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Abstract

Denoising is critical for improving visual quality and reliability of associative quantitative analysis when magnetic resonance
(MR) images are acquired with low signal-to-noise ratios. The classical non-local means (NLM) filter, which averages pixels
weighted by the similarity of their neighborhoods, is adapted and demonstrated to effectively reduce Rician noise without
affecting edge details in MR magnitude images. However, the Rician NLM (RNLM) filter usually blurs small high-contrast
particle details which might be clinically relevant information. In this paper, we investigated the reason of this particle
blurring problem and proposed a novel particle-preserving RNLM filter with combined patch and pixel (RNLM-CPP)
similarity. The results of experiments on both synthetic and real MR data demonstrate that the proposed RNLM-CPP filter
can preserve small high-contrast particle details better than the original RNLM filter while denoising MR images.
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Introduction

Magnetic resonance (MR) images are usually acquired with low

signal-to-noise ratios (SNRs) especially in the implementation of

high temporal resolution or high spatial resolution imaging [1,2].

Meanwhile, some related MR images are often sensitive to noise.

A typical example is diffusion-weighted imaging (DWI), which is

widely used in routine clinical diagnoses of acute ischemic stroke

[3] and various tumors [4,5,6], but is often affected by severe noise

especially when high b-value is applied [7]. Noise in the MR signal

is mainly produced from the thermal vibrations of ions and

electrons in the receiving coil and the sample [8], resulting in

intensity fluctuations of MR images and serious degradation of

some clinically useful image information. The following quantita-

tive analysis of MR images through post-processing operations is

often degraded by the noise. Thus, reducing noise in MR images is

essential and critical to improve image visualization and promote

reliability of associative quantitative analysis.

The SNR of MR imaging can be improved by averaging

multiple repeatedly acquired images. However, this approach

significantly increases data acquisition time and is not feasible in

clinical applications where quick procedures are needed. Denois-

ing MR images by various post-processing techniques without

heavy computational load has been extensively studied in the past

years [9,10,11,12,13,14,15]. A simple approach is the low-pass

Gaussian filter [9], which averages spatially adjacent pixels at the

expense of blurring. Several approaches that preserve edge

information have been proposed and applied to the MR image,

including anisotropic diffusion filter [10,11], wavelet-based filters

[12,13] and total variation [14], with mixed results.

A non-local means (NLM) filter [15], which outputs a weighted

average of pixels in a relatively large search window and assigns

high weights to pixels with similar neighboring patterns, recently

exhibits capability to preserve details and suppress Gaussian-

distributed noise as well. Noise in magnitude MR images generally

follows a Rician [16] or non-central Chi distribution [17], which

has a non-zero mean and causes bias to actual MR images when

SNR is low. To address this bias, Manjon et al. proposed an

unbiased NLM (UNLM) estimate of MR images in the presence of

Rician noise by subtracting the bias from the squared value of the

filtered images [18]. A more theoretically reasonable approach is

the Rician NLM (RNLM) filter which removes the Rician bias

from the average of squared intensities in images [19,20]. The

RNLM approach was also adopted in the later work of Manjon

et al. [21,22]. The NLM algorithm [23] and its Rician-adapted

versions [18,19,20,21,22] show improved denoising accuracy

compared with the wavelet and anisotropic diffusion filters when

applied to MR images. However, this algorithm and its versions

may lead to the blurring or loss of small high-contrast particle

details contained in MR images. As these small high-contrast

particles may be clinically relevant, the blurring of these particles is

generally unacceptable. For example, diffusion-weighted MR

imaging is accurate for diagnosing strokes within 6 h of symptom

onset [24] and has an important function in diagnosing early

cerebral infarctions and monitoring the development of cerebral

infarctions [25]. However, the low SNR of diffusion-weighted

images might lower the confidence of stroke disease diagnosis.
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Reducing image noise by post-processing techniques can benefit

clinical diagnosis if fine details including the high-contrast

particles, which correspond to small infarct lesions, are preserved

well in the denoised diffusion-weighted brain images.

