatric surgery patients who

had initially achieved remission, defined variably as HbA1c <6 % and fasting plasma

glucose ≤100 mg/dL or ≤124 mg/dL with cessation of medications, after follow-up ranging

from 3 to 9 years [24–26]. The risk of diabetes recurrence appeared to be inversely

correlated with long term excess weight loss (EWL) and directly correlated to duration of

diabetes and severity of diabetes preoperatively [24–26].
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Proposed Mechanisms for Improvement in Diabetes

Weight loss through bariatric surgery improves DM more effectively than conventional

medical therapy, but the mechanisms by which this improvement occurs have yet to be fully

elucidated. The changes in glucose homeostasis are likely the result of both weight loss

dependent and weight loss independent mechanisms, and the following mechanisms are not

necessarily mutually exclusive of one another.

Caloric Restriction

It is well known that significant caloric restriction improves glucose tolerance in diabetic

patients [27]. Bariatric surgery has been associated with profound improvements in fasting

glucose concentration and insulin action, which often occur early in the postoperative

course, before significant weight loss has even occurred [28–30]. Caloric restriction, which

occurs immediately after all surgical interventions, likely plays an important role in the

favorable metabolic changes observed after bariatric surgery. For example, obese diabetic

patients who underwent either RYGB or a 500 kcal/day diet lost an equivalent amount of

weight over approximately 3 weeks and exhibited similar improvements in insulin

sensitivity, acute insulin secretion, and beta cell function when assessed by an intravenous

glucose challenge [31•].

Incretin Secretion and Response

Changes in the secretion pattern of gut-derived hormones from enteroendocrine cells in

response to altered nutrient transit have emerged as important potential mechanisms for

improvement in DM.

Due to impaired insulin secretion in DM, the incretin effect, which is the greater insulin

response after oral glucose compared with an equivalent dose of intravenous glucose, is

diminished [32]. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like

peptide 1 (GLP-1) are the 2 incretins responsible for one-half to two-thirds of postprandial

insulin secretion. GLP-1 is secreted mostly from ileal L cells while GIP is secreted from

duodenal K cells. Both are rapidly inactivated by the enzyme dipeptidyl peptidase IV (DPP-

IV). GLP-1 analogues and DPP-IV inhibitors are currently used as antidiabetic agents,

stressing the importance of GLP-1 in glucose homeostasis [33, 34].

Multiple studies have shown that postprandial secretion of GLP-1 is substantially and

durably increased after RYGB, but not after LAGB or diet-induced weight loss [35–40]. The

increase in GLP-1 occurs early following RYGB, before significant weight loss has occurred

[38, 39]. Moreover, the postprandial increase in GLP-1 is clearly related to the alteration in

gastrointestinal anatomy following RYGB, as illustrated in 2 case reports examining the

effect of peroral feeding vs gastroduodenal feeding in RYGB patients with gastric tubes

inserted into the bypassed gastric remnant [41, 42]. When RYGB patients were fed via the

gastric bypass pathway, exaggerated postprandial GLP-1 and insulin responses were noted.

However, when patients were fed through the gastric tube via the gastroduodenal pathway,

GLP-1 and insulin secretion were similar to the pattern seen preoperatively. These cases

demonstrate that more rapid delivery of nutrients to the distal small intestine is a key factor
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in the postoperative changes in GLP-1 and insulin secretion. Greater improvements in

postprandial GLP-1 secretion and the incretin effect after bypass surgery, independent of

weight loss, were also demonstrated in a study of obese diabetic women studied 1 month

after being randomized to gastric bypass surgery or diet-induced equivalent weight loss [35].

Early recovery of beta cell function has been associated with exaggerated postprandial

secretion ofGLP-1 after RYGB but causality has not been definitively established. Jorgensen

et al expanded upon the earlier study by Salehi et al [43] to illustrate the insulinotropic role

of GLP-1 in diabetic patients after RYGB. By pharmacologically blocking the GLP-1

receptor (GLP-1R) during a liquid meal tolerance test after surgery using exendin (9–39),

they were able to show that improvement in beta cell glucose sensitivity, glucagon

suppression, and insulin secretion were all decreased [44••]. However, Jimenez et al found

only minimal decrease in glucose tolerance following blockade ofGLP-1 action [45]. GLP-1

and the incretin effect, while important to improved beta cell function, are likely not the only

factors altered by bariatric surgery.

