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Abstract

We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the

University of Manchester. Low-noise EIT data at 100 frames per second (fps) were obtained from

healthy male subjects during controlled breathing, followed by magnetic resonance imaging

(MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the

MR image and electrode positions obtained using MRI fiducial markers informed the construction

of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in

the boundary that occur during respiration were accounted for by incorporating the sensitivity with

respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and

MRI images were co-registered using the open source medical imaging software, 3D Slicer. A

quantitative comparison of quality of different EIT reconstructions was achieved through

calculation of the mutual information with a lung-segmented MR image. EIT reconstructions

using a linear shape correction algorithm reduced boundary image artefacts, yielding better

contrast of the lungs, and had 10% greater mutual information compared with a standard linear

EIT reconstruction.
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1. Introduction

Electrical impedance tomography is a non-invasive technique that aims to reconstruct the

internal conductivity distribution of a given subject from electrical measurements obtained

on the periphery. Since the development of the technique in the early 1980s by Barber and

Brown (1984), there has been widespread interest in the clinical application of thoracic EIT.
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Several review articles by Muders et al (2010), Bodenstein et al (2009), Costa et al (2009a),

Adler et al (2012), Lundin and Stenqvist (2012) and Frerichs (2000) provide the reader with

the current status of clinical activity and also detail the broad spectrum of specific thoracic

EIT application areas. Applications include the assessment of pulmonary ventilation

(Frerichs (2000) and Zhao et al (2010)), lung perfusion (Frerichs et al (2009)), pulmonary

oedema (Kunst et al (1999)), emphysema (Smit et al (2003)) and lung injury (Hinz et al

(2007)). These studies demonstrate that thoracic EIT promises to become a routine bedside

monitoring tool for critically ill patients who undergo mechanical ventilation, and is already

beginning to play an important role in optimizing ventilator settings for such patients.

The majority of EIT image reconstruction systems, however, still do not exhibit a consistent

level of performance across different patients, or for the same patient at different data

acquisition times. This is clearly an essential ingredient for the technique to gain credibility

across the medical community as a bedside monitoring tool. A major contributing factor

behind poor reproducibility is a result of inadequate modelling approximations that are used

in the reconstruction algorithm. Additionally, virtually all EIT systems still deploy a single

ring of 16 electrodes placed on a transverse plane around the thorax and perform

reconstructions onto a 2D transverse slice, and operate at a modest 40 fps (a single frame

corresponds to collection of all measurements for a specific protocol.) Physically, current

can not be constrained to lie in the 2D plane, and mathematically the potential from a point

current source has different decay rates in 2D and 3D (Lionheart (1999)). Inaccurately

known boundary shape and electrode positions are also known to result in major artefacts in

image reconstruction (Adler et al (2006), Zhang and Patterson (2005), Lionheart (1998)).

Many EIT systems assume the boundary shape is circular, elliptical, or at best a generic

thorax shape, which can be a rather crude approximation to a genuine thorax cross section.

The difficulty of obtaining a sufficiently accurate approximation to the shape is amplified

for temporal reconstructions. During respiration the expansion and contraction of the rib

cage causes the displacement of thoracic tissues, the external shape and the attached

electrodes. This movement creates EIT measurements which appear spurious, with the

measured voltage signals often being dominated by movement effects and not the

underlying tissue conductivity changes. This effect can result in large boundary artefacts in

reconstructed images if such measurement data are used on a static geometrical model which

can render the overall reconstruction meaningless.

A crucial step towards EIT reproducibility is to perform a quantitative assessment of the

spatial resolution obtainable for different EIT reconstruction algorithms and to compare EIT

with complementary imaging modalities. The spatial resolution of EIT has been assessed in

several experimental and clinical studies involving spontaneous and artificial ventilation

against well established imaging techniques e.g. X-ray computed tomography (CT), positron

emission tomography and single photon emission CT (Victorino et al (2004), Costa et al

(2009b), Kunst et al (1998), Richard et al (2009), Hinz et al (2003) and Frerichs et al

(2002)). However, none of these studies have made direct comparisons, or quantitative

assessments, of the spatial accuracy of EIT with a second high resolution modality using

image co-registration and mutual information as we will present here.
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The aim of this paper is to systematically address the problems associated with image

reproducibility outlined above, by describing a methodology for 3D thoracic EIT

reconstruction. We report on a study at the University of Manchester involving 2 healthy

subjects who had MR scans in the supine position, in addition to EIT data acquired with the

Manchester fEITER system (McCann et al (2011)) in the supine and seated positions.