As of this writing, to the authors’ knowledge, the blurring of

high-contrast particles in NLM-based denoising algorithms has not

been addressed in previous studies, including MR image

denoising. Through extensive experiments, we find that the

blurring of sharp particles in NLM-based algorithms is related to

the weighting strategy of the central pixel. To avoid over-

weighting of the central pixel from very high self-similarity, the

weight of the central pixel was proposed to be assigned the

maximum weight of the non-central pixels in the search window

[15], and this strategy was adopted in the RNLM filter

[19,20,21,22]. However, when the intensity of the central pixel

is significantly different from those of all other pixels in the search

window, that is, when the central pixel cannot find similar pixel in

the search window, the aforementioned central pixel weighting

strategy [15] causes the reduced contribution of the central pixel to

the weighted average output. Thus, small high-contrast particles

are unavoidably blurred or filtered out in the denoised MR

images.

To retain the small high-contrast particle details in the MR

images, we propose a novel weight method using combined patch

and pixel (RNLM-CPP) similarity, where only the pixels

simultaneously having pixel and neighbourhood similarities will

be assigned higher weights in the average. The performance of the

RNLM-CPP algorithm is evaluated and compared with the

original RNLM filter on both simulated and in vivo MR data.

Materials and Methods

The MR images acquired for clinical diagnoses were retrospec-

tively selected and anonymized for our denoising research. Our

study does not involve new MR scans that are specially performed

for the research purpose, thus does not require permit for the local

Figure 1. Illustration of NLM filtering effect on small high-contrast particles. (a) Synthesized checkerboard image with one-pixel particle
details; (b) Gaussian noise-corrupted image; (c) NLM-filtered image; (d) NLM-calculated weights of pixels in the search window as enclosed by the
square in (b).
doi:10.1371/journal.pone.0100240.g001
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ethics committee. The dataset was acquired for clinical diagnoses

and the patient gave his written informed consent for his image to

be used for the research purposes and published.

Denoising Methods
NLM Algorithm. An ideal image corrupted with Gaussian

noise can be modeled as follows:

yi~xizni , xi[X,yi[Y ð1Þ

where i denotes the pixel index; yi and xi represent the intensity

value of pixel i in noisy image Y and noise-free image X,

respectively; and ni denotes a zero mean Gaussian noise with

variance s2.

The NLM algorithm estimates x̂xi by calculating the weighted

average intensity of pixels in a search window Vi centered at pixel i

[18], which can be written as follows:

Table 1. Optimal h values for different denoising algorithms, image types, radius of patches (rp), and a search window with a
radius (rs) of 5.

RNLM RNLM-CPP

rp 1 2 3 1 2 3

T1w 1.24s 1.14s 1.10s 1.31s 1.29s 1.29s

T2w 1.23s 1.19s 1.16s 1.32s 1.36s 1.38s

PDw 1.17s 1.09s 1.04s 1.22s 1.22s 1.21s

doi:10.1371/journal.pone.0100240.t001

Figure 2. PSNR comparison of RNLM and RNLM-CPP algorithms under varying noise levels (ranging from 1% to 9% with an
increase of 2%) for different image types (T1w, T2w, and PD) and patch sizes (radius of 1, 2, and 3).
doi:10.1371/journal.pone.0100240.g002
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x̂xi~
P
j[Vi

wij
:yj ð2Þ

where wij is the normalized weight determined by the distance

between the noisy patches located at pixel i (N(Y)i) and pixel j

(N(Y)j ) in the noisy image Y:

