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Summary

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD), are genetically linked to

host pathways that implicate an underlying role for aberrant immune responses to intestinal

microbiota. However, patterns of gut microbiome dysbiosis in IBD patients are inconsistent

among published studies. Using samples from multiple gastrointestinal locations collected prior to

treatment in new-onset cases, we studied the microbiome in the largest pediatric CD cohort to

date. An axis defined by an increased abundance in bacteria which include Enterobacteriaceae,

Pasteurellacaea, Veillonellaceae, and Fusobacteriaceae, and decreased abundance in

Erysipelotrichales, Bacteroidales, and Clostridiales, correlates strongly with disease status.

Microbiome comparison between CD patients with and without antibiotic exposure indicates that

antibiotic use amplifies the microbial dysbiosis associated with CD. Comparing the microbial

signatures between the ileum, rectum, and fecal samples indicates that at this early stage of

disease, assessing the rectal mucosa-associated microbiome offers unique potential for convenient

and early diagnosis of CD.

Introduction

Inflammatory bowel disease (IBD) is a complex disease in which genetic and environmental

circuits establish and contribute to disease pathogenesis. Recent large-scale genome-wide

association studies link IBD to host-microbe pathways central to sensing/signaling and

mucosa-initiated effector responses (Jostins et al., 2012). Studies of the intestinal gut

microbiota imply that an unbalanced microbial community composition is associated with a

dysregulated immune response (Khor et al., 2011). The microbiome thus likely plays a role

in the pathogenesis of IBD (Manichanh et al., 2012), but this role remains poorly

understood. Previous studies characterized patients with established disease, but the use of

small cohorts resulted in a lack of statistical power to accommodate diverse clinical

covariates (Papa et al., 2012), and results of these studies were likely affected by the

application of treatments (Morgan et al., 2012). The existing new-onset studies that examine

the fecal microbiome (Kaakoush et al., 2012) detected a disease signal; however, because

fecal bacterial ecosystems differ from those in the intestinal mucosa (Momozawa et al.,
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2011), studies of strictly fecal communities may face limitations in identifying microbes

more directly involved in disease initiation or progression.

To improve our understanding of how the microbiota contributes to the inflammatory

cascade of Crohn’s disease (CD) pathogenesis, we performed a study that addresses several

important limitations of previous work. We applied a standardized approach to a large,

multicenter cohort of new-onset CD, collecting samples before treatment initiation, and

including subjects representing the variety of disease phenotypes with respect to location,

severity, and behavior. Here we report on 668 patients that include those with CD and non-

IBD controls (Table S1A), representing the largest single cohort microbiome study related to

new-onset IBD to date as well as representing the largest characterization of mucosal-

associated microbiota in non-IBD subjects. We used a combination of next-generation

sequencing to deeply characterize the disease-associated microbiota, and a well-established

multivariate analysis method to account for a wide range of demographic and clinical

covariates (e.g., age, gender, race, disease severity, behavior, and location) (Morgan et al.,

2012). The strength of this study lies in the sampling prior to treatment, the size of the

cohort, and the concurrent sampling of different sites, including multiple mucosal tissue

sites, and the luminal content as stool samples. Finally, we combined two additional cohorts

with the RISK cohort, resulting in a total of 1,742 samples from pediatric or adult patients,

with either new-onset or established disease, for which tissue biopsies and/or fecal samples

were processed through a uniform sequencing and analysis approach. This multi-cohort

study allows us to position the unique RISK cohort in the context of a comprehensively

defined diversity landscape of IBD, and to identify robust and generally applicable

biomarkers.

Results

A unique treatment-naïve inception cohort for pediatric CD

We studied the mucosal- and lumen-associated microbiota in a large, well-characterized

inception cohort for CD in children. We included subjects from 3 to 17 years of age with a

well-established diagnosis of CD (n = 447), and control subjects (n = 221) with non-

inflammatory conditions, for example presenting with abdominal pain and diarrhea (Table

S1A). Mucosal tissue biopsies (terminal ileum and rectum) and serum samples were

collected as part of the diagnostic colonoscopic examination prior to the initiation of

treatment. A subset of the enrolled patients (n = 233) also provided a fecal sample prior to

treatment start. The diagnosis and disease categorization was confirmed after a minimum of

six months follow-up, and was based on a combination of endoscopic, histological, and

radiological investigations. A total of 1,321 samples, including 630 ileal and 387 rectal

tissue biopsies and 304 stool samples, were submitted for microbiome profiling using 16S

rRNA gene sequencing on the Illumina MiSeq platform (version 2) with 175 bp paired-end

reads. After quality filtering and assembling overlapping paired-end reads, more than 45.5

million sequences were retained (mean of 29,915 sequences per sample), providing the most

in-depth characterization of treatment-naïve CD associated communities to date.
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The key players of the microbial dysbiosis in new-onset pediatric CD

