Skip to main content
. 2014 Jun 16;9(6):e100240. doi: 10.1371/journal.pone.0100240

Table 3. LSSIM results for quantitative comparison of RNLM and RNLM-CPP algorithms with parameters (rp  = 1, rs  = 5, Inline graphic = 4, and Inline graphic = 5) for T1w, T2w and PDw images.

Data type Filtering method Noise level
1% 3% 5% 7% 9%
T1w No filtering 0.9979 0.9806 0.9423 0.9025 0.8747
RNLM 0.9895 0.9865 0.9705 0.9654 0.9448
RNLM-CPP 0.9989 0.9940 0.9810 0.9785 0.9634
T2w No filtering 0.9993 0.9918 0.9822 0.9686 0.9472
RNLM 0.9878 0.9853 0.9778 0.9689 0.9661
RNLM-CPP 0.9995 0.9961 0.9932 0.9880 0.9825
PDw No filtering 0.9992 0.9934 0.9830 0.9575 0.9437
RNLM 0.9769 0.9737 0.9686 0.9400 0.9365
RNLM-CPP 0.9995 0.9969 0.9956 0.9783 0.9662