Potential reconstruction artefacts associated with inaccurate model dimension, boundary

shape and electrode positions are addressed by using an MR image of the subject to inform

the external shape of a 3D EIT reconstruction model of the thorax. Similarly, MRI fiducial

markers placed at the electrode positions aided electrode positioning within the model.

Small changes in the boundary and electrode positions during the breathing cycle are

addressed by calculating the sensitivity of the EIT forward model with respect to the

boundary shape, and incorporating this into a robust 3D temporal difference image

reconstruction algorithm. Qualitative comparisons are made between the spatial resolution

obtained using both the standard and boundary movement difference reconstruction

algorithms on the MRI-informed reconstruction model, via co-registration with the original

MR image. We also implement a simple and novel performance criterion which enables a

quantitative measure of EIT reconstruction quality by calculating the mutual information of

the EIT images with a lung-segmented MR image of the subject, as discussed in section 2.4.

2. Methods

2.1. EIT and MRI data acquisition

An array of 32 electrodes was arranged on the subject as two transverse planes of 16

electrodes equidistantly spaced around the chest at approximately the fourth and sixth

intercostal spaces, along with an abdominal reference electrode, as illustrated in figure 1.

EIT measurements were acquired using the EIT sub-system of the biomedical fEITER

instrument (McCann et al (2011)), which offers not only a high signal-to-noise ratio (SNR)

approaching 80 dB on bench-top phantoms, but has also been designed to meet the IEC

60601-1 patient safety requirements. In this study, a nearest-neighbour current injection

protocol was used with a total of 20 current patterns which included 8 independent

horizontal injections per transverse electrode plane. Sinusoidal current injections of 0.5 mA

amplitude at 10 kHz frequency were input and the EIT instrument recorded nearest-

neighbour voltage pairs at 100 fps. EIT data were recorded whilst the subject carried out

basic breathing procedures in 1 minute blocks. Breathing procedures involved normal and

progressively deeper tidal breathing regimes interspaced with reference conditions of

typically 5 second breath-holds at both inspiration and expiration. MRI fiducial markers

were substituted for the EIT electrodes at all electrode locations immediately after the last

EIT data collection, before carrying out an MRI scan using a T2-weighted half-Fourier

acquired single-shot turbo spin-echo (HASTE) protocol on a 1.5 T Philips Achieva scanner

(Philips Healthcare, Best, the Netherlands) under the same breathing procedures as used

during the EIT tests. The MR scans consisted of 1 cm thick contiguous axial slices, which

were cardiac gated and tuned for the conditions of normal breath-holding, at maximum

inspiration and expiration. The whole procedure was approved by the local ethics committee

and the subjects gave written, informed consent.
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2.2. Finite element modelling of the human torso

The external boundary shape of the subject was obtained from a transverse MR image slice

at the fifth intercostal spacing at a breath-hold at maximum inspiration. The contour of the

external shape was defined by 50 equispaced points and the contour of each lung by

approximately 25 equispaced points. A 3D finite element (FE) forward model extruded

along the caudal-distal axis was then generated using EIDORS 3.6 (Adler and Lionheart

(2006)§) calling the Netgen mesh generator (Schöberl (1997)). Ider et al (1990) have

previously performed a mathematical analysis of extruded models with a single transverse

plane of electrodes. The present methodology is an extension of their approach because

multiple planes of electrodes can be incorporated into the model. The method of extrusion

has been applied to swine data as described by Grychtol et al (2011). The FE forward model

consisted of 32 electrodes with typically 20000 tetrahedral elements and 5000 vertices,

modelled to a depth of 10 cm. The transverse MR image slice and surface mesh of a typical

forward model is shown in figure 2. All electrodes were modelled to a diameter of 1 cm,

which is consistent with those applied to the subject. A high mesh density was chosen in the

vicinity of each electrode where the electric field is largest. The lungs segmented from the

MR image were also included in the forward model and used as prior information in the

forward problem. A 3D FE model was generated with the same boundary shape as the

forward model, but with no electrodes and a lower mesh density, for the reconstruction

problem. A reconstruction model typically consisted of 10000 tetrahedral elements and 2500

vertices. From the forward and reconstruction models a mapping matrix was generated to

transform between the coarse and fine discretisations, as described by Adler et al (2008),

allowing one to solve the forward problem sufficiently accurately on the fine model as well

as representing the reconstructed conductivity on the coarse model.