An unweighted UniFrac-based comparison of the mucosal-associated microbiota from

patients with new-onset CD and controls indicated that the overall diversity in microbial

composition was mainly differentiated by sample type and microbial diversity, but disease

phenotype was not strong enough to differentiate patients (Figure 1A). Instead, complex

microbial communities from samples with multiple clinical covariates are best explored by

multivariate association tests at the level of specific microbial community members. We

identified microbial organisms that reached statistically significant association with subjects’

disease phenotype using the MaAsLin pipeline, which identifies significant associations of

the microbiota with multiple, potentially confounded sample variables (see Experimental

Procedures). This has the benefit of testing for disease characteristics, while controlling for

several known or potential confounding variables, such as past antibiotic use, age, gender,

and race. Correction for other factors that typically have a significant impact on the

microbial composition, including treatment and disease duration, was not necessary because

all samples were collected prior to treatment and at standard intestinal sites regardless of the

segments involved in the disease.

Biomarker detection analysis of mucosal-associated microbiome showed that inflammatory

conditions were most strongly associated with an overall drop in species richness and an

alteration in the abundance of several taxa (Figure 1B, Table S2A). Several of these taxa

have been reported in previous studies (Papa et al., 2012; Morgan et al., 2012), including

Enterobacteriaceae, Bacteroidales, and Clostridiales. However, we were able to identify

additional taxa as significant biomarkers for disease. Most noticeably, we detected positive

correlations between CD and abundances of Pasteurellaceae (Haemophilus sp.),

Veillonellaceae, Neisseriaceae, and Fusobacteriaceae. Fusobacterium has previously been

suggested as a biomarker for IBD (Strauss et al., 2011), and was also recently shown to

promote a beneficial microenvironment for the progression of colorectal carcinoma (Kostic

et al., 2012), a long-term complication of IBD. Subsampling the dataset to either smaller

sample sizes or lower sequencing depths indicated that sample size contributes more

substantially to the increased statistical power, highlighting the importance of sampling a

large cohort. Lowering the number of sequences to 300 reads/sample (~1% of the data) did

not affect our ability to detect these taxa (results not shown), but reducing to half of the

samples or lower did begin to affect the recovery of some taxa (Figure S1A). Interestingly,

few of these taxa were present at a higher abundance in patients under the age of 10, and

were thus negatively correlated with age, including Pasteurellaceae and Neisseriaceae (Table

S2A, Figure S1B).

An increased level of Bacteroides and Clostridiales was maintained in non-CD patients

relative to those with CD (Table S2A). Specific negative associations with CD were

detected for several genera, including Bacteroides, Faecalibacterium, Roseburia, Blautia,

Ruminococcus, Coprococcus, and a number of taxa within the families of Ruminococcaceae

and Lachnospiraceae. A well-described anti-inflammatory organism that is considered to be

a sensor and marker of health is Faecalibacterium prausnitzii (Sokol et al., 2008). Reduced

ileal abundance of F. prausnitzii has been associated with a higher rate of endoscopic

recurrence of inflammation six months after ileo-cecal resection.
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New-onset mucosal-associated dysbiosis is only weakly reflected in stool

The imbalance in the microbial community network was only observed in the microbiome

profiles obtained from tissue samples, and was not seen in the stool samples collected at the

time of the diagnosis (Figure 1B). This was confirmed by performing separate biomarker

detection on the stool samples of CD patients and controls with non-inflammatory

conditions, resulting in only a short list of taxa significantly associated with disease. This

included a gain in Streptococcus and a loss in a few taxa belonging to the order of

Clostridiales, including Dorea, Blautia, and Ruminococcus (Table S2B). With a mean

abundance far below 0.1%, all of these taxa were minimally contributing to the overall shift.

Consequently, we further investigated the precise differences between the mucosal tissue

and stool samples within patients with new-onset CD (Figure S1C, Table S2C). Of the four

above-mentioned taxonomic groups that were decreased in CD, all except Bacteroidales

were found to be significantly increased in stool samples, along with Lactobacillus,

Enterococcus, and Streptococcus. In addition, the levels of Fusobacteriaceae and

Neisseriaceae were reduced, but no significant differences were noted for any of the other

organisms typically associated with inflammatory conditions. Based on these observations,

we can infer that the microbial balance is less shifted towards a dysbiotic state in the lumen

despite the disease, explaining the lack of a biomarker signal and emphasizing the need to

examine tissue biopsies in addition to stool samples in order to gain a better understanding

of possible mechanisms.