lij~e
{ N(Y)i{N(Y)j

�� ��2

2,a

.
h2

, Vj=i ð3Þ

wij~
lijP

Vj0[Vi
l
ij0

ð4Þ

where lij is the weight between pixels i and j before normalization,

:k k2
2,a denotes the Gaussian-weighted Euclidean distance, N(Y)i

and N(Y)j is respectively the vector containing the intensities of

the local neighborhood of pixel i and j, a is the standard deviation

of the Gaussian function and h is the decay rate of weights and

controls the degree of smoothing. To avoid over-weighting of pixel

i, the self-weight lii is assigned the maximum weight of non-central

pixels in the search window [15], that is,

lii~ max lij , Vj=i
� �

ð5Þ

A well-known drawback of the original NLM algorithm is the

blurring of sharp small particles in the image. An example is

illustrated in Figure 1. Figure 1a shows a simulated checker-

board image containing one-pixel particle details with different

contrast, and Figure 1b shows the image corrupted by Gaussian

noise. The image filtered by the original NLM algorithm is shown

Figure 3. Comparison of RNLM and RNLM-CPP algorithms on denoising simulated T1w images. Top row, from left to right: noisy image
with 5% of Rician noise, denoised results with different algorithms. Second row, from left to right: zoomed part of the corresponding images in the
top row, the dotted boxes indicate the local areas around manually-defined particles. Bottom row, from left to right: T1w noise-free image and
corresponding image residuals.
doi:10.1371/journal.pone.0100240.g003

Improved NLM for Denoising MR Images

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e100240



in Figure 1c. The contrast between these small particles and their

neighboring pixels is reduced, and these particles are difficult to

discern in the filtered image. The reason that NLM causes the

blurring of small high-contrast particles can be found by inspecting

the weights of pixels in the search window around a small particle

(Figure 1d). The self-weight is set as the maximum weight of non-

central pixels (0.232). Given that the sharp particle has an intensity

that significantly differs from that of other pixels in the search

window, a small self-weight indicates a small contribution from the

particle pixel to the final output, which results in blurred or

disappeared particles in the filtered image. In theory, assigning

self-weight the maximum weight of other pixels in the search

window (Eq. (5)) indicates that the central pixel accounts K at

most for the final output.

RNLM Algorithm. The original NLM algorithm was pro-

posed for handling zero mean Gaussian noise. Thus, if applied to

denoise MR images, the NLM algorithm should be adapted to

deal with non-zero bias caused by Rician noise [16,26]. An

RNLM filter [19] can be written as follows:

RNLM(x
_

i)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

P
j[Vi

wij
:y2

j

 !
{2s2,0

 !vuut ð6Þ

where the parameter s represents the standard deviation of the

complex Gaussian noise, and can be estimated from the

background region with s~
ffiffiffiffiffiffiffiffi
m=2

p
, where m is the mean of

squared magnitude in the background of MR images [18].

The current RNLM algorithm uses the maximum weight of

non-central pixels as self-weight, thus has the similar particle loss

problem as the original NLM algorithm.

To retain the small high-contrast particle details in MR images,

we modify the original RNLM algorithm by introducing a novel

weight method which uses combined patch and pixel similarity

(RNLM-CPP), which is detailed in the following section.

Figure 4. Comparison of RNLM and RNLM-CPP algorithms on denoising simulated T2w images. Top row, from left to right: noisy image
with 5% of Rician noise, denoised results with different algorithms. Second row, from left to right: zoomed part of the corresponding images in the
top row, the dotted boxes indicate the local areas around manually-defined particles. Bottom row, from left to right: T2w noise-free image and
corresponding image residuals.
doi:10.1371/journal.pone.0100240.g004
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RNLM-CPP Algorithm. When small high-contrast particles

exist in images, intensity of the particle is generally different from

that of the other pixels in the search window to a significant

degree. This intensity difference is usually significantly higher than

that caused by noise, which can be exploited to overcome the

particle-blurring problem of the NLM filter. Thus, a new method

for calculating the weight with combined patch and pixel similarity

is proposed:

lCPP
ij ~gij

:lij , for j=i ð7Þ

gij~
1

1z Dyi{yj D
�

D0

� �2a ð8Þ

where lij denotes patches similarity between patches located at

pixel i and j as described in Eq.(3), gij denotes pixel similarity

which is defined as a decreasing function of the intensity difference

Dyi{yj D in order to assign high weights to pixels with intensities

close to that of the central pixel. In Eq. (8), the parameters D0 and

a control the position and slope of transition, respectively. The

pixel similarity gij ranges from 0 to 1 and approximates to 0 if the

intensity of pixel j is significantly different from that of the central

pixel i. According to Eqs. (7) and (8), only those pixels with high

patch and pixel similarity simultaneously are assigned large

weights in filtering.