2.3. Image reconstruction with shape corrections

As previously discussed, a major source of artefacts in thoracic EIT reconstructions is due to

an inaccurately known boundary shape. Given full knowledge of the Neumann-to-Dirichlet

(NtD) on the true domain, with conductivity assumed a-priori to be isotropic, it was shown

by Lionheart (1998) that the data measured on the true domain will only be consistent with

an isotropic conductivity in the model domain if the true domain and model domain are

related by a conformal map. Reconstruction algorithms have been proposed that rely on the

conformal structure of a deformed conductivity. It has been shown by Kolehmainen et al

(2013), that the shape and conductivity in 2D can be determined using techniques from

quasi-conformal maps and minimally anisotropic conductivities. Lastly, it has been shown

by Kolehmainen et al (2007) that the shape and conductivity of an isotropic conductivity in

3D can be determined up to a rigid motion. Specifically, when the metric corresponding to

an isotropic conductivity is pushed forward by a domain distortion it is conformally flat and

this is equivalent to the vanishing of the Cotton-York tensor. A reconstruction algorithm

including a penalty term on this tensor has been proposed.

Alternative reconstruction algorithms to estimate the shape and conductivity from

knowledge of the NtD map have recently been proposed in the literature. Firstly, a Bayesian

§The library function ng_mk_extruded_model.m
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approximation error approach has been proposed by Nissinen et al (2011) to reconstruct the

conductivity and a low rank estimate of the shape. This approach treats all sources of

modelling error such as the FE discretisation and the boundary shape, but not the unknown

conductivity, as ‘nuisance’ parameters. The modelling error covariance is estimated from an

ensemble of 150 CT images of thorax shapes and this covariance is then incorporated into a

standard regularised Gauss Newton method to reconstruct the conductivity. Secondly it has

been shown by Dardé et al (2013) that the forward operator F(h), now operating on a C1

perturbation of the boundary given by a function h, with σ fixed, is also Fréchet

differentiable at the origin. That is, given h ∈ C1(∂Ω, ℝ3), and let Dh(x) = x + h(x), x ∈ ∂Ω,

represent a perturbation of the boundary, then  and an

explicit form for the derivative operator, , is calculated. The weak formulation for the

derivative falls just short of the conventional H1 Sobolev space desired for a FE method, but

a dual formulation is derived and a sampling method proposed to estimate the derivative and

an iterative algorithm outlined to estimate the shape and conductivity distribution.

The approach outlined here is to calculate the Gâteaux derivative of the forward problem

with respect to the boundary shape at the electrodes, leaving the rest of the boundary fixed.

This method could equally be applied to other boundary locations, but since the largest

sensitivity of measured data to shape changes will be at the electrodes, we only calculate this

at the electrode positions. In effect we are assuming the shape has been sufficiently well

approximated from the MR image and are only accounting for small corrections from

electrode movement due to breathing. We denote the domain Ω ⊂ ℝ3 with boundary ∂Ω, and

the isotropic, real and positive conductivity σ : Ω → ℝ+. The boundary has L well separated

electrodes, El ⊂ ∂Ω, l = 1 : L, attached with centre of mass positions υl ∈ ℝ3. We consider a

prescribed electrode current vector, , with Σl IL = 0, with the resulting electrode

potential vector, , and internal potential u (defined up to a constant). Let

, denote the vector of contact impedances present at the electrode-domain

interfaces. A finite difference method on the FEM formulation of the forward problem is

used, and an approximate derivative with respect to electrode movement, Jm : ℝ3L → ℝm, is

calculated, which can be considered as the firrst partial derivative of the forward problem

with respect to each coordinate of each electrode (Soleimani et al (2006) and Crabb et al