Antibiotic exposure amplifies the microbial dysbiosis

Antibiotic usage has previously been linked to substantial taxonomic changes in the

gastrointestinal microbial composition (Dethlefsen et al., 2008; Antonopoulos et al., 2009;

Manichanh et al., 2010). Here, a small subset of the CD patients (n = 57 / 447, 13%) was on

antibiotics during sample collection, allowing a comparison between the microbiome in CD

patients with and without antibiotic exposure. Although a weak effect on disease severity

(PCDAI) and overall species diversity between the patient groups with and without

antibiotics was found (p = 0.043 and 0.02, respectively; Student’s t-test), we observed a

strong effect on the microbial composition, and exposure to antibiotics generally amplified

the dysbiosis. A more extreme impact was seen on the abundance levels of the phyla

increased in non-inflammatory conditions, including Bacteroides, Clostridiales, and

Erysipelotrichaceae, which was most pronounced in rectal biopsy and stool samples, with a

differential effect depending on taxa and sample type, e.g., a ten-fold increase in

Fusobacteriaceae in the ileum and Enterobacteriaceae in the rectum (Figure 1B). The

Pasteurellaceae were suppressed in the ileum, whereas the Veillonellaceae were decreased in

the rectum and stool. We note that excluding samples from subjects with antibiotics

exposure during sampling does not change the key players of the dysbiotic state outlined

above (Table S2A’). These results do not provide any causative explanation, but are relevant

in the context of previously described associations between higher antibiotic exposure and

the diagnosis of CD (Hviid et al., 2011). We hypothesize that the use of antibiotics has the

potential to impact the overall community structure and increase the potential for exposure

to dysbiosis.
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The functional dysbiosis at the mucosal tissue sites reflects that of established disease

Shotgun-sequencing for metagenomics would provide the greatest precision of microbial

community assays and direct evidence of microbial function. However, nucleotide extracts

of mucosal tissue samples consist of extremely high fractions (>99%) of host-derived

nucleotides. In the absence of methods to efficiently dissociate the microbial from the host

fraction, no cost-effective shotgun sequencing of the microbial communities can be

performed. Therefore, we predicted the functional composition of these mucosal-associated

microbiota using PICRUSt (Langille et al., 2013) (Table S2D). This algorithm estimates the

functional potential of microbial communities given a marker gene survey and the set of

currently sequenced reference genomes with an accuracy of 80-90% on human gut

communities. The functional changes in the samples of new-onset CD patients included a

loss in basic biosynthesis (related to reductions in Bacteroides and Clostridia) and a switch

towards pathobiont-like auxotrophy (increase in aerobic or aerotolerant taxa, i.e.,

Proteobacteria and Pasteurellaceae). Further, biomethanation was replaced by acetogenesis

in order to reduce accumulated hydrogen. An increased disease severity amplified the

disease signal of oxidative stress and auxotrophy further. Interestingly, components of the

benzoate metabolic pathway were associated with disease (Aminobenzoate degradation) and

disease severity (Fluorobenzoate degradation). Intermediaries of benzoate metabolism are

known to influence microbial dysbiosis as a stress response (Eloe-Fadrosh and Rasko, 2013)

and have the ability to promote Enterobacteriacea growth and virulence (Freestone et al.,

2007). Antibiotic exposure had several overlapping effects on the functional composition of

the gut microbiota and took up one third of all significant associations, including a unique

series of pathways related to xenobiotic metabolism (degradation of aminobenzoate, styrene,

chloroalkene, toluene, benzoate, etc.).

Describing disease status with the Microbial Dysbiosis index

We inferred a taxon-taxon interaction network for the ileal samples (see Experimental

Procedures) and found novel relationships among disease-associated organisms mentioned

above (Figure 2A, Table S2E). Out of all significant interactions found, 52% supported a

cooccurrence within the two groups of taxa that behave similarly with respect to disease,

i.e., increase or decrease in CD respectively, and 30% supported a strong co-exclusion

between these two groups. Importantly, the taxa within the families Enterobacteriaceae,

Fusobacteriaceae, Pasteurellaceae, and Veillonellaceae were often found together, as well as

different taxa within the Clostridia or Clostridia and Bacteroidetes teaming up with one

another. These observations led us to calculate the log of [total abundance in organisms

increased in CD] over [total abundance of organisms decreased in CD] for all samples,

hereafter referred to as the Microbial Dysbiosis index (MD-index). This MD-index, derived

on disease phenotype, showed a strong positive correlation with clinical disease severity

(PCDAI) (Figure 2B) and negative correlation with species richness (Figure 2C),

demonstrating that a severe disease state manifests a strongly reduced species diversity in

favor of a more extreme dysbiosis. Further, this index was a straightforward feature

capturing the overall beta-diversity, resulting in a clear gradient by which samples group

across all sample types (Figure 2D). This gradient reflects shifts in both groups of

organisms, those increased and decreased with disease (Figure S2B). Lastly, the MD-index
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was also significantly higher in those patients positive for two or more microbial or cytokine

serological markers (p < 0.0001, Student’s t-test). Since serologic markers are increasingly

being used to help differentiate IBD disease phenotypes, such an association might indicate

a potential link between the gut microbial biomarkers and the presence of these serologic

biomarkers. However, with the data collected for this cohort, no specific correlations were

found.