Reported postprandial changes in GIP following bariatric surgery have been inconsistent. In

theory, exclusion of the duodenum, where most GIP-producing K cells reside, would lead to

decrease in GIP secretion after RYGB. Instead, some studies have found an increase in GIP

while others have noted lack of change or a decline [35, 37, 46, 47]. It is possible that the

inconsistencies in postprandial GIP levels postoperatively are due to variability in surgical

technique, particularly differences in the length of Roux anastomoses, composition of test

meal stimulus, and the timing of blood sample collections that may overlook early

postprandial secretion.

Glucagon and Glucagon-Like Peptide 2

An increase in meal-stimulated glucagon in the early postprandial period after RYGB has

been noted in several studies and argues against GLP-1 mediated suppression of glucagon as

a mechanism for improved glucose homeostasis after bariatric surgery [35, 46, 48].

However, fasting glucagon appears to decrease by 1 year after RYGB and may potentially

explain some of the long-term benefits of RYGB on glucose metabolism [48].

Glucagon-like peptide 2 (GLP-2) is a member of the enteroglucagon family derived from the

preproglucagon gene, which also encodes glicentin, glucagon, oxyntomodulin, and GLP-1.

GLP-2 regulates gastric motility, gastric acid secretion, intestinal hexose transport, glucagon

secretion, and increases absorptive area and barrier function of the gut epithelium via

stimulation of crypt cell proliferation and inhibition of apoptosis in the enterocyte and crypt

compartments [49–51]. In both murine and human patients, le Roux et al found that GLP-2

levels rose substantially after RYGB, peaked at 6–12 months and correlated with the period

of maximal weight loss, before returning to baseline levels. Following RYGB in rats,

increased GLP-2 levels were associated with increased crypt cell proliferation as early as 23

days postoperatively [52]. These accommodations in gut anatomy likely account for how

well RYGB is tolerated and the relatively minimal degree of macronutrient malabsorption,

but the precise role, if any, that GLP-2 may play in the improvement of glucose homeostasis

following RYGB remains to be seen.
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Changes in Appetitive Hormones

GLP-1 and Peptide YY (PYY) are anorexigenic and are implicated in the decreased hunger

and increased satiety that often follows RYGB [53]. Consistent with this notion is the

demonstration that GLP-1R agonism enhances weight loss achieved by adjustable gastric

banding (AGB) in obese rats [54]. Like GLP-1, PYY is released from intestinal L cells in

response to a meal and has anorectic properties, delaying gastric emptying, slowing

intestinal transit time, and increasing satiety. PYY levels are dramatically elevated following

nutrient ingestion after RYGB but not after LAGB [36, 40, 55, 56]. The marked postprandial

elevations in GLP-1 and PYY after bariatric surgery suggest that gut hormone mediated

changes in appetite, in addition to improved insulin sensitivity and secretion, may facilitate

decreased food consumption and thereby contribute to the attainment and maintenance of

improved glycemic control.

Compromised secretion of ghrelin, an orexigenic peptide produced in the fund us and body

of the stomach, has also emerged as a potential mechanism for both decreased hunger and

improvement in glycemia after RYGB and sleeve gastrectomy [57–59]. Various studies

have reported decreases in fasting and postprandial ghrelin levels after RYGB, while others

have noted no change or even increases in ghrelin [46, 55, 60–63]. These seemingly

discrepant results may be due in part to the postoperative interval, amount of weight loss, the

time-points evaluated (single fasting vs meal-associated), and the use of assays measuring

“active” octanoylated iso form vs total ghrelin.

Changes in the Direction and Rate of Nutrient Flow

A proposed mechanism for the improvement in DM following bariatric surgery is that early

and rapid delivery of unabsorbed nutrients to the distal small intestine activates the “ileal

brake” that potentiates the secretion of GLP-1 and PYY (the “hindgut hypothesis”).

Consistent with this hypothesis is the observation that procedures with the most consistent

improvement in DM shorten the route of nutrient flow from the stomach to intestine, and/or

increase the rate of transport of ingested nutrients [14, 58, 64–66].