The self-weight can be determined by:

lCPP
ii ~Qik

:lCPP
ik , k~ arg max

j
lCPP

ij ,Vj=i
	 
� �

ð9Þ

Figure 5. Comparison of RNLM and RNLM-CPP algorithms on denoising simulated PDw images. Top row, from left to right: noisy image
with 5% of Rician noise, denoised results with different algorithms. Second row, from left to right: zoomed part of the corresponding images in the
top row, the dotted boxes indicate the local areas around manually-defined particles. Bottom row, from left to right: PDw noise-free image and
corresponding image residuals.
doi:10.1371/journal.pone.0100240.g005
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Qik~ 1z
(2rpz1)2

1z D0=Dyi{yk D½ �2a

 !
ð10Þ

where k denotes the index of the non-central pixel that is most

similar to the central pixel i in the search window, lCPP
ik denotes

the corresponding maximum CPP weight. In contrast to Eq. (8),

the pixel similarity Qik is defined as an increasing function of the

intensity difference. In Eq. (10), rp is the radius of the patch

window. The weight Qik is a scale factor with a range of

1, 1z(2rpz1)2

 �

, and increases with the absolute pixel intensity

difference Dyi{ykD. For the small high-contrast particles where the

intensity of the central pixel i is significantly different from that at

pixel k, that is, Dyi{yk D is larger than the factor D0, a larger weight

(Qik&1) will be assigned to the central pixel. Thus, the particle is

selected and preserved.

The adaption of the aforementioned NLM filter with CPP

similarity to deal with Rician noise can be formulated as follows:

RNLM-CPP(x
_

i)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

P
j[Vi

wCPP
ij

:y2
j

 !
{2s2,0

 !vuut ð11Þ

where wCPP
ij is the weight after normalizing lCPP

ij .

Denoising Experiments
Experimental Data. To evaluate quantitatively the perfor-

mance of the RNLM and RNLM-CPP algorithms, simulated MR

images from BrainWeb were used [27,28]. Noise-free T1-weighted

(T1w), T2-weighted (T2w), and proton density-weighted (PDw)

MR datasets of size 18162176181 with 1 mm3 voxel resolution

were downloaded, and Rician noise was added into these datasets

based on the formula, yi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xizn1½ �2zn2

2

q
, where xi is the noise-

free data. n1 and n2 are independent Gaussian distributed random

variables with zero mean and standard deviation s. The noise level

is defined as the intensity of the brightest tissue divided by s. To

evaluate the denoising performance under varying noise levels, the

MR data with noise levels (1%, 3%, 5%, 7%, and 9%) were

synthesized.

To test the performance of the RNLM and RNLM-CPP

algorithms on real MR data, two in vivo brain MR datasets were

used. The first dataset, downloaded from the fMRI Data Center

website (http://www.fmridc.org), was acquired by an MP-RAGE

T1w volumetric sequence on a Siemens 1.5 T Vision scanner. The

acquisition parameters were repetition time of 9.7 ms, echo time

of 4 ms, flip angle of 10u, inversion time of 20 ms, duration time of

200 ms, matrix of 25662566128, voxel resolution of

16161.25 mm3. The second dataset was from a subject with

cerebral infarction scanned by an echo-planar/spin-echo DWI

sequence on a GE Sigma EXCITE 3.0 T MR imaging system.

The dataset was acquired for clinical diagnoses and the patient

gave his written informed consent for his image to be used for the

research purposes and published. The acquisition parameters were

repetition time of 6,200 ms, echo time of 84.7 ms, slice thickness

of 5 mm, interslice gap of 1.5 mm, bandwidth of 250 kHz, b-

factor of 1,000 s/mm2, k-space acquisition matrix of 1926192,

image matrix of 2566256, pixel resolution of 0.9460.94 mm2,

field of view of 2406240 mm2.