CD is characterized by inflammation spanning multiple tissue layers, with deep ulcer

formation linked with worse long-term disease outcomes. The RISK cohort measured deep

ulceration during the diagnostic colonoscopy, presenting us with the opportunity to examine

a link between the gut microbiota and mucosal ulceration. The recorded prevalence of any

deep ulcers (ileum or colon) with CD patients amounted to 42% (Table S1A). In those

patients, we observed increased levels of Pasteurellacaea and Veillonellaceae (p < 0.01,

FDR corrected p < 0.15) and Rothia mucilaginosa (p = 0.0004, FDR corrected p = 0.02). In

addition, an association between the KEGG pathway for pathogenic Escherichia coli

infection was positively associated with ulcer formation (Table S2D). Further experimental

study will be needed to determine whether any of these organisms are causally involved in

ulceration in IBD patients, or merely adapted to live in this affected environment.

Shotgun metagenome-based identification of microbial biomarkers

Most published studies of the microbiome in IBD so far have used a 16S rRNA gene-based

approach, and are thereby limited in characterizing the microbiota to a resolution at the

family/genus level. To study the microbiota at a higher resolution, a subset of 43 stool

samples (10 controls and 33 subjects) were shotgun-sequenced for metagenomics using the

Illumina HiSeq2000 platform (mean 13.3 gigabases (Gb) and s.d. 2.5 Gb per sample, paired-

end reads, fragment insert size 180b). Metagenomic data were filtered for human and low-

quality reads, and further analyzed as described in Experimental Procedures. As indicated

above, the stool samples of patients do not reflect the dysbiosis in a similar way as the

mucosal tissue samples, a finding that we confirmed at both the taxonomic and functional

levels with these data (results not shown). Nevertheless, mucosal-associated organisms were

not restricted to any particular intestinal location, and were readily observed in all sample

types, although at lower abundances. Therefore, by adding metagenomics data on the subset

of stool samples, we were able to profile the composition of microbial communities at a

finer taxonomic resolution (Table S2F). The dominant species increased in CD were

Escherichia coli, Fusobacterium nucleatum, Haemophilus parainfluenzae (Pasteurellaceae),

Veillonella parvula, Eikenella corrodens (Neisseriaceae), and Gemella moribillum. The

dominant species decreased in CD were Bacteroides vulgatus, Bacteroides caccae,

Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium adolescentis,

Bifidobacterium dentum, Blautia hansenii, Ruminococcus gnavus, Clostridium nexile,

Faecalibacterium prausnitzii, Ruminoccus torques, Clostridium bolteae, Eubacterium

rectale, Roseburia intestinalis, and Coprococcus comes.

This detailed information and availability of genomic data will be useful in further

functional characterization of these organisms and their roles in disease pathogenesis. In a

first exploration, we performed a comparison between representative reference genomes for
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each of these species, generating a view of the differential KEGG pathways (Figure 3). The

species increased in CD uniquely contributed pathway components of glycerophospholipid

and lipopolysaccharide metabolism, found to instigate inflammation (Morita et al., 1999),

and phosphonoacetate hydrolase, providing access to a novel carbon and phosphate source

not accessible to most other organisms (Kim et al., 2011). Interestingly, the latter is a zinc-

dependent enzyme that might contribute to a mineral deficiency common in newly

diagnosed IBD patients. The pathway components unique to the species decreased in CD

contribute to the bile acid and amino acid biosynthesis pathways, including connections

between amino acid metabolism and energy, carbohydrate, or nucleotide metabolism.

Collectively, these provide access to complex carbohydrates, and the break at the alpha-

ketoglutarate step of the TCA cycle is indicative of a true anaerobic lifestyle, as indicated

previously (Morgan et al., 2012).

Biopsy-associated microbiome can diagnose CD

Several recent studies have explored the potential for identifying disease states based on the

host-associated microbial composition, including skin swabs for psoriasis (Statnikov et al.,

2013), and fecal samples for obesity (Le Chatelier et al., 2013), autism (Hsiao et al., 2013),

or IBD (Papa et al., 2012). Here, we evaluated how the microbiome composition in three

different sample types performed for classifying subjects by CD state using a receiver

operating characteristic (ROC) analysis. We included a total of 425 tissue biopsies of the

ileum, 300 of the rectum, and 199 stool samples in three independent analyses (Figure 4A-

C). Microbiome profiles were collapsed to the genus-level abundances and normalized (see

Experimental Procedures). The best performance was obtained by the ileal samples (AUC =

0.85), which was closely followed by the rectal biopsies (AUC = 0.78), both with a narrow

confidence interval. The stool samples, however, performed less well (AUC = 0.66) and had

also a low consistency (broader confidence interval). A previous study was able to get a

higher performance with stool samples for disease classification in an IBD cohort (Papa et

al., 2012), but their patient cohort distinguishes itself from RISK by the fact that subjects

had a mean disease duration of 34.8 months, and RISK cohort is entirely new-onset, with

samples only taken at the time of diagnosis. This finding is consistent with the biomarker

detection analysis that indicated that several taxonomic groups were increased or decreased

between cases and controls when comparing mucosal-associated microbiome profiles, but

not in stool samples (Figure 1). Interestingly, classification of subjects by disease state was

not affected by disease location. In this cohort, 22% had disease confined to the ileum, 25%

to the colon, and 53% had ileocolonic disease. Samples from both tissue biopsy locations

could classify subjects, even if disease was confined to the other location. In fact,

microbiome composition between the different biopsy sites was found to be far less different

than between tissue and stool, for all three disease sub-phenotypes (Figure 4D).