Further evidence for the role of the distal ileum in improving glucose tolerance is derived

from rodent models of ileal interposition (IT), a surgical procedure whereby a segment of

ileum is inserted into the proximal small intestine so that there is no gastric restriction or

duodenal bypass. IT in different diabetic rodent models results in elevated levels of GLP-1

and PYY and improvements in insulin sensitivity, glucose tolerance, and beta-cell function

[67–70]. Inhibition of GLP-1R with exendin (9–39) reversed the improvement in oral

glucose tolerance after IT, lending further support to the hypothesis that early and increased

activation of GLP-1R leads to subsequent improvement in glucose metabolism [71]. In

humans, IT associated with sleeve gastrectomy has shown some promise for the treatment of

T2DM in patients with BMI of 21– 34 kg/m2 [72, 73••].

Exclusion of nutrients from the proximal small intestine (the “foregut hypothesis”) has also

been proposed to restore euglycemia. In animal studies of both non obese and diet induced

obese diabetic rats, duodenal-jejunal bypass (DJB) without gastric restriction led to

improvement in hyperglycemia independent of food intake and weight reduction [74–76].
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Intestinal glucoregulatory hormones and vagal innervation may also contribute to alleviation

of hyperglycemia in the DJB model [76]. DJB in humans had only a moderate effect on

glucose homeostasis in patients with DM resulting in a change in mean HbA1c from 9.3 %

at baseline to a nadir of 6.5% at 3 months followed by a progressive increase to 7.7% at 12

months postsurgery [77••]. It is unclear if the improvements observed were due to altering

the intestinal site of delivery of ingested nutrients and/or moderate weight loss.

Novel, less invasive endoscopic therapies are also being explored for the treatment of DM.

By using a rat model of the endoluminal sleeve (ELS) to mimic 2 components of RYGB,

bypass of the proximal intestine and early exposure of the jejunum to partially digested

nutrients, Aguirre et al demonstrated that despite less weight loss than similar rats that had

undergone RYGB, rats with the ELS attained comparable improvement in glucose

homeostasis [78]. In humans, reductions in HbA1c have been demonstrated after

implantation of various types of endoluminal duodenal-jejunal bypass sleeves [79, 80••].

Further investigations into the safety, efficacy, and long-term outcomes of the ELS are

ongoing.

“Hindgut” and “foregut” hypotheses have both been proposed as mechanisms that alter

glucose homeostasis [64, 81]. Current evidence suggests that multiple factors are at play that

are not mutually exclusive, and may in fact act in concert, to achieve the striking

improvements observed using different devices and surgical approaches.

Other Mechanisms for Improvement in Diabetes

Adipose Tissue and Adipokines

Weight loss following RYGB consists of a significant reduction in whole body fat including

50 %–60 % reduction in visceral adipose tissue [82]. Adiponectin, a 244 amino acid protein

secreted from white adipose tissue, is inversely proportional to body fat mass, BMI, waist-

to-hip ratio, serum insulin, and glucose levels; low levels are closely correlated with insulin

resistance and suspected to play a role in DM pathogenesis [83]. Most studies have shown

an increase in adiponectin after RYGB, which correlates with the improvement in insulin

resistance following surgery [60, 63]. Changes in body composition, inflammation, and

adipokines contribute to improvement but most are likely not unique to surgery-induced, as

opposed to diet-induced, weight loss.

Bile Acids and FGF 19

Increased bile acid reabsorption has also been proposed as a potential mechanism for

improved insulin sensitivity after RYGB [84]. Based on rodent studies suggesting that bile

acids increase energy expenditure through activation of G-protein coupled receptor TGR5

and thereby type 2 thyroid hormone deiodinase, Patti et al performed a cross-sectional

analysis of fasting serum bile acid composition and various metabolic variables in a group of

nondiabetic post-RYGB, matched obese, and overweight patients. Total serum bile acid

concentrations were 2-fold higher in post-RYGB patients and were inversely correlated with

2-hour postprandial glucose levels as well as fasting triglycerides, and positively correlated

with adiponectin and peak postprandial GLP-1 [84]. The altered enterohepatic recycling of

bile acids and consequently elevated serum bile acid levels induced by IT in rats may also
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contribute to improved glucose homeostasis [85••, 86]. Bile acids also act on the farnesoid X

receptor stimulating secretion of fibroblast growth factor (FGF)19 secretion with subsequent

inhibition of hepatic gluconeogenesis. In prospective human and animal studies, Pournaras

et al concluded that RYGB but not LAGB leads to more rapid delivery of bile acids to the

terminal ileum, which in turn causes an increase in total bile acid concentrations, plasma

GLP-1, PYY and FGF19 [87]. Other studies in humans have also shown increases in plasma

bile acids and FGF19 after RYGB [88–90].