Implementation of Denoising Algorithms. The 2D ver-

sions of the RNLM and RNLM-CPP filters were implemented

slice by slice on the synthetic and real 3D MR data. As the

performance of the above algorithms depends on the setting of

parameters, determining the parameters in the two algorithms is

critical. The RNLM and RNLM-CPP algorithms have three

common parameters: the radius of search window rs, the radius of

patch window rp, and the smooth controlling parameter h. In all of

the experiments, we empirically set rs to 5, which is a reasonable

value for ensuring image quality and filtering efficiency [18]. In

the experiments over synthetic data, by tentatively setting the

radius of the patch window (rp) from 1 to 3, we obtained their

corresponding optimal h values (shown in Table 1), which

produced maximum peak SNR (PSNR) by an exhaustive search

for parameter h in a certain range. In the experiments over real

brain MR data, the parameters were empirically determined

(rs = 5, rp = 1 and h = 1.2s) based on the above experiments on

synthesized MR data. Aside from the three aforementioned

parameters, the RNLM-CPP algorithm has two additional

parameters: the cutoff value D0, determined as D0~b:s where

b is a constant; and a, which controls the slope of transition section

near D0. In this study, we tentatively set various a and b and found

their optimal solutions (a = 4 and b = 5) in the experiments over

synthetic data by the PSNR criterion, and transferred these

optimal solutions to process real data.

Quantitative Evaluation Measure. PSNR was calculated as

a global measure to evaluate quantitatively the performance of the

RNLM and RNLM-CPP algorithms on denoising the synthetic

MR data. For an image encoded with 8 bits, PSNR can be defined

as follows:

PSNR~20log10 255
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MP
i

(x̂xi{xi )
2

s0
B@

1
CA ð12Þ

where M is the total number of pixels in the denoised image, x̂xi is

the estimated intensity at pixel i in the denoised image, and xi is

the true intensity value at pixel i in the synthetic noise-free image.

The above PSNR is a global measure which cannot describe

well how a filter blurs small details. To provide a quantitative

measure of particle preserving, local PSNR (LPSNR) and local

structural similarity index [29] (LSSIM) were calculated over local

regions around particle details, which were manually located

through visual inspection of the noise-free image with size of 5

pixels65 pixels.

Results

Synthetic MR Data
The optimal h values for different patch sizes and image types

(T1w, T2w, and PD) with different denoising algorithms are

shown in Table 1. The PSNR values with optimal h against

varying noise levels for different rp and MR image types are plotted

in Figure 2. A higher PSNR means that the denoised image is

much closer to the noise-free image. At low noise level (1%),

RNLM-CPP algorithm produced PSNR approximately 4 dB

higher than that of the RNLM algorithm. With increasing noise

levels, RNLM-CPP consistently produced a slightly higher PSNR

than RNLM algorithm.

Figures 3, 4, 5 show the results of denoising the synthetic

brain MR images with particle details (T1w, T2w, and PDw) by

RNLM and RNLM-CPP algorithms with the optimal parameters

presented in Table 1 (rp = 1, a = 4, and b = 5). As shown by the

denoised T1w images in Figure 3, the RNLM algorithm can

suppress noise but causes blurring of small particle details, which
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can be more clearly observed in the enlarged view. In contrast, the

RNLM-CPP algorithm can remove noticeable noise and preserve

sharp particle details. Residual images (the absolute difference

between denoised and noisy images) further indicate that the

RNLM-CPP algorithm has more uniform denoising effect than the

RNLM algorithm. This interesting phenomenon can also be

observed in the results of denoising T2w and PDw images shown

in Figures 4 and 5. For a quantitative evaluation of particle

preserving, Tables 2 and 3 separately present the LPSNR and

LSSIM over the local regions which are delineated by the dotted

boxes in Figures 3, 4, 5. The LPSNR of the RNLM-denoised

image was lower than that of the no filtering image, except for the

T1w image with noise levels of 7% and 9%. The LSSIM of the

RNLM-denoised image was also lower than that of the no filtering

image for T1w image with noise level of 1%, T2w image with

noise not more than 5%, and PDw image with noise from 1% to

9%. The RNLM-CPP algorithm consistently outperforms the

RNLM and no filtering methods in LPSNR and LSSIM.

