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Abstract

As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is

restructured by de novo expression and selective removal of regulatory proteins. The control of

neurogenesis at the level of gene regulation is well documented and the regulation of protein

abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly

developing field. This review describes our current understanding of role of the proteasome

pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an

important regulatory mechanism in the generation of new neurons.
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Introduction

In neurogenesis, neurons are produced from neural stem cells through successive steps

characterized by dynamic changes in cellular protein profiles. Failure to properly regulate

these changes in protein levels disrupts the balance of proliferating progenitors and

differentiated neurons and can be detrimental to the development of the central nervous

system (CNS) (Cremisi et al., 2003; Ohnuma and Harris, 2003; Salomoni and Calegari,

2010). With premature exit from the cell cycle, the size of the progenitor pool is depleted

and with a delay in differentiation or cell cycle exit, the pool is expanded, changing the size

of the brain and the neuronal subtype population (Donovan and Dyer, 2005; Fero et al.,

1996; Goto et al., 2004; Guillemot, 2007; Spella et al., 2011). The focus in neural

specification and differentiation has been regulation at the level of gene expression;

however, regulation by targeted protein degradation is underappreciated yet is a burgeoning

field in cell biology. For example, studies in cell cycle and cancer biology suggest that

protein degradation is an essential strategy for regulating protein abundance in these highly

dynamic processes (Lehman, 2009; Nakayama and Nakayama, 2006). This review

summarizes the current understanding of targeted protein degradation in neural induction,

patterning and neurogenesis and highlights potential areas for future research.
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Ubiquitination and ubiquitin ligases

The ubiquitin/26S proteasome pathway is one of the major ways in which proteins are

selectively degraded (Hershko, 1983; Ciechanover et al. 1984). This pathway is a multi-step

process, in which three enzymes catalyze the transfer of ubiquitin (Ub), a highly conserved

76 amino acid peptide present in all eukaryotes (Hochstrasser, 1996; Varshavsky, 1997), to a

target protein (Fig. 1). The process of ubiquitination begins when the E1 Ub-activating

enzyme activates and transfers Ub to a catalytic cysteine residue on the E2 Ub-conjugating

enzyme, generating a Ub-E2 intermediate. Depending on the type of E3 ligase, the Ub is

either transferred directly to the substrate or is held temporarily by the E3 prior to transfer

(Hershko, 1983). In both cases, the E3 ligase facilitates transfer of Ub to the substrate. With

multiple rounds of ubiquitination, a chain of at least 4 Ubs is attached to the substrate

thereby targeting it for degradation in the 26S proteasome (reviewed in Pickart and Eddins,

2004; Wolf and Hilt, 2004). In contrast, proteins tagged with a single Ub are generally

associated with endocytosis and protein sorting, and are either degraded in the lysosome,

sub-localized within the cell or recycled by deubiquitination (Guterman and Glickman,

2004; Mosesson et al., 2009; Swanson et al., 2006; Todi and Paulson, 2011).

The E3 ligase proteins are responsible for target recognition, and thus are the most numerous

and diverse of the three Ub addition enzymes (Smalle and Vierstra, 2004). They act as

bridging factors that bring the E2-Ub complex and target protein together, via conserved

binding domains for both. Based on their structure, E2 binding site, and ubiquitin transfer

mechanisms, they are categorized into three major groups: RING (Really Interesting New

Gene), HECT (Homologous to E6AP Carboxy Terminal), and U-Box (Fig. 2).

RING ubiquitin ligases

The RING ligase family of proteins is the largest and most diverse of the three E3 ligase

families. They serve as scaffolds bringing E2 closer to the substrate and facilitating transfer

of Ub directly from E2 to the substrate. Structurally, the RING E3 ligases feature a common

RING finger domain subunit (Rbx1/Roc1/Hrt1) that binds E2 and a scaffold protein that

links E2 to adaptor proteins required for substrate recruitment. Dependent on the

components of the protein complex, the RING ubiquitin ligases are further categorized into

Cullin-based (Fig. 2) or APC/C (Anaphase-promoting complex/cyclosome) Ub ligases

(Pickart and Eddins, 2004). In this review, we will only discuss the Cullin-based Ub ligases,

which play roles in neural patterning and neurogenesis.

In Cullin-based ligases, the Cullin scaffold protein specifies the type of adaptor protein.