Further, this cohort presented the opportunity to derive a predictive model for future disease

outcome, as patients with a positive diagnosis for CD were re-examined at a 6- and 12-

month follow-up, at which point the disease activity index (PCDAI) was determined. For all

patients with such follow-up data available (n = 305), 7.5% had an increased disease

severity 6 months after diagnosis, and for 22% the severity reduced from severe (PCDAI >

30) to remission (PCDAI < 10). No tissue samples were collected at later time points, and
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thus no follow-up mucosal microbiome profiles exist. However, we could evaluate a model

for predicting whether a patient will develop an exacerbated or reduced disease severity over

the next 6 months, using the microbiome and clinical covariates collected at the time of

onset of disease. Using a random forests classifier trained on 90% of the data, we found we

were able to predict high 6-month PCDAI (≥ 10) in the remaining 10% of the data with

67.0% accuracy, a 14% improvement over the predictive accuracy of a model trained only

on clinical covariates (52.9 +/- 0.4%) (Figure S3A). Although the absolute level of accuracy

is modest, the performance gain driven by the microbiome is a direct and unbiased

demonstration of the utility of microbiome features for predicting clinical outcomes. To

determine how influential a given feature was in building the predictive model, we tested the

decrease in accuracy of the model when that feature was removed. The most influential

features for predicting future PCDAI according to this test were age of onset, PCDAI at

diagnosis, and levels of disease-associated organisms, including Enterobacteriaceae,

Fusobacterium, and Haemophilus. Age of onset and levels of Enterobacteriaceae were

negatively correlated with future PCDAI, and PCDAI at diagnosis and levels of

Fusobacterium and Haemophilus were positively correlated with future PCDAI (Figure

S3B).

Comparing pediatric CD with other adult established disease cohorts

To position the above findings in the context of other IBD microbiome studies, we

resequenced samples from a previously published study (Morgan et al., 2012) and included

samples from several other cohorts, using the same sequencing approach. Combining all of

these samples resulted in data from more than 1,500 subjects, of whom 46% had CD, 31%

had ulcerative colitis (UC), and 19% were non-IBD controls, and included both tissue

biopsies (88%) and stool samples (12%) (Table S1B). Two important differences between

the RISK cohort participants and the other cohorts were (i) the lower age range (13 yrs, s.d.

3, versus 41 yrs, s.d. 15), and (ii) the fact that RISK exclusively enrolled patients with new-

onset disease, whereas the mean disease duration at time of sampling in the other cohorts

was 7 years since diagnosis (s.d. 11, range 0 to 62). The combined dataset consisted of

nearly 60 million paired-end 16S reads, with a mean of 23,620 filtered sequences per

sample.

To our knowledge, this is the largest uniformly generated microbiome dataset for CD

specifically, but also IBD in general, revealing an extensive landscape of microbial diversity

across a wide range of subjects and disease phenotypes. We therefore took the opportunity

to examine the effect size of disease phenotype on the microbiome composition relative to

the effects introduced by cohort, age, gender, treatment, and biopsy location. We surveyed

effects on the biodiversity as a whole, and on the organisms contributing to the dysbiosis

specifically, and used a linear mixed effects model including cohort and subject as random

factors (see Experimental Procedures). The results revealed that inter-individual variation,

cohort and sample type had significant effects on the overall microbial community

composition, and that variation introduced by disease phenotype and treatment were hidden

underneath those primary factors (Table S2G). However, within specific sample types (e.g.,

terminal ileum), disease can explain up to 10% of the variation seen in subsets of key

dysbiotic taxa, in which the effects of having CD versus control do surface. The earlier
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described impact of antibiotics on the microbial community network was one of the stronger

signals across all cohorts, and found in almost all included sample types. Interestingly, the

signal was stronger in the mucosal-associated microbiome profiles than in the stool samples

(Figure S2A). In contrast, the impact of antibiotics on overall microbial diversity was

stronger in stool than in mucosal samples, again indicating that conclusions may differ based

on which sample types are studied. Taken together, this advocates for a need to standardize

sample collection, include diverse sample types to represent different gastrointestinal

compartments, and account for treatment effect in order to get the most statistical power to

study the role of the microbiome in diseases.