Real MR Data
Figure 6 shows the results of the denoised T1w brain images by

the RNLM and RNLM-CPP algorithms. Both the RNLM and

RNLM-CPP algorithms can significantly reduce image noise. The

small high-contrast particles of hypointensity signals in the T1w

MR images correspond to small vessels in the brain. Although

these particles are generally not useful diagnostic information in

T1w imaging, they are not noise and should not be blurred or

filtered out by the denoising algorithm. However, when focusing

on details of the denoised images, as indicated by arrows in the

zoomed images (the second row in Figure 6), the RNLM

algorithm blurred the small particle, but the RNLM-CPP

algorithm avoided this drawback. A clearer observation can be

made with the intensity profiles of original and denoised images on

a line across the particle, as displayed in the third row of Figure 6.

The residual images in the bottom row of Figure 6 show that the

RNLM-CPP algorithm can reduce noise more uniformly than the

RNLM algorithm.

Figure 7 shows the results of the denoised brain DWI data with

infarction lesions from a patient with acute cerebral infraction by

different algorithms. In diffusion-weighted MR images, the small

particles correspond to small infarct lesions, which are useful

information for clinically diagnosis, and should be preserved in the

denoised images. As shown in Figure 7, the original diffusion-

weighted image was affected by serious noise, and was significantly

denoised by the two algorithms without obvious blurring of details.

A high-contrast small particle of infarction lesion in the image, as

Table 2. LPSNR results for quantitative comparison of RNLM and RNLM-CPP algorithms with parameters (rp = 1, rs = 5,a = 4, and
b = 5) for T1w, T2w and PDw images.

Data type Filtering method Noise level

1% 3% 5% 7% 9%

T1w No filtering 44.83 34.68 30.40 27.20 25.37

RNLM 33.71 32.73 28.75 28.50 27.58

RNLM-CPP 46.12 37.81 31.87 30.92 29.23

T2w No filtering 39.96 30.58 26.44 23.63 21.05

RNLM 24.13 24.09 22.24 22.05 20.10

RNLM-CPP 40.80 31.26 28.56 26.39 22.43

PDw No filtering 40.66 31.51 29.68 22.09 21.24

RNLM 24.02 23.61 23.49 21.19 21.12

RNLM-CPP 41.65 33.58 31.65 24.16 22.84

doi:10.1371/journal.pone.0100240.t002

Table 3. LSSIM results for quantitative comparison of RNLM and RNLM-CPP algorithms with parameters (rp = 1, rs = 5, a = 4, and
b = 5) for T1w, T2w and PDw images.

Data type Filtering method Noise level

1% 3% 5% 7% 9%

T1w No filtering 0.9979 0.9806 0.9423 0.9025 0.8747

RNLM 0.9895 0.9865 0.9705 0.9654 0.9448

RNLM-CPP 0.9989 0.9940 0.9810 0.9785 0.9634

T2w No filtering 0.9993 0.9918 0.9822 0.9686 0.9472

RNLM 0.9878 0.9853 0.9778 0.9689 0.9661

RNLM-CPP 0.9995 0.9961 0.9932 0.9880 0.9825

PDw No filtering 0.9992 0.9934 0.9830 0.9575 0.9437

RNLM 0.9769 0.9737 0.9686 0.9400 0.9365

RNLM-CPP 0.9995 0.9969 0.9956 0.9783 0.9662

doi:10.1371/journal.pone.0100240.t003
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Figure 6. Comparison of RNLM and RNLM-CPP algorithms on denoising real T1 image. Top row, from left to right: real T1w image and
denoised results from different algorithms. Second row, from left to right: zoomed image in the square of the top-left image. Third row: intensity
profile of noisy image and denoised images located on the cyan line across the particle. Bottom row, from left to right: corresponding residuals.
doi:10.1371/journal.pone.0100240.g006
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indicated by arrows in the zoomed images (the second row in