Cullin1 binds to the adaptor Skp1, Cullin2 forms a complex with ElonginB/ElonginC, and

Cullin3 does not utilize any adaptors and instead directly binds to BTB/POZ domains of

target proteins (Kipreos, 2005; Sarikas et al., 2011). The best characterized Cullin-based

ligases are the SCF (Skp1, Cullin1, and F-box) ligases, which are involved in numerous

cellular and developmental processes from cell cycle progression (Nakayama and

Nakayama, 2005), to stress response (Asada et al., 2008; Kuiken et al., 2012), to DNA repair

(Galli et al., 2010; Jia and Sun, 2009; Kondo et al., 2004). SCF ligases function in such a

wide variety of processes because of the large number of F-box proteins (Fig. 2a); C.

elegans has 326, Arabidopsis has 694, and humans have more than 70 F-box proteins
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(Gagne et al., 2002; Jin et al., 2004). The F-box protein features a conserved Skp1 binding

domain at the N-terminus, termed the “F-box domain”, and a substrate recognition domain

at the C-terminus. They are categorized into 3 groups based on their C-terminal domain:

Fbxw (WD40 repeat domains), Fbxl (leucine-rich repeat domains), and Fbxo (other domains

including Kelch, between-ring domain (IBR), F-box-associated domain (FBA), and more)

(Jin et al., 2004).

HECT ubiquitin ligases

HECT-type ubiquitin ligases are single subunit enzymes (Fig. 2b) (Metzger et al., 2012)

with intrinsic C-terminal catalytic activity that facilitates loading of Ub from E2 onto a

conserved cysteine residue, and then transfers it to the target protein bound to its N-terminus

(Kamadurai et al., 2009). The size of the HECT family is small in many organisms (e.g.

approximately 30 HECT proteins in humans) (Metzger et al., 2012) and is divided into three

subgroups based on their target interaction domain: the Nedd4 (Neural Precursor Cells

Expressed Developmentally Down-regulated 4) group with tryptophan-tryptophan (WW)

domains, the HERC (HECT and RCC1- regulator of chromosome condensation 1 domain)

group with RCC1-like domains, and the Other group with other domains (Bernassola et al.,

2008; Scheffner and Staub, 2007). Although the functions of many HECT E3 ligases are yet

to be identified, an increasing number of studies indicate their importance in signal

transduction (Chen and Corliss, 2004; Edwin et al., 2010; Inoue and Imamura, 2008), cancer

(Bernassola et al., 2008) and other human diseases (Scheffner and Staub, 2007), and

embryonic development (Sarkar and Zohn, 2012; Zohn et al., 2007).

U-Box ubiquitin ligases

The single subunit, U-box E3 ligases consists of a conserved U-box or RING-finger domain

for E2 interaction and a divergent target binding domain (e.g. cyclophilin-like,

tetratricopeptide, WD40, etc.) (Fig. 2c) (Hatakeyama and Nakayama, 2003). They have only

recently been defined as a class of Ub ligases (Hatakeyama et al., 2001) and were initially

thought to assist RING and HECT E3 ligase ubiquitination through transfer of an

oligoubiquitin tail (Koegl et al., 1999). However, recent studies show that U-box proteins

sufficiently achieve the polyubiquitination of target proteins in the absence of RING or

HECT E3 ligases (Hatakeyama et al., 2001). The family is small in many eukaryotes with

only seven U-box E3 ligases in humans (Marín, 2010). Despite this, they regulate many

aspects of cellular life including a housekeeping function for degradation of unfolded or

misfolded proteins (Hatakeyama and Nakayama, 2003), cell fate determination (Yamada et

al., 2013), inflammatory response (Liu et al., 2011), and disease (Jang et al., 2011; Tetzlaff

et al., 2008).