Lastly, we aimed to determine the effect on individual taxa using a biomarker detection

approach and compare the results across the different cohorts and disease phenotypes. Most

of the organisms that were found to be increased in CD were also found to be significantly

correlated with UC, but those taxa that were negatively associated with CD were not found

to be significant in association with UC (Table S2H). When using a weighted UniFrac

distance calculation and a PCoA visualization (Figure 5), the clustering by overall microbial

community composition was strongly affected by cohort (Figure 5B) and different disease

subgroups significantly overlapped (Figure 5A). However, the MD-index (Figure 5C) and

species richness (Figure 5D) still explained the first principal coordinate even when the

different cohorts were combined and demonstrate that the specific disease-associated taxa

were consistent.

Discussion

Our results on the microbiome at the onset of CD have identified the key constituents of the

complex gut microbial community that define a mucosal surface in homeostasis or

dysbiosis. Our work demonstrates that the creation of such a large multi-center cohort

increases the resolution and statistical power for studying the role of the microbiome in

disease. Several of the taxa we identified were only reliably associated with disease

phenotype when using several hundreds of samples. Achieving similar sample sizes by

combining independent cohorts for a cross-study comparison limits the study of parameters

with large effect size that surpass the bias introduced by differences in collection and sample

handling (Lozupone et al., 2013). Capturing microbial shifts in their full complexity,

including taxa with smaller shifts in relative abundance comparing cases versus controls,

require these large, optimal study designs.

Several of the organisms identified in this study are known to reside at the inflamed mucosa

with the potential to exacerbate inflammation and/or invade intestinal epithelial cells,

including strains of Escherichia (Rolhion and Darfeuille-Michaud, 2007) and

Fusobacterium (Strauss et al., 2011). Others, such as Haemophilus and Veillonella, have

recently been reported to contribute to oral dysbiosis in IBD patients (Said et al., 2013).

Haemophilus spp., like the Enterobacteriaceae, are well adapted to survive in oxidative

stress environments and intensify oxidative stress in airway infections (Harrison et al.,

2012). Interestingly, Veillonella spp. are closely related to the Clostridiales, who are

otherwise considered to be beneficial to the host (Furusawa et al., 2013). Prior literature,

however, indicates that Veillonella produce lipopolysaccharides (Gupta, 2011), a gene
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cluster they might have gained through horizontal gene transfer (Michael Fischbach,

personal communication). Rothia mucilaginosa, here reported at increased levels in patients

with intestinal ulcer formation, has been found to act as an opportunistic pathogen in

immunocompromised patients (Chavan et al., 2013) and has a genomic content that is well

adapted to live within the microaerophilic surface of the mucus layer in cystic fibrosis lungs

(Lim et al., 2013). Most of these organisms are relatively rare in the colon, and typically part

of the normal human oral and upper respiratory tract microbiota, but could become

opportunistic colonizers in conditions of altered mucosal changes in tissue oxygenation and

disruption of mucosal barrier function.

We observed that both the ileal and rectal biopsy have similar discriminatory power for

classifying disease, regardless of the disease location. This creates the opportunity to use a

minimally invasive sampling approach that avoids bowel preparation prior to the

colonoscopy, and to perform dense sampling of the mucosal-associated microbiome to

monitor the response to treatment and potentially predict changes in disease flares. Being

able to account more readily for the microbiota in larger cohort sizes will be of value in

defining disease sub-phenotypes and tracking treatment effects in clinical trials, something

that is currently not annotated. Understanding the microbial communities of the small

intestine remains of tremendous value. Mucosal-associated microbes are uniquely positioned

to influence the immune system (Belkaid and Naik, 2013); particularly, the porous mucus

layer in the ileum has been shown to educate the immune system to develop tolerance

towards commensals (Shan et al., 2013).

Large-scale collection of stool samples would be an even less invasive approach, but for this

cohort did not reflect the mucosal dysbiosis, in contrast to an earlier study (Papa et al.,

2012). The main difference between the two cohorts is that new-onset patients were sampled

at the time of diagnosis. The earlier study included samples of patients with established

disease (mean of 3 years at time of sampling) and a treatment history. We observed that the

microbial community associated with the inflamed epithelium had an increased level of

aerobic and facultative anaerobes (e.g., Protebacteria), whereas obligate anaerobes prevailed

in the feces (e.g., Bacteroides and Clostridiales). The microbial community in stool from

patients with established disease also consists of less anaerobes (Papa et al., 2012). This is

consistent with a recent observation that the oxygen level in the lumen increases with

intestinal inflammation to a level that gut microbiota start to shift towards an aerotolerant

composition in response to an oxidative stress (Mimouna et al., 2011). In order to validate

this observation, future work will need to consistently capture samples from patients across

a wide range of disease durations.

Another factor affecting the gut microbial composition is the use of antibiotics, as shown in

a subset of the RISK cohort patients. Previously, antibiotics have been claimed to provide

benefits for CD patients as a first-line therapy. However, we question this practice based on

our observation that the microbial network appears more dysbiotic in the context of

antibiotic exposure. Loss of protective microbes has the potential of triggering a

proliferation of less beneficial taxa (Looft and Allen, 2012), exacerbating the inflammation.