Microbiota

Data from mouse studies and recent small studies in humans have provided evidence that

gut microbiota may play an important role in energy storage and possibly the development

of obesity and associated complications. It remains unclear whether changes in the gut

microbiome are a consequence or cause of obesity in humans. Bariatric surgery, in

particular, induces environmental, systemic, and anatomic changes that may all impact the

composition of gut microbiota. Initial studies have suggested a shift in bacterial flora after

surgery toward profiles more similar to that of lean patients [91–94]. Gastrointestinal

reconfiguration may play a key role in the changes in microbiota, as changes in the

microbial ecology were most notable distal to the site of surgical manipulation in rat models.

Moreover, transfer of gut microbiota from RYGB treated mice to non-operated, aseptic mice

was sufficient to cause decreased weight and adiposity, possibly due to altered microbial

synthesis of short-chain fatty acids [94]. Whether these changes in microbiota or those

involving other digestive processes such as the thermic effect of feeding contribute to

improved glucose homeostasis remains to be elucidated.

Genetics

Various studies have begun to examine the potential of obesity associated single nucleotide

polymorphisms (SNPs) to predict weight loss outcomes following bariatric surgery. Higher

pre and postoperative BMI following RYGB has been associated with an increased number

of obesity SNPs or homozygous SNP genotypes [95]. The SOS group looked at 11 obesity

candidate genes and found that the FTO SNP rs16945088 was associated with maximal

weight loss [95, 96].

The melanocortin system is an integral component in the regulation of energy homeostasis.

Loss of a single functional copy of the melanocrtin-4 receptor (MC4R) gene is the most

common mutation associated with obesity in humans. Mirshahi et al found that carriers of

the MC4R I251L allele were more likely to lose weight during dietary and surgical

interventions and had less insulin resistance [97]. A later study provided further

confirmation of the crucial role MC4R signaling plays in the weight loss effects of RYGB:

while mice heterozygous for MC4R remained fully responsive to RYGB, MC4R null mice

lost substantially less weight after surgery. By sequencing the MC4R gene in 972 patients

undergoing RYGB, Hatoumet al also showed that a single normal copy of the MC4R gene

was sufficient to conserve the weight loss effects of RYGB. However, given the few number

of diabetics in the study, it is not clear if MC4R mutations have a clinically significant effect

on glycemic outcome [98].
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Genetic polymorphisms in the gene encoding transcription factor 7-like 2 (TCF7L2) are

associated with an increased risk of developing DM. Inheritance of 2 specific TCF7L2

variants, rs1225372 and rs7903146, has been associated with relatively reduced insulin

secretion and an increased probability of progression from impaired glucose tolerance to

DM, but no impairment of insulin sensitivity [99]. The insulinotropic effect of exogenous

GLP-1 in carriers of these variants has been reported as impaired in some but not all studies,

so it is unclear if carriers would reap equivalent benefits from bariatric surgeries that

enhance GLP-1 secretion [100–102].

More recently, fetal and adult ablation of the transcription factor Foxo1 in mouse

enteroendocrine progenitors have given rise to the development of gut cells with the ability

to produce biologically active insulin in a glucose-responsive manner. Unlike embryonic

stem cell-derived insulin producing cells, the gut-derived insulin producing cells

demonstrated a singular plasticity and ability to regenerate and produce insulin [103]. It is

feasible that bariatric surgery, through changing hormonal and nutrient cues, may somehow

influence insulin secretion from the gut through Foxo1 mediated alterations in Notch and

Wnt signaling pathways, both of which have been shown to regulate gut and pancreatic cell

differentiation.