Degradation of key regulatory proteins in neurogenesis

Neurogenesis requires coordinated gene and protein regulation for controlled progression of

neuron formation (Fig. 3). In this process, the neural stem cells either proliferate to maintain

a pool of neural stem cells or exit the cell cycle to mature into neurons or glia. The neural

stem cells are characterized by symmetrical cell division (Götz and Huttner, 2005) and the

expression of neural stem cell maintenance genes such as the SoxB1s (Pevny and Plazcek,
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2005), RE-1 Silencing Transcription Factor (REST) (Gao et al., 2011) and Notch (Zhou et

al., 2010). To form neurons, neural stem cells undergo asymmetric cell divisions and a

subset of proteins segregate differentially between the two daughter cells, one of which

remains a stem cell while the other cell differentiates (Egger et al., 2010, 2007; Prehoda,

2009; Zhong and Chia, 2008). In the differentiating cell, the levels of REST (Ballas et al.,

2005; Muraoka et al., 2008; Westbrook et al., 2008), Notch signaling (reviewed in

Artavanis-Tsakonas et al., 1999; Hoeck et al., 2010; Mumm and Kopan, 2000), and SoxB1s

(Bylund et al., 2003; Graham et al., 2003; Rogers et al., 2008; Savare et al., 2005) are down-

regulated by repression of their gene expression and post-translational modifications. The

decrease in Notch signaling is accomplished in part by degradation of the effector protein

Hes1, which allows for the expression and stabilization of differentiation genes including the

proneural gene, Neurogenin (Ngn) (Hatakeyama et al., 2004; Ishibashi et al., 1995;

Kageyama et al., 2008; Yoshiura et al., 2007). Transient stabilization of Ngn allows for the

activation and accumulation of its transcriptional targets important for differentiation and

cell cycle exit (Ali et al., 2011; Hindley et al., 2012; Shimojo et al., 2011). As the

interactions between proteins and signaling pathways restructure the proteome of the

differentiating cell, the abundance of many proteins is regulated by targeted degradation by

the ubiquitin-proteosome system.

Notch/Delta signaling pathway

Notch signaling plays a fundamental role in the maintenance of neural progenitors,

neurogenesis, and gliogenesis and has been shown to be regulated extensively at the level of

protein degradation (Shimojo et al., 2011; Zhao et al., 2009). The transmembrane receptor

Notch interacts with membrane bound ligands, such as Delta, which promotes signaling in

both cells. The dual signaling results in “lateral inhibition” where the Delta+ cell

differentiates into a neuron and the surrounding Notch+ cells remain progenitors (Katsube

and Sakamoto, 2005). Notch activation leads to proteolysis and the release of the

intracellular domain (NICD), which translocates to the nucleus and interacts with the RBP-

Jkappa family of proteins (also known as CSL - CBF1/Su(H)/Lag-1). When in a complex

with NICD, RBP-Jkappa functions as an activator and turns on the expression of target

genes. In the differentiating cell, Notch signaling is down-regulated by ubiquitination and

degradation of NICD and the NICD effector, Hes1, allowing for transient up-regulation of

Delta (Hirata et al., 2002; Matsumoto et al., 2011).

At least five E3 ubiquitin ligases: Suppressor of deltex/Itch (Cornell et al., 1999), SCFFbxw7

(Oberg et al., 2001; Wu et al., 2001), Ligand of Numb-protein X (LNX) (Nie et al., 2002),

Neuralized (Deblandre et al., 2001; Lai et al., 2001; Pavlopoulos et al., 2001; Yeh et al.,

2001), and Mind bomb (MIB) (Chen and Corliss, 2004; Itoh et al., 2003) fine-tune Notch-

Delta signaling. Studies show that these E3 ligases are key regulators of neural progenitor

maintenance and neuronal differentiation. Suppressor of deltex/Itch (Chastagner et al., 2008;

Qiu et al., 2000) and SCFFbxw7 (Gupta-Rossi et al., 2001; Oberg et al., 2001; Wu et al.,

2001) directly target NICD, whereas LNX degrades Numb, an antagonist of NICD (Nie et

al., 2002). In the mouse brain, neuronal differentiation is blocked in the absence of

SCFFbxw7 due to stabilization of its targets Notch and c-Jun (Hoeck et al., 2010). SCFFbxw7

is not only important for progression of neurogenesis but also for oligodendrocyte
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development (Snyder et al., 2012). A missense mutation in the WD40 domain of zebrafish

Fbxw7 increased Notch activity in spinal cord progenitors, leading to increased

oligodendrocyte precursors at the expense of neurons (Snyder et al., 2012). Both studies

suggest that SCFFbxw7 regulates the amount of Notch activity to limit the number of

oligodendrocyte progenitor cells derived from neural progenitors.