Similarly, changing dietary patterns can introduce such shifts as quickly (Wu et al., 2011),

particularly in those individuals with reduced microbial complexity (Fang and Evans, 2013).
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For example, the vitamin D pathway has importance in gut homeostasis and in signaling

between the microbiota and the host immune system, and may thus have implications for the

development, severity, and management of inflammation (Mouli and Ananthakrishnan,

2014).

The data presented here provide a unique framework for understanding the microbial

dysbiosis in new-onset CD. This will further develop principles that are likely to govern

therapeutics in IBD, but will need to be carefully thought through (Fischbach et al., 2013).

These include in particular those efforts that aim to shift the microbiome following a path

that is based on the successful principles applied to recurrent Clostridium difficile infections,

as these are unlikely to be directly applicable to the multifactorial disease pathogenesis of

IBD.

Experimental Procedures

Study population and sample collection

A total of 447 children and adolescents (< 17 years) with newly diagnosed CD and a control

population composed of 221 subjects with non-inflammatory conditions of the

gastrointestinal tract were enrolled to the RISK study in 28 participating pediatric

gastroenterology centers in North America between November 2008 and January 2012

(Table S1A). Biopsies were taken from the terminal ileum and rectum using standard

endoscopic forceps, and placed into a sterile cryovial with RNAlater (Qiagen) on ice in the

Endoscopy Suite. Nucleotides were isolated from these biopsies using the Qiagen AllPrep

Mini Kit.

16S rRNA gene sequencing

The 16S gene dataset consists of sequences targeting the V4 variable region. Detailed

protocols used for 16S amplification and sequencing are as previously described (Caporaso

et al., 2012). Sequencing was performed on the Illumina MiSeq platform according to the

manufacturer’s specifications with addition of 5% PhiX, and generating paired-end reads of

175b in length in each direction. The overlapping paired-end reads were stitched together

(approximately 97bp overlap), and further processed in a data curation pipeline implemented

in QIIME 1.7.0 as pick_closed_reference_otus.py (Caporaso et al., 2010). All 16S rRNA

sequences have been deposited at the National Center for Biotechnology Information as two

BioProjects with ID PRJNA237362 and PRJNA205152, and are also available in a variety

of tables through www.microbio.me/qiime/under Study ID 2516.

Shotgun metagenomic sequencing

Metagenomic data production and processing were performed as described previously

(HMP Consortium, 2012). In brief, library construction was performed on the Illumina

HiSeq 2000 platform, targeting 7 Gb of sequence per sample with 101bp, paired-end reads.

Species abundances were calculated with MetaPhlAn 1.7.7 (Segata et al., 2012), following

Bowtie 2-2.1.0 alignment (Langmead and Salzberg, 2012) to the MetaPhlAn 1.0 unique

marker database.
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Statistical analysis

Association testing of all covariates versus all taxa was performed by regressing the relative

abundance of each taxon on these linear clinical covariates: subject, diagnosis, ulcering, ileal

involvement, PCDAI, biopsy location, age, gender, race, antibiotic exposure, with subject as

a random variable, using the MaAsLin algorithm with default parameters (Morgan et al.,

2012).

Correlation network

We extracted the subnetworks of microbial interactions at the terminal ileum from subjects

free of any antibiotics pressure, using CCREPE (Compositionality Corrected by

REnormalization and PErmutation). This is a statistical methodology for co-variation

analysis in compositional data developed on top of previously published work (Faust et al.,

2012), using the NC-score, a similarity measure specifically designed to detect association

patterns in the human microbiome and other microbial communities (see Supplemental

Information).

ROC analysis

ROC curves were constructed to evaluate the performance of sparse logistic regression

classifier (using L1 penalization) aiming to identify the IBD status of a subject based on his

or her microbiome profile. We have checked the performance for classifier trained by

samples from three different sites (ileum, rectum, and stool). Five ROC curves were gained

per site using 5-fold cross-validation. A mean ROC curve was then given by averaging over

all 5 individual fold ROC curves and an approximated 95% pointwise confidence interval

was also constructed by using normal approximation and the sample means and variances.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Microbiomes from multiple GI locations in new-onset Crohn’s disease (CD)

cases analyzed

• Co-occurring and co-excluded CD-associated organisms identified

• Rectal mucosa-associated, but not fecal, microbiome is a robust disease

predictor

• Antibiotics amplify the dysbiosis associated with CD
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Figure 1. Most differential taxa in pediatric CD
(A) A set of principal coordinate plots of the unweighted UniFrac distance, with each

sample colored either by the disease phenotype (left), alpha diversity (middle), or sample

type (right). PC1, PC2, and PC3 represent the top three principal coordinates that captured

most of the diversity, with the fraction of diversity captured by that coordinate shown in

percent. (B) Differences in abundance are shown for the taxonomic biomarkers that were

detected using a multivariate statistical approach (see Experimental Procedures and Table