(2012)). To calculate this derivative we need some modelling assumptions on the behaviour

of electrode movement. Firstly, the shape of the electrode can conceivably deform as it

moves along the boundary if flexible ‘elastic’ electrodes were used. We use an identical

perturbation for each node of a given electrode and so we are assuming the electrodes move

along the boundary rigidly without changing shape. Secondly, to calculate the normal

component of electrode movement in the finite difference approximation, a small piece of

conductivity has to be added under each electrode. We assume the conductivity is constant

in a neighbourhood of the electrode, and so the conductivity of the small additional piece of

tissue added is the same as under the unperturbed electrode. The GREIT reconstruction

algorithm (Adler et al (2009)), engineered for 2D linear reconstructions, includes a variation

on the algorithm discussed in this section to compensate for electrode movement. The array
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of 32 electrodes, and flexible current injection capability of the fEITER system, allow us to

explore the effectiveness of 2.5D reconstructions.

Denote the forward operator Fσ,υ : ℝL → ℝL/ℝ, mapping a given current pattern applied to

the electrodes to the measured voltages on the electrodes. The vector of measured voltages

over all current patterns can then be written as V = ZI Fσ,υI, where Z ∈ ℝm×L is a linear

measurement operator mapping the boundary voltages over all current patterns, I ∈ ℝL, to

the specific measurement protocol. The forward problem is modelled through the complete

electrode model (CEM), considered the most physically accurate forward model for EIT

(Somersalo et al (1992)). We discretise the domain into N elements and V nodes and choose

a piecewise constant and piecewise linear basis to represent the conductivity and interior

potential respectively. The conventional EIT reconstruction problem is to determine σ stably

from knowledge of V. It is well known that the forward problem in EIT is Fréchet

differentiable with respect to L∞ conductivity perturbations (Kaipio et al (2000)). If there

are a total of m measurements over all input current stimulations, and using a piecewise

constant representation of the conductivity, the Fréchet derivative simplifies to a Jacobian

matrix Jc : ℝN → ℝm, readily calculated via a piecewise linear FEM (see Polydorides (2002)

for details.) The forward problem can now be linearised through a Taylor series expansion

as

(1)

where ∥(σ, υ)∥ := ∥σ∥∞ + ∥υ∥∞. The estimation of conductivity and electrode positions x :=

(σ, υ) from the data is approached from a probabilistic viewpoint. The voltages are assumed

to be related by V = ZI F (σ, υ) I + n, where n ∈ ℝm represents the measurement channel

noise. We assume mean zero Gaussian noise with covariance matrix Γe ∈ ℝm×m and a

Gaussian smoothness prior on the conductivity and electrode positions, with covariance

matrix Γσ, υ ∈ ℝ3L+N×3L+N and mean xr := (σr, υr). The measurement noise is also assumed

to be independent and identically distributed (i.i.d) and the conductivity and electrode

position changes are assumed to be independent from one another and separately i.i.d. These

assumptions imply that  and  is a diagonal matrix with entries

 if i ≤ N and  if N < i ≤ N + 3L. Physically α and β can be

interpreted as the ratios of expected changes of conductivity and electrode position to the

measurement noise standard deviation.

The maximum a-posteriori (MAP) estimate of xi, at the ith temporal data frame, Vi, is

equivalent to

(2)

The minimiser of the functional is approached via a linearised Gauss-Newton method to

compute an update  at the ith measured temporal data frame. The initial guess is chosen

here as the prior distribution, xr, and we denote Vr = ZI F (xr) I and δVir = Vi − Vr. The

gradient, gri ∈ ℝN +3L, of the functional (2), at the point xr and ith temporal data frame is
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(3)

The Gauss-Newton method assumes all second order partial derivatives of forward problem

FI with respect to σ and υ can be neglected. This, and the assumption that the prior

covariance matrix is diagonal, allows us to write the Hessian matrix, Hr ∈ ℝN+3L×N+3L, of

the functional (2) at the point xr, as a 2 × 2 block matrix of the form

(4)

The first update of the Gauss-Newton scheme is then

(5)

where τ(1) is a linesearch parameter. We are only interested in the linearised difference

between two data frames Vi and Vj, and so just set τ(1) = 1. The linearised reconstruction,