Figure 7), was blurred by the RNLM algorithm, but preserved

well by the RNLM-CPP algorithm. The filtering effect of the two

algorithms can be more clearly observed from the intensity profiles

along a line across the particle (the third row in Figure 7). The

residual images of the two algorithms shown in the bottom row of

Figure 7 also illustrate that the RNLM-CPP algorithm shows

more uniform denoising effect than the RNLM algorithm.

Discussion

The NLM algorithm has the ability to reduce noise while

preserving details in the image, and its Rician noise version

(RNLM) is successfully applied to suppress noise in MR images

Figure 7. Comparison of RNLM and RNLM-CPP algorithms on denoising real diffusion-weighted image. Top row, from left to right: real
diffusion-weighted image and denoised results from different algorithms. Second row, from left to right: zoomed image in the square of the top-left
image. Third row: intensity profile of noisy image and denoised images located on the cyan line across the particle. Bottom row, from left to right:
corresponding residuals.
doi:10.1371/journal.pone.0100240.g007
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[18,21,23]. However, the traditional RNLM filter generally blurs

or even filters out clinically relevant small high-contrast particles,

which is a well-known problem that has not been addressed. In this

paper, we demonstrated the particle blurring of the RNLM

algorithm was caused by setting self-weight as the maximum

weight of non-central pixels in the search window. Based on this

finding, we proposed a novel RNLM-CPP algorithm using

combined patch and pixel similarity. The evaluation results on

simulated and in vivo brain MR data showed that the proposed

RNLM-CPP algorithm could preserve particles better than the

original RNLM algorithm.

The simulation study has the advantage of providing quanti-

tative evaluation of denoising performance. The PSNR, a widely-

used measure for evaluating denoisng performance, is dependent

on the difference between the whole denoised image and the

ground truth, and this difference is mainly from two sources: the

blurred particles and the remanent noise after filtering. The

remanent noise in the filtered image usually increases with noise

levels, and the relative contribution of the blurred particle to

PSNR will decrease with noise levels. Thus, at high noise levels (.

3%), the PSNRs of the RNLM and RNLM-CPP algorithms

become closer. PSNR is a global measure defined on the whole

image, thus cannot well reflect the particle preserving perfor-

mance. For a quantitative evaluation of particle preserving, we

resorted to LPSNR and LSSIM defined on local regions of

particles. The lower LPSNR and LSSIM of RNLM compared

with no filtering in Tables 2 and 3 are because the increased

error of particle blurring exceeds the reduced noise error by this

filter. Compared with RNLM and no filtering, the higher LPSNR

and LSSIM of RNLM-CPP demonstrated that RNLM-CPP can

preserve better small high contrast particles while reducing noise.

In practice, high PSNR does not certainly correspond to

optimal filtering in the visual perception sense, and quantitative

evaluation is generally impossible for real MR images because of

the unknown truth. Thus, visual inspection of the filtered images

and their residuals is important to evaluate denoising performance.

According to visual inspection, the RNLM-CPP algorithm can

obtain better particle-keeping performance than the RNLM

algorithm in the simulation and in vivo studies (Figures 3, 4,
5, 6, 7). In addition, the RNLM-CPP algorithm can yield a result

with better spatial uniform effect than the RNLM algorithm in the

residual images. The bright area in the residual images of RNLM

algorithm mainly corresponds to the blurring of particles.

The proposed RNLM-CPP algorithm identifies high-contrast

particles by comparing the intensity of the central pixel with the

intensities of other pixels in the search window, based on the

assumption that hyperintensity or hypointensity signals are not

from noise. This assumption generally holds in magnitude MR

images where the noise generally follows a Rician [16] or non-

central Chi distribution [17], because the probability that the

intensity difference produced by the noise is larger than a

threshold (for example, 5 times the SD of noise) is quite small.