S2). The fold change for each taxon was calculated by dividing the mean abundance in the

cases by that of the controls. Several taxonomic biomarkers measured at both the ileal and

rectal sites were found to be significantly correlated with disease phenotype; however, most

of that microbial signal was lost in the stool samples. The fraction of patients that were on

antibiotics during sample collection was considered as an individual subtype, due to the

large confounding impact antibiotic exposure causes on the microbial composition (see

Table S2). The left shows cases without antibiotic treatment, and the right includes the

fraction of cases (10%) that were under antibiotic pressure at sampling. The taxa at the top

are increased in disease state, whereas the taxa at the bottom follow an opposite trend.

Apparent missing bars are cases in which there is no difference, or fold change equals 1. Use

of antibiotics does impact the microbial composition by tipping the microbial community

further towards a dysbiotic state, and has a differential impact on the taxa, depending on

organism and sampling site. Related to Figure S1, Table S1.
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Figure 2. The Microbial Dysbiosis index characterizes CD severity
(A) A correlation network was inferred for the ileal microbiota compositions using CCREPE

with a checkerboard score, indicating a strong co-occurrence between taxa of the same

disease-associated behavior and a co-exclusion between taxa of a different behavior. Nodes

represent the different taxa, and color corresponds to their behavior in disease, with green

for those decreased in CD and red for those increased in CD. Edges between nodes represent

correlations between the nodes they connect, with edge colors of dark and light grey

indicating positive and negative correlations, respectively. For clarity, only edges

corresponding to correlations whose similarity was less than 0.3 are shown. (B) Scatterplot

of the arcsine square root transformed abundances of all summed abundances for the taxa

increased (top) or decreased (bottom) in CD, versus the pediatric CD activity index (PCDAI

(Hyams et al., 1991)) as a measure for disease severity. (C) Scatter density plot of the

species richness (Chao1, (Chao et al., 2006)) versus the Microbial Dysbiosis index (MD-

index) for each sample. The increase in blue color (white to dark blue) reflects the density of

the scatter plot. The MD-index is defined as the log of [total abundance in organisms

increased in CD] over [total abundance of organisms decreased in CD] (organisms listed in

Fig 1A), and is intended as an overall summary statistic for the microbial dysbiosis

described in more detail in panel A. In samples with a high MD-index (> 1), a strong

reduction in the species richness was observed. (D) A principal coordinate plot of the

unweighted UniFrac distance, colored by the MD-index. Sqrt, square root.Related to Figure

S2, Table S2.
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Figure 3. Comparative genomics of CD biomarkers
The KEGG metabolic pathways that differentiate the species by behavior in disease state are

shown as a heatmap. A selection of reference genomes that are representative for the species

increased or decreased with disease were obtained from IMG (JGI), and biomarker detection

was performed on their gene content at the level of KEGG pathways. Several were

statistically significant (Wilcoxon, p < 10e-8) and are visualized here. Related to Table S2.
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Figure 4. Disease classification performs well on biopsy-associated microbiome profiles
(A-C) For each of the three sample types, including terminal ileum biopsy (A), rectum

biopsy (B), and stool sample (C), we evaluated the accuracy of disease classification using

L1 penalized logistic regression with ROC curves representing the results. Dashed lines

show the mean performance obtained when genus-level features were used, and the

surrounding grey area is the 95% confidence interval. Terminal ileum biopsies performed

best (AUC = 0.85), closely matched by the rectum biopsies (AUC = 0.78). However, the

classifier based on the stool samples collected at the time of the diagnosis performs less well

(AUC = 0.66), and with low consistency (large confidence interval). (D) The intra-subject

diversity in microbiome composition was determined for all pairwise sample type

combinations. Both biopsy samples were found to be highly similar, whereas the stool

sample was quite diverse. Further, we also compared whether disease location would impact

the intra-subject diversity between the two tissue biopsy locations. The location of the

disease, ileal (L1), colonic (L2), or ileocolonic (L3), did not significantly disrupt the

similarity between the two intra-subject mucosal-associated microbiota. Also, no biomarker

was detected allowing us to distinguish these disease sub-phenotypes. Related to Figure S3.
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Figure 5. A view of the microbial composition across different IBD cohorts
We combined microbial profiles obtained for 1,742 subjects from three different IBD

cohorts and generated a set of principal coordinate plots of the unweighted UniFrac distance,

where each sample was colored by (A) cohort, (B) disease type, (C) MD-index, or (D)

species richness (Chao1). From this combined view, it is clear that the first principal

coordinate (PC1) stratifies the samples by species richness, which is negatively correlated

with MD-index, and that the second principal coordinate (PC2) is largely affected by cohort.

Disease phenotype is no obvious driver for sample clustering.

Gevers et al. Page 22

Cell Host Microbe. Author manuscript; available in PMC 2015 March 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