δxij, between two data frames Vi and Vj is then

(6)

This solution was computed in EIDORS via the following procedure. Firstly the extruded

mesh was generated as described previously and a constant conductivity assigned to the

model. Simulated boundary voltages were acquired from this model using the same

measurement protocol as the experiment, and in order to get a consistent scaling between the

simulated and measured voltages, Vs and Vm respectively, a best fit homogeneous reference

conductivity, σr, was computed using a formula derived by Kaipio et al (2000). The prior

information of the lungs was then included by assigning the conductivity in the lung regions

as 0.3σr. Using this reference conductivity the movement Jacobian, Jm, was calculated in

EIDORS 3.6∥ along with the standard conductivity Jacobian, Jc, using the default Jacobian

function¶. Image reconstructions were performed using two linear difference imaging

methods. Firstly, using the described shape derivative method and secondly, a standard

EIDORS method using a one-step linearised Gauss-Newton technique with standard

Tikhonov regularisation. In the following section we discuss how optimal regularisation

parameters α and β have been chosen using a mutual information technique.

2.4. EIT-MR image co-registration and mutual information

In this section we describe the EIT and MR image co-registration process, and the method

used to calculate the mutual information between the EIT and MR images. The image co-

registration process and mutual information calculation provides both a qualitative and

quantitative measure of EIT reconstruction performance. Although mutual information

∥The library function jacobian_movement_perturb.m
¶The library function jacobian_adjoint.m
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techniques have been used in previous multimodal imaging studies (see Pluim et al (2003)

for a review) such techniques have yet to be applied in the area of lung imaging using EIT.

The Manchester Confeitir software (McCormick et al (2007)) was used to convert the

reconstructed EIT data from the irregular tetrahedral mesh into a matrix with 2 mm-cubic

isotropic voxels each representing a conductivity change and the coordinates of each voxel

were then transformed so that they were in the same space as the MRI data. The software

efficiently identifies the tetrahedron whose centroid is closest to the centre of any given

voxel. Additionally, the application of a small threshold to the EIT data aided improved

clarity of the subsequent visualisations. This typically involved discarding 5% of extreme

points from the visualisation. The EIT images were transformed to the Nifti data format for

subsequent importing into 3D Slicer (Pieper et al (2004)). The MRI data were imported into

3D Slicer separately and co-registered using methods validated with bench-top phantoms by

Davidson et al (2012). This involved marking up a set of control points around the outside

of the torso on both the EIT and MRI data using the fiducial registration module of 3D

Slicer, followed by least squared minimisation of the distance between the two sets of data

in space.

We denote two images A and B, each with N cubic voxels, and each voxel having a positive

grayscale value. The probability distribution of A, pA(a), is defined as the number of voxels

in image A that have pixel value a, normalised by N. The joint probability distribution of A

and B, denoted pA,B(a, b), is then calculated as the number of times out of N that pixel in A

contains a and the same pixel in B contains b normalised by N. The Shannon entropy, in the

imaging context, is a measure of the information content of an image, measured in bits. The

information content of a single event, that is a particular grayscale value of an image, is

proportional to the log of the inverse of the probability of an event. The total information

content of an image, or entropy, is the information content of a single event, weighted by the

probability that the event occurs, summed over all events. The total entropy of A, and the

joint entropy of A and B, are thus expressed as

(7)

respectively. The mutual information of A and B, IA,B, is defined as the total entropy of A

and B minus the joint entropy, IA,B = HA + HB − HA,B, which equates to

(8)

It can be shown that 0 ≤ HA ≤ log(N), where HA = 0 when the image conveys no information

i.e. it is featureless or homogeneous, and HA = log(N) for white noise. It is also true that 0 ≤

IA,B ≤ HA, where IA,B = 0 when A and B have no features in common and IA,B = HA = HB =

HA,B when A and B are the same. Thus, the larger the mutual information between two

images, the more similarities the two images share.
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To calculate the mutual information, a threshold is first applied to the MR image to generate

a binary image representing just lungs and chest, similar to the segmentation show in figure