Two other E3 ligases, the HECT-type Ub ligase, Neuralized, and the RING-type Ub ligase,

MIB, are enriched at the plasma membrane of the differentiating cell and target the Notch

ligands Delta and Serrate for ubiquitination and internalization (Liu et al., 2012; Pitsouli and

Delidakis, 2005; Yeh et al., 2001). Both ligands are monoubiquitinated, internalized by

endocytosis and then degraded or transcytosed (Chen and Corliss, 2004; Daskalaki et al.,

2011; Deblandre et al., 2001; Lai et al., 2001). A dominant negative form of Neuralized

(NeurΔRING), which lacks the capacity to ubiquitinate leads to the accumulation of the

ligands at the cell surface demonstrating the importance of ubiquitination in regulating their

levels (Pavlopoulos et al., 2001). Thus, by controlling the availability of the Notch ligands at

the cell surface, these Ub ligases modulate Notch signaling (Chitnis, 2006).

Not only do Neuralized and MIB modulate Notch signaling in trans, but they also do so in

cis (Glittenberg et al., 2006). Cis-inhibition occurs when the receptor and the ligand interact

at the same cell surface and counteract the trans-activation of Notch signaling by

neighboring cells (del Alamo and Schweisguth, 2009). Neuralized and MIB play a critical

role in suppression of cis-inhibition by promoting internalization of the ligands. In fact,

ectopic expression of Neuralized in mutant cells with reduced levels of active Serrate (a

Notch ligand) increased Notch activity, while NeurΔRING decreased Notch activity in cells

lacking Delta (Glittenberg et al., 2006). This indicates that loss of Neuralized ubiquitination

function increases cis-inhibition by preventing the clearance of Serrate from the cell surface

(Glittenberg et al., 2006; Pitsouli and Delidakis, 2005).

As predicted by their ability to affect Notch signaling, Neuralized and MIB have essential

roles during neurogenesis. For example, loss of MIB promotes premature neuronal

differentiation in the zebrafish hindbrain (Bingham et al., 2003) and in Xenopus primary

neurogenesis (Itoh et al., 2003), however, the cells that initiate the neurogenic fate fail to

differentiate into mature neurons (Bingham et al., 2003). Although the initial increase in

neurogenesis is likely due to suppression of Notch signaling, the decrease in terminal

differentiation may be the result of depletion of neural progenitors in MIB mutants.

Similarly, conditional inactivation of MIB in mouse forebrain and spinal cord promotes

premature neurogenesis while depleting the pool of radial glial cells supporting a critical

role for MIB in determination of the neuronal and radial glial identities (Kang et al., 2013;

Yoon et al., 2008).

REST

Another key player in neurogenesis regulated by ubiquitin mediated protein degradation is

REST. REST is proposed to regulate cell fate by preventing premature expression of

neuronal genes in neural progenitors (Gao et al., 2011), and repressing expression of

neuronal genes in other germ layers (Kok et al., 2012). To do this, REST binds to a 21 bp

evolutionarily conserved neuronal restrictive silencing element and recruits co-repressors
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and chromatin remodeling agents to change the topology of DNA to heterochromatin to

silence gene expression (Ballas et al., 2005; Chen et al., 1998; Chong et al., 1995; Paquette

et al., 2000; Schoch et al., 1996; Thiel et al., 1998). To accomplish these functions, REST is

broadly expressed in all three germ layers during early development, but then restricted to

the neural stem cells and progenitors of the brain (Armisén et al., 2002; Olguín et al., 2006;

Palm et al., 1998). As neural stem cells differentiate into neurons, REST expression is down-

regulated (Ballas et al., 2005), and the REST protein degraded (Westbrook et al., 2008).

This degradation is regulated by the RING Ub ligase, SCFFbxw1/SCFTRCP whose levels

increase during the transition from stem cell to neuron and directly promotes REST

ubiquitination (Westbrook et al., 2008). Knockdown of Fbxw1, the F-box protein of the Ub

ligase complex that binds REST, results in decreased neuron formation indicating that the

transition of stem cell to differentiated neuron is contingent upon a decrease in REST

mediated by SCFFbxw1(Westbrook et al., 2008).

Degradation of key regulatory proteins in neural specification and

patterning

BMP signaling pathway

Bone morphogenetic protein (BMP) signaling plays a number of roles in defining neural cell

fate including specification of dorsal neuronal subtypes in the neural tube (Mehler et al.,

1997) and initiation of neurogenesis in adult brains (Bond et al., 2012; Sabo et al., 2009).