Taste Receptors of the Gut

G-protein coupled taste receptors detect gut luminal contents and transmit signals that

regulate nutrient transporter expression and nutrient uptake, as well as the release of gut

hormones and neurotransmitters involved in the regulation of energy and glucose

homeostasis. Sweet taste receptors, TAS1R2, have been shown to be dysregulated in DM

and may potentially increase the risk of postprandial hyperglycemia by increasing glucose

absorption via Na+/glucose co-transporter SGLT1 during hyperglycemia. Rapid delivery of

undigested nutrients to the lower small intestine after RYGB may also affect the regulation

of taste receptors or glucose transporters on L cells, leading to increased PYY and GLP-1

secretion. In rodent models, it has been demonstrated that DJB leads to decreased TAS1R2

and TAS1R3 expression in the alimentary limb and decreased SGLT1-mediated glucose

transport. Given the decreased preference for sweet and fatty foods demonstrated by many

patients after RYGB, it has been postulated that increased intensity of sweet perception

following surgery leads to changes in gut hormones and ultimately alterations in the reward

circuitry and energy homeostasis [104].

Insulin Clearance

The rapid decrease in fasting glucose and fasting insulin after RYGB suggests that early

improvement in hepatic glucose production and hepatic insulin sensitivity may account for

this change. Bojsen-Moller et al prospectively studied 32 diabetic and 32 normoglycemic

patients recruited for RYGB and found that fasting hepatic insulin clearance increased after

1 week and further at 3 months for both groups, regardless of diabetic status [105].

Postprandial insulin clearance increased only in the DM patients, in whom the increase was

noted as early as 1 week following surgery and maintained at 3 months and 1 year. Based on

this study and others that have noted the rapid improvement in fasting glucose and fasting

insulin before significant weight has even occurred, it is quite plausible that nonenteral
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factors, such as increased hepatic insulin sensitivity and insulin clearance, may be

responsible for some of the early improvement in response to energy restriction [106]. Early

postoperative increases in plasma free fatty acids are then followed by increased suppression

that likely contributes to improved peripheral insulin sensitivity later on as demonstrated

during clamp studies in diabetic patients 1 year after RYGB [107].

Intestinal Gluconeogenesis

In mice, enterogastric anastomosis (EGA, analogous to RYGB in humans) but not gastric

banding increased gastrointestinal gluconeogenesis. Following EGA, researchers noted

decreased food intake in the mice and direct secretion of enteral glucose into the portal vein,

suppressing endogenous hepatic glucose production. They illustrated the importance of

hepato-portal glucose sensing in mediating appetite by performing EGA in a GLUT-2

knockout mouse and confirming that without the specific glucose sensor, there was no

inhibition of food intake in the mice even after EGA. The authors linked increased intestinal

gluconeogenesis to improved hepatic insulin sensitivity with subsequent suppression of

hepatic gluconeogenesis and improved glucose tolerance overall, asserting that this occurred

independently of GLP-1 and is only partially explained by weight loss [108].

Amino Acids

Dietary macronutrients function as signaling molecules to affect feeding behavior, fuel

efficiency, enteric hormones, insulin release and insulin sensitivity [109–111]. Obesity and

DM are known to alter circulating concentrations of many metabolites [111, 112].

Metabolite profiling in diabetic patients has shown that weight loss after RYGB but not

equivalent diet-induced weight loss is associated with a decrease in fasting plasma

concentrations of branched chain amino acids and their C3 and C5 acylcarnitine metabolites

and correlated negatively with insulin sensitivity [113]. Similar changes were also noted

after AGB or RYGB in a nondiabetic group after equivalent weight loss [114••]. It is,

therefore, unclear whether the changes in amino acid metabolism, and possibly transport, are

unique to RYGB or are causal to the improvements in insulin action. The use of

metabolomics will undoubtedly further this area of study [115].

Conclusions

The mechanisms by which bariatric surgeries cause improvement in DM are multifactorial

and dependent upon both weight loss associated and weight loss independent factors.

Expedited delivery of nutrients to the distal gut, as well as duodenal exclusion and hormonal

changes, likely contribute to the improvement in glucose homeostasis. Given the profound

metabolic effects of bariatric surgery and the known long-term benefits of glycemic control,

it may be worthwhile to reconsider the applicability of “remission” in defining successful

treatment of diabetes, and to advocate for improved glycemic control and decreased use of

medications as better parameters of treatment efficacy. Evidence indicating that some of the

positive outcomes are at least partially independent of weight loss renders use of BMI as a

major criteria for surgery in diabetics somewhat arbitrary. Improved understanding of the

complex mechanisms and interactions involved in glucose homeostasis after bariatric
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surgery could identify potential therapeutic targets including less invasive techniques,

optimize surgical outcomes, and also encourage greater individualization of therapy.
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