2a. The intensity values of the cubic voxel based EIT image are then scaled linearly so they

lie within the same range as the binary MR image. Both images have a finite number of

voxels, and the probabilities in (7) are interpreted as histograms with 256 equispaced bins. If

a bin is empty, 0 × log(0) is interpreted as 0. The MR and EIT images are both sampled at

their voxel centres to estimate HA, HB and HA,B, and hence IA,B via (8). This calculation is

therefore solely measuring how well a linearised EIT reconstruction is able to find the

overall shape of the lungs. We perform the mutual information calculation over a range of

regularisation parameters, (α,β), for both a standard (β = 0) and shape corrected

reconstruction algorithm. This effectively results in a numerical parameter study to

maximise the mutual information between MRI and EIT as a function of the parameters α

and β.

3. Results and Discussion

3.1. Typical raw EIT measurements

Figure 3a shows typical voltage measurement data for two measurement sites, where i-j-k-l

means current injection between electrodes i and j, and voltage measurement between

electrodes k and l; site 13-14-15-16 refers to voltages at an anterior right hand side (RHS)

location at the fourth intercostal space, whilst site 23-24-25-26 refers to a posterior left hand

side (LHS) location at the sixth intercostal space. The effect of a brief breath-hold at

approximately t = 20s can be clearly seen along with periodic changes consistent with the

breathing rate of the subject. Additionally, the significant differences in the phase of the

voltage changes for the two different sites suggests spatial differences of the underlying

conductivity distribution within the lungs. Figure 3b illustrates raw measurement data from a

fourth intercostal LHS posterior site (7-8-9-10) over a 10 s period with data points marked

every 10 ms. The observations illustrate the excellent low noise characteristics (< 6 μV rms

in recorded human lung data) of the raw human EIT data from the fEITER system at 100

fps. (Note that, despite its visual prominence, the approximate 1.5 μV rms quantisation noise

level evident in figure 3b contributes less than 10% of the total noise power.)

3.2. Comparison of standard and shape correction algorithms

Figures 4 and 5 are typical of the 3D EIT image reconstructions acquired at 100 fps using

the fEITER system. All images displayed in this paper are difference images relative to a

maximum exhalation data frame, and blue and red indicate negative and positive

conductivity changes respectively. Figures 4a and 4b illustrate difference images for a

subject sitting upright at maximum (max) inhalation with the standard and shape correction

reconstruction algorithms respectively. It can be clearly seen that the shape correction

algorithm yields fewer boundary artefacts and sharper contrast between the lungs and

background compared with the standard algorithm. These effects are also clearly visible in

the 2D slices from the 3D image reconstructions for a second data set shown in figure 5.

Figures 5a and 5b correspond to the standard method, α = 10−2, and the bottom figures 5c

and 5d correspond to the perturbed method, (α, β) = (10−2, 4×10−2). Compensating for

movement results in largely lateral changes in the electrode positions as well as a large
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reduction in boundary artefacts. This is promising as we do not expect any physiological

mechanisms to produce large conductivities changes near the boundary.

3.3. EIT-MR image co-registration and mutual information

Figure 6 shows an image co-registration example of MRI and EIT using 3D Slicer, for the

subject in the sitting position at maximum inhalation. The left and right column are superior

and inferior transverse planes respectively. The top row is the original MR image, the

middle row the EIT reconstruction and the bottom row is the resultant image co-registration.

From the images, it can be seen that the EIT reconstruction typically underestimates the

physiological size of the actual cross-sectional areas of the lung. Inspection of the complete

3D data along the caudal-distal axis showed this to be true for the entire scanned lung

volume.

Another observation to note is that the conductivity distribution exhibits a significant

twisting effect in the superior transverse slice consistent with the 2D linear image

reconstructions obtained by Bikker et al (2011) using the Dräger system. This is likely to be

an artefact resulting from the inadequacies of the simple 2.5D extruded model used in the

reconstruction. These inadequacies include the lack of inclusion of the heart in the model

and possibly the model cut-off height along the caudal-distal axis being too small.