The BMP receptor and effectors of BMP signaling, the Smad proteins, are tightly regulated

by ubiquitination and degradation (Inoue and Imamura, 2008).

Three HECT-type Ub ligases, Smurf1, Smurf2 (Smad Ubiquitin Regulatory Factors) and

NEDD4-2 negatively regulate BMP signaling by degradation of BMP pathway components.

Smurf1 and Smurf2 reduce responses to BMP and TGFβ by directly targeting the Receptor

regulated Smads (R-Smads) and indirectly targeting other components of the pathway using

scaffold or adaptor proteins [for review (Cao and Zhang, 2013)], whereas NEDD4-2 targets

the TGFβ type I receptor (Kuratomi et al., 2005) and the R-Smad, Smad2, for ubiquitination

and degradation. Studies in Xenopus demonstrate that Smurf1-mediated repression of BMP

signaling in the neuroectoderm is essential for dorsal ventral patterning and neural fold

formation (Alexandrova and Thomsen, 2006; Zhu et al., 1999). In the absence of Smurf1,

BMP signaling activity is increased such that the extracellular BMP antagonist Chordin does

not induce neural gene expression in ectodermal explants, and neural fold formation and

neural differentiation are disrupted (Alexandrova and Thomsen, 2006). Concordant with

these data, increased Smurf1 neuralizes ectodermal explants and decreases BMP signaling in

embryos, leading to the formation of a double axis (Zhu et al., 1999). In addition to targeted

protein degradation of the R-Smad effectors of the BMP pathway, direct BMP targets are

also regulated by ubiquitination and degradation. For example, degradation of the BMP

target Xom (also known as Vent-2, Vox and Bbr-1) (Ladher et al., 1996; Schmidt et al.,

1996; Trindade et al., 1999) in the dorsal regions of the developing Xenopus embryos is

mediated by SCFFbxw1 ubiquitin ligase (Zhu and Kirschner, 2002) allowing for dorsal

specific gene expression. Contrary to these ubiquitin ligases that inhibit BMP signaling, the
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RING-type ubiquitin ligase, Arkadia, enhances BMP signaling by inducing ubiquitination

and degradation of inhibitory Smad7 (Koinuma et al., 2003; Liu et al., 2006).

Wnt signaling pathway

The canonical Wnt (Wingless/Integrase-1) signaling pathway, which plays central roles in

anterior-posterior patterning of the neural tube (Kiecker and Niehrs, 2001), proliferation of

neural stem cells in the developing dorsal neural tube (Chenn and Walsh, 2003; Dickinson et

al., 1994; Megason and McMahon, 2002) and cortex (Woodhead et al., 2006), and dorsal

interneuron specification in the neural tube (Zechner et al., 2007), relies on stabilization and

nuclear translocation of β-catenin for transcriptional activation. In the absence of Wnt,

cytoplasmic β-catenin is associated with a destruction complex consisting of Axin,

Adenomatous polyposis coli (APC) and glycogen synthase kinase3β (GSK-3β). It is

phosphorylated by GSK-3β and CKIα leading to ubiquitination mediated by SCFFbxw1

ubiquitin ligase and degradation in the proteasome (Kitagawa et al., 1999; Liu et al., 2002)

Shh signaling pathway

Sonic hedgehog (Shh) signaling originating from the notochord generates a ventral

concentration gradient in the neural tube, which opposes the dorsal BMP gradient and is

essential to specify ventral neuronal subtypes (for review: Briscoe, 2009; Ribes and Briscoe,

2009). Shh signaling is mediated by two primary transcription factors, Gli2 and Gli3 that

primarily function as an activator and repressor, respectively. In the absence of Shh

signaling, Gli3 undergoes proteolytic processing to form a C-terminally truncated repressor.

The Gli3 processing requires cAMP-dependent phosphorylation followed by ubiquitination

via SCFFbxw1 binding and degradation in the proteasome (Wang and Li, 2006). Although the

role of degradation in Gli3 processing is not well understood, it was suggested that

SCFFbxw1 is involved in the degradation of the C-terminal cleavage product (Wang and Li,

2006). Conversely, only a minor fraction of Gli2 is processed to form a transcriptional

repressor, but the full length Gli2 is readily phosphorylated and degraded in the absence of

Shh signaling (Pan et al., 2006). Gli2 abundance is regulated by phosphorylation via protein

kinase A, casein kinase 1, and GSK-3β, followed by ubiquitination by SCFFbxw1 and

degradation in the proteasome (Pan et al., 2006). The cleavage and degradation of Gli2 and

Gli3 prevents transcriptional activation in the absence of Shh, ensuring that Gli mediated

target gene activation only occurs when Shh is present.