The pixel similarity was imposed by a predefined function of

intensity difference between pixels to distinguish the particles from

the noise. The use of other weight functions such as Gaussian,

triangular, and hard thresholding, can be investigated in future but

beyond the scope of this study. Actually, the adopted function can

also be considered as a soft thresholding method, which has an

easily adjustable transition region around the threshold. If a hard

threholding method is adopted as the function of pixel similarity

instead, the proposed method will be equivalent to preselection

pixels in the search window based on the intensity difference

between the central pixel of two patches, which is designed for

particle discrimination and is different from other existent

preselection strategies that are based on the mean and the

variance of patches and designed to decrease the computational

burden [22,23,30].

The performance of the RNLM and RNLM-CPP algorithms

depends on the setting of filtering parameters: the radius of search

window rs, the radius of patch window rp, and the smooth kernel h.

In this study, the optimal parameters were determined by the

PSNR criterion from the synthesized brain MR images and

transferred to denoising real MR images, in a similar way to that

in the UNLM algorithm [18]. Because the true image is unknown,

the optimal parameters in denoising real MR data can only be

subjectively determined by the visual inspection of denoised

images and corresponding residuals. The preliminary results

demonstrate that these simulation-determined optimal parameters

have the potential to achieve satisfactory performance in denoising

real MR data. Further validation of the optimal filtering

parameters on a large amount of data by the experienced clinician

is required before applying the method in practice.

Preliminary results of the denoised diffusion-weighted images

demonstrate that the RNLM-CPP algorithm may benefit the

clinical diagnosis of small infarction lesions without the particle-

blurring effect in the original RNLM algorithm. The comparisons

of performance of the RNLM and RNLM-CPP algorithms under

spatially varying noise levels, and their effects on the following

image analysis, such as diffusion tensor imaging, fiber tracking,

and apparent diffusion coefficient quantification are warranted in

future research.

In terms of the computation load, a typical BrainWeb dataset

(18162176181 pixels) took on average 280s for RNLM and 340s

for RNLM-CPP, both of which were implemented slice by slice in

this study. Thus, the RNLM-CPP algorithm does not substantially

increase the computing time compared with the RNLM

algorithm. It should be noted that the above time costs were

acquired by implementing the denoising algorithms in a 2D

fashion, i.e., denoising the 3D data slice by slice. The extension of

the proposed algorithm to a 3D version will further improve the

denoising performance due to the more robust similarity measure

and more similar patterns [18], but will lead to substantially

increased computation cost and usually requires several hours to

denoise a typical BrainWeb 3D dataset of size 18162176181. The

3D version of the denoising algorithms can be accelerated by

preselecting the similarity pixels and parallel computing [18,23].

The difference between the 2D- and 3D-particles should be noted

since the 2D-particles (particles in the 2D image) may derive from

curves in the 3D data besides 3D-particles. There is no obstacle to

supposing that the proposed RNLM-CPP algorithm would

outperform the RNLM algorithm in preserving 3D-particles.

Since particle blurring is caused by determining self-weight as

the maximum weight of non-central pixels in the RNLM

algorithm. Other weighting strategy such as calculating the weight

of central pixel based on Stein’s unbiased risk estimate (SURE)

principle [31,32] may also preserve particles well. However, this

SURE-based approach is established in the presence of Gaussian

noise, and is not suited for denoising MR images where the noise

generally follows the Rician distribution. It should be noted that

grouping similar patches into blocks and denoising each block by

exploiting sparseness [33,34] also has the potential to keep well

particles and has been demonstrated better denoising performance

than the NLM-based algorithms [35]. The comparison of the

proposed method with these block-matching and sparseness-based

methods was not implemented, since the focus of this study is to

address and improve the particle preserving capability of the

RNLM algorithm.
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In conclusion, the extensive results suggest that the RNLM-CPP

algorithm can preserve small high-contrast particle details, which

are clinically relevant but usually blurred by the original RNLM

algorithm.
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