Figure 7 shows EIT and MRI co-registration examples for the subject in the seated and

supine positions for the two reconstruction algorithms. The images clearly show that the

shape correction algorithm decreases the boundary artefacts, and the EIT reconstructions

again are typically found to underestimate the total lung volume. The shape correction

algorithm also has an increased tolerance to positional changes of the subject in the supine

position. Additionally, moving towards the superior position, the reconstructed lung regions

tend to decrease in contrast to that of inferior slices, and we believe this could be due to the

natural tapering of the lungs as we move in a superior direction. Three-dimensional ‘image

fusion’ video clips created in 3D Slicer show that the shape correction algorithm provides a

more physiologically meaningful reconstruction compared with the standard algorithm for

all the data along the caudal-distal axis.

Figure 8 shows the mutual information with a lung-segmented MR image as a function of

the parameter α, for the shape corrected and standard reconstruction in both the sitting and

supine positions at maximum inspiration. For comparison, the maximum possible mutual

information, that is the mutual information of the lung-segmented MR image with itself, was

1.51 bits. From figure 8 it can be seen for the subject in the sitting position, there is a

maximum of mutual information at approximately 1.11 bits for the standard reconstruction

algorithm, with α = 3 × 10−2, and 1.21 bits for the shape corrected reconstruction, with (α,

β) = (10−2, 4 × 10−2). In the supine position, there is a maximum of mutual information of

approximately 1.09 bits for the standard reconstruction algorithm, with α = 3 × 10−2, and

1.20 bits for the shape corrected reconstruction algorithm, with (α, β) = (2 × 10−2, 4 × 10−2).

This corresponds to an approximate 10% increase in the maximal mutual information with

the shape correction algorithm. It can also be seen at this particular value of β that the shape

corrected reconstruction generally has increased mutual information with the standard

reconstruction over a wide range of α. The increase in mutual information from a standard
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to shape correction reconstruction is also visually evident in the images of figures 4 and 5

(which are reconstructions at (α, β) corresponding to the maximum mutual information),

when compared to figure 2a.

4. Conclusions and future work

This paper demonstrates results of 3D EIT dynamic lung imaging at Manchester using an

array of 32 electrodes with the fEITER system. The implemented shape correction algorithm

explicitly accounts for small changes in the boundary shape which occur when the subject

breathes. This novel algorithm yields a reduction of boundary artefacts and improved

contrast of the lungs when compared to a standard reconstruction algorithm without shape

correction. The co-registration process and the use of a mutual information performance

criterion presented here provides an effective and practical method of directly comparing the

spatial fidelity of EIT images with those obtained from MRI. The shape correction algorithm

increased the maximum mutual information with a lung-segmented MR image by

approximately 10% for both a subject in the sitting and supine positions and we believe this

is the first time mutual information has been used to assess the quality of lung EIT

reconstructions. Our findings suggest that shape correction would be a valuable

enhancement to the reconstruction algorithms used in existing commercial EIT instruments

applied to lung imaging, such as the PulmoVista® 500 system, developed by Dräger

(Teschner and Imhoff).

Previous multiple electrode plane studies, such as those by Nebuya et al (2006) and Bikker

et al (2011), have typically only used successive EIT data collection at different electrode

planes of the chest, resulting in 2D reconstructions of each plane, at low frame rates. One

notable exception to this trend is the tomography systems of the Rensselaer group (Cook et

al (1994) and Saulnier et al (2007)) which have previously provided 3D lung and pulmonary

images, albeit using only generic reconstruction models. Although the MRI-informed 3D

reconstruction and high frame rate of our present study address these issues, the use of non-

simultaneous data acquisition across the imaging modalities remains a shortcoming as it

requires the subject to achieve repeatable breathing and posture for the separate data

captures. For better model generation and validation of EIT using MRI, it is thus most

attractive to perform simultaneous data acquisition. If EIT were to be routinely used as a

bedside monitoring tool, optical tracking techniques could plausibly be used to inform

electrode positions and an approximate boundary shape such as those by Forsyth et al

(2011) in breast imaging. However, the strength of using MRI to inform the shape is that we

can also assess the spatial resolution of EIT after post processing using, for example, mutual

information as presented here. Additionally, we note that many patients with serious lung

injuries in intensive care units have had MR and/or CT scans during their course of

treatment, and so if this information is available it is logical to use this as prior information

of the external shapes for the EIT forward and reconstruction finite element models as we

have described here.