FGF signaling pathway

Fibroblast growth factor (FGF) signaling has a prominent role in anterior-posterior

patterning of the neuroectoderm (Hongo et al., 1999; Kengaku and Okamoto, 1995; Kudoh

et al., 2002; Lahti et al., 2012; Takahashi and Liu, 2006). The functional status of the FGF

receptor, like other tyrosine kinase receptors, is affected by the availability of Sprouty

proteins (Yu et al., 2011). Sprouty enhances FGF signaling by binding to and dissociating c-

Cbl, a RING-type ubiquitin ligase, from the FGF receptor, thereby, allowing signaling to

occur (Fong et al., 2003). However, when Sprouty is ubiquitinated and degraded by NEDD4

ubiquitin ligase, c-Cbl interacts with the receptor, resulting in ubiquitination and degradation

of the FGF receptor (Edwin et al., 2010; Hall et al., 2003; Rubin et al., 2005).
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Future directions

Still yet to be identified are the ubiquitin ligases that degrade key regulators of vertebrate

neurogenesis including SoxB1 transcription factors and the proneural protein Ngn. This has

been a challenge in part becasue many ubiquitin ligases are expressed at low levels, and the

interaction between the ubiquitin ligases and their targets are often short-lived making

global identification of targets difficult. Candidate proteins that degrade the key

transcription factors in neurogenesis can be identified from studies in non-vertebrate models.

For example, Drosophila basic helix-loop-helix proneural protein Achaete-Scute is targeted

for degradation by the adaptor protein Phyl and the RING-finger ubiquitin ligase Sina

(homolog of mammalian Siah) to regulate the timing of cell division in the sensory organ

precursors (Chang et al., 2008). Studies show that ubiquitin ligases can target multiple

proteins involved in the same developmental context such as Fbxl14/Ppa, which degrades

multiple core regulators during neural crest specification (Lander et al., 2011). Therefore,

the targets of Sina/Siah may be extended to other proneural proteins including Ngn.

Neurogenin2

The proneural, basic helix-loop-helix (bHLH) transcription factor Ngn2 promotes neuron

and inhibits glia formation in the CNS (Kiefer et al., 2005; Ma et al., 1996; Thoma et al.,

2012) and fine-tuning the level of Ngn2 is critical to controlled progression through

neurogenesis. Levels of Ngn2 are low in neural progenitors and an increase in Ngn2 activity

initiates the neurogenesis program (Hindley et al., 2012; Hirata et al., 2002; Vosper et al.,

2009). To maintain the developmental potential of neural stem cells, Ngn levels are kept low

and data indicate that this is due in part to a short protein half-life regulated by protein

degradation (Hindley et al., 2012; Vosper et al., 2009).

The stability of Ngn2 is controlled by its phosphorylation state and the level of Ngn2

determines which target genes are activated. Highly phosphorylated Ngn2 is unstable with

rapid degradation in the proteasome (Boix-Perales et al., 2007; Vosper et al., 2009, 2007)

yet activates low threshold genes like delta (Hindley et al., 2012). Hypophosphorylated

Ngn2 is required to induce high threshold genes such as neuroD (Ali et al., 2011; Hindley et

al., 2012; Li et al., 2012). The phosphorylation state of Ngn2 is controlled by at least 3

kinases: GSK3β, and Cyclin A- and Cyclin B-dependent kinases (Cdk1 and Cdk2) (Ali et

al., 2011; Li et al., 2012) but the proteins that bind and target Ngn for degradation are

unknown.

SoxB1 proteins

The SoxB1 group transcription factors, Sox1, Sox2 and Sox3, are important for the

maintenance of neural progenitors (Elkouris et al., 2011; Holmberg et al., 2008; Thiel, 2013,

Rogers et al. 2009). SoxB1 proteins have a prominent role during induction of the

neuroectoderm (Rogers et al., 2009, 2008), and, in vertebrates, they continue to be expressed

in proliferating neural stem cells and progenitors (Pevny and Rao, 2003). As cells

differentiate and exit the cell cycle, sox2 and sox3 expression is down-regulated and their

decrease promotes cell cycle exit and neuronal differentiation (Graham et al., 2003).