The present methodology could benefit significantly from improvements in the generation of

the thorax model. Firstly, it was found that the resulting image reconstructions were

sensitive to the somewhat arbitrary caudal and distal cut-off heights chosen for the model. If
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the model cut-off height chosen is too small, a non-physical zero current flux boundary

condition is set at the caudal and distal ends of the model and the simulated voltages have

logarithmic decays associated with a 2D model. We believe this is a major contribution to

the twisting effects seen in some image reconstructions, as noted in section 3.3. Choosing a

larger cut-off height resulted in little qualitative change in the reconstruction in the electrode

planes, and unrealistic conductivity changes far away from the electrode planes. A possible

way to compensate for this is to use infinite elements to model the voltage decay at the

caudal and distal ends of the model such as by Vauhkonen et al (2000). Secondly, the image

reconstructions presented here are 2.5D, in the sense that the model cross section did not

vary along the caudal-distal axis. This could be addressed by generating fully 3D models

incorporating the electrodes, from either commercial meshing packages such as Simpleware

(2013) or open source projects such as iso2mesh (Fang and Boas (2009)). Although

demonstrated here for the MRI case, the use of imaging-informed EIT modelling and

subsequent co-registration are directly transferable to other high resolution tomographic

modalities, most notably CT.

The problems of model dimension and shape described here need to be resolved adequately

before repeatable absolute imaging becomes a realistic possibility in thoracic EIT. With the

introduction of fully 3D thorax models, we can envisage incorporating more spatial prior

information of human tissue and anatomy, such as the liver, heart, ribs and spine into

patient-specific thorax reconstruction models, as well as their in-vivo conductivity values

(Faes et al (1999)). This would be a further development of the finite difference models

developed by Zhang et al (2005). However, these high resolution modelling approaches

have not yet had a significant impact in clinical lung EIT. Fully 3D thorax models with

anatomy such as the heart included would not only improve the forward problem in lung

EIT, but also be important to further improve the image co-registration and mutual

information techniques outlined in this work. An assessment of the best prior smoothness

constraints on the conductivity, and the voltage data, to offset the ill-posedness of EIT

reconstruction, is another topic of paramount importance for absolute lung imaging. The use

of classical Tikhonov regularisation presented here, which in the Bayesian viewpoint

assumes conductivity changes for all pixels are independent and identically distributed, is

somewhat unrealistic and we feel this could be significantly improved by using generalised

Tikhonov regularisation and non-smooth penalisation norms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Electrode arrays; (a) electrodes attached during EIT data acquisition and (b) MRI fiducial

markers to inform electrode positions.

Crabb et al. Page 16

Physiol Meas. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
FE model generation; (a) segmented MR slice with thorax and lung shapes highlighted and

(b) extruded ‘2.5D’ FE model generated in EIDORS.
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Figure 3.
Voltage measurement sites for a seated subject; (a) two diametrically opposed sites with

large breathing signal and (b) higher temporal resolution of large breathing signal.
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Figure 4.
Reconstructions in 3D rendered in MayaVi software (Ramachandran (2001)); (a) and (b) are

conductivity changes at max inhalation for a standard and shape corrected reconstruction

respectively. The front of the chest is in the background, and transverse and coronal scalar-

cut planes are shown within the 3D volume.
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Figure 5.
Image reconstructions viewed down the caudal-distal axis. Left and right: Mid inhalation (t

= 1.50s) and max inhalation (t = 3.00s). Top and bottom: Standard algorithm and shape

correction algorithm.
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Figure 6.
MRI and EIT image co-registration. Left to right columns: Superior and inferior transverse

planes. Top to bottom rows: MRI image, EIT image and co-registered EIT and MRI images

at the transverse slice.
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Figure 7.
MRI and EIT image co-registration. Left to right columns: Sitting standard reconstruction,

sitting shape correction reconstruction, supine standard reconstruction and supine shape

correction reconstruction. Top to bottom rows: Transverse slices from superior to inferior.
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Figure 8.
Mutual information parameter study as a function of α; (a) and (b) are for the subject in the

sitting and supine position respectively with a shape corrected (β = 4 × 10−2) and standard (β

= 0) reconstruction.
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