Conversely, constitutive expression of sox2 or sox3 maintains the proliferative capacity and
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inhibits neuronal differentiation of progenitors (Archer et al., 2011; Graham et al., 2003).

Numerous studies of Sox2 regulation indicate that a major mechanism for decreasing SoxB1

levels and promoting neurogenesis is at the transcriptional level (Iwafuchi-Doi et al., 2011;

Mariani et al., 2012; Miyagi et al., 2006; Saigou et al., 2010; Takemoto et al., 2006;

Zappone et al., 2000). Little is reported on the roles of post-translational modification and

targeted protein degradation. However, in many vertebrates, both Sox2 and Sox3 have

consensus PEST degradation motifs as estimated by the epestfind software (http://

emboss.bioinformatics.nl/cgi-bin/emboss/epestfind), indicating that they may have short

half-lives, a characteristic of proteins targeted for degradation. In fact, the preliminary data

from our research group suggests that the half-life of Sox3 in Xenopus is short and

approximately 2.5 hours (unpublished data). In addition, the fact that the SUMO conjugated

Sox2 fails to bind DNA suggests an essential role for post-translational processing as a

means of regulation of function (Tsuruzoe et al., 2006).

Conclusion

In closing, review of the literature cumulatively show that targeted protein degradation and

ubiquitin E3 ligases provide a specific mechanism to eliminate key transcription factors and

signaling pathways components important for neurogenesis and the development of the

nervous system. This regulation at the protein level allows for a rapid change in the

proteome of the cells and the timely and ordered progression of neurogenesis, adding

another layer of complexity to this already complex process. As the precise role of ubiquitin

E3 ligases and the corresponding targets are identified, we will gain further knowledge of

the regulation of the present checkpoints in neurogenesis as well as identifying the novel

regulatory relationships that are essential for deciphering the details of making new neurons.
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Figure 1.
The Ubiquitin/26S proteasome pathway targets proteins for degradation. Ubiquitin is

conjugated to E1 activating enzyme with ATP hydrolysis. Ubiquitin is then transferred to E2

conjugating and E3 ubiquitin ligases. E3 ubiquitin ligase facilitates the recognition and

recruitment of the target protein to be degraded and the transfer of ubiquitin to the target.

The pathway cycles at least four times to polyubiquitinate the substrate (1), which is then

recognized and degraded in the 26S proteasome (2). Alternatively, deubiquitinating enzymes

(DUBs) can reverse ubiquitination by cleaving off ubiquitin chain and prevent degradation

(3).
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Figure 2.
Classes of Ubiquitin E3 ligases. a. RING E3 ligases form multi-subunit protein complexes

that generally include RING finger protein Rbx and a Cullin scaffold. Cullin1-based SCF

ubiquitin ligase is shown. Target proteins are recruited to the complex by F-box proteins,

which bind to the adaptor protein Skp1 via the conserved F-box domain. Ubiquitin-loaded

E2 binds to the complex via Rbx and transfers ubiquitin to the target proteins. b. HECT E3

ligases are monomeric proteins that interact with E2 via a conserved N-terminus HECT

domain and with target proteins via divergent C-terminus domains. HECT proteins have

intrinsic ligase activity and act as ubiquitin acceptors from E2 before transferring Ub to

target proteins. c. U-box E3 ligases bind to E2 via a conserved U-box/RING domain and to

target proteins via divergent domains including WW, cyclophilin-like, and tetratricopeptide.

They do not have intrinsic ligase activity and their ubiquitin transfer system is similar to

RING E3 ligases.
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Figure 3.
Protein abundance is dynamic during neurogenesis. Neural stem cells are characterized by

slow, symmetric cell division. As they progress through neurogenesis and proneural proteins

are expressed, the plane of divisions is changed and they divide asymmetrically generating a

neural stem daughter cell and neuronal progenitor daughter cell. The cell (orange) that

accumulates gene products required for neuronal differentiation exits the cell cycle and

differentiates into a neuron. During neurogenesis, the complementary oscillation of Hes1

and Ngn is lost. The factors that maintain neural progenitors (SoxB1, Notch, REST) are

degraded. Delta and Ngn are stabilized transiently to allow time for Ngn to induce target

genes such as neuroD and the regulators of cell cycle exit.
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