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Abstract

Voltage-gated Ca2+ (CaV) channels mediate Ca2+ ions influx into cells in response to

depolarization of the plasma membrane. They are responsible for initiation of excitation-

contraction and excitation-secretion coupling, and the Ca2+ that enters cells through this pathway

is also important in the regulation of protein phosphorylation, gene transcription, and many other

intracellular events. Initial electrophysiological studies divided CaV channels into low-voltage-

activated (LVA) and high-voltage-activated (HVA) channels. The HVA CaV channels were

further subdivided into L, N, P/Q, and R-types which are oligomeric protein complexes composed

of an ion-conducting CaVα1 subunit and auxiliary CaVα2δ, CaVβ, and CaVγ subunits. The

functional consequences of the auxiliary subunits include altered functional and pharmacological

properties of the channels as well as increased current densities. The latter observation suggests an

important role of the auxiliary subunits in membrane trafficking of the CaVα1 subunit. This

includes the mechanisms by which CaV channels are targeted to the plasma membrane and to

appropriate regions within a given cell. Likewise, the auxiliary subunits seem to participate in the

mechanisms that remove CaV channels from the plasma membrane for recycling and/or

degradation. Diverse studies have provided important clues to the molecular mechanisms involved

in the regulation of CaV channels by the auxiliary subunits, and the roles that these proteins could

possibly play in channel targeting and membrane Stabilization.

INTRODUCTION

Voltage-gated Ca2+ (CaV) channels are a family of transmembrane proteins widely

distributed in excitable cells and also found in many nonexcitable cells. These channels open

when the plasma membrane becomes depolarized mediating Ca2+ entry in response to action

potentials and subthreshold depolarizing signals. Ca2+ entering the cell through CaV

channels serves as the second messenger of electrical signaling, initiating a variety of

cellular events including neurotransmitter and hormone release, muscle contraction, enzyme

activation, and gene expression, among many others. Signal transduction in different cell
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types involves diverse molecular subtypes of CaV channels, which mediate currents with

distinct physiological and pharmacological properties.1

CaV channels have been grouped into two distinct classes depending on their voltage

sensitivity (Table 1). Channels that are activated at relatively hyperpolarized voltage ranges

(less than or equal to −40 mV) have been named low-voltage-activated (LVA) or T-type,

whereas channels that are activated at potentials more positive to −40 mV have been termed

high-voltage-activated (HVA). HVA CaV channels can be further subdivided into L-, N-, P-,

Q-, and R-types (Table 1), by virtue of their distinct functional and pharmacological

profiles.1

Members of the HVA class are heteromultimers of a pore-forming CaVα1 subunit that

coassembles into a functional channel complex with auxiliary CaVβ, CaVα2δ, and in some

cases with CaVγ subunits (Figure 1(a)). In contrast, members of the LVA channel CaV class

are thought to be CaVα1 subunit monomers.2 The CaVα1 subunit defines the channel

subtype, whereas the auxiliary subunits regulate the CaVα1 subunit function and plasma

membrane expression.1,3 Molecular studies have shown that the CaVα1 subunit is comprised

of four homologous repeats each containing six transmembrane helices (S1–S6) and a pore

lining P-loop domain (Figure 1(b)). These homologous membrane repeats are connected via

cytoplasmic loops and flanked by intracellular N-and C-termini.1

Ten different CaVα1 subunits grouped into three subfamilies are expressed in mammals1

(Table 1). The CaV1 subfamily encodes L-type Ca2+ channels and includes four members

(CaV1.1–CaV 1.4). The CaV2 subfamily consist of three members (CaV2.1–CaV2.3) that

encode the neuronal P/Q-type, N-type, and R-type channels, respectively. The P- and Q-type

channels appear to arise from alternate splicing of CaV2.1 and/or coassembly with distinct

CaVβ subunits.4,5 Last, the CaV3 subfamily includes the LVA (T-type) channels with three

members (CaV3.1–CaV3.3).

EFFECTS OF THE AUXILIARY SUBUNITS ON HVA CaV CHANNEL

FUNCTION, TRAFFICKING, AND MEMBRANE STABILITY

CaV channel trafficking and regulation mechanisms involve many different aspects

including intrinsic channel protein structural determinants, interactions with regulatory

elements such as second messengers and/or with extrinsic proteins to the channel complex.

However, as we shall discuss later, associations with auxiliary subunits CaVβ and CaVα2δ

are thought to play crucial roles in fine-tuning channel gating, regulating channel

modulation by other proteins and signaling molecules, as well as in forward trafficking and

removal of CaV1 and CaV2 channels from the plasma membrane.6,7

THE CaVβ SUBUNITS

The CaVβ subunits are cytoplasmic proteins that bind to the proximal region of the

intracellular loop between domains I and II of the CaV1α1 and CaV2α1 subunits termed the

α-interaction domain (AID)8 (Figure 1(b)). There are four subfamilies of CaVβ subunits

(CaVβ1–CaVβ4), each with splice variants, encoded by four distinct genes.9 All CaVβ
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subunits contain conserved Src homology 3 (SH3) and a guanylate kinase-like (GK)

domains9,10 (Figure 1(c)), placing them into the membrane-associated guanylate kinase

(MAGUK) protein family, scaffold proteins that function at neuronal synapses, tight

junctions, immunological synapses, and neutrophil membranes.11 The general structural

features of guanylate kinases are preserved in the GK domain of the CaVβ subunit (Cavβ-

GK) though many key amino acid residues are absent rendering it catalytically inactive.12

Instead, this domain has evolved into a protein–protein interaction module, binding tightly

to the CaVα1 subunit through the AID.13–15 Likewise, a large portion of the CaVβ-GK

domain remains free to interact with other proteins, such as RGK GTPases16–18 and the

largeconductance Ca2+-dependent K+ channels.19 The SH3 and Cavβ-GK conserved

domains are flanked by regions of variable sequence and length between isoforms and splice

variants of each isoform.9,12,20

When coexpressed in heterologous systems with CaV1α1 or CaV2α1, CaVβ auxiliary

subunits significantly enhance Ca2+ currents and affect the voltage dependence and kinetics

of current activation and inactivation.21–27 Furthermore, CaVβ subunit presence may be

important for CaV1 and CaV2 channel modulation by different protein kinases,28–32 G

proteins,33–35 Ras-related monomeric small GTP-binding proteins36–39 as well as by

proteins of the vesicle release machinery including Rab3-interacting molecule 1.40–43

Results from CaVβ subunit knockout mice have confirmed the physiological relevance of

these auxiliary subunits. CaVβ1 and CaVβ2 subunit knockouts are lethal,44,45 while CaVβ3

and CaVβ4 knockouts result in severe malfunction of the central nervous system.46,47

Likewise, diverse studies have suggested that the CaVβ subunits may participate in

physiological events independent of their association with CaV channels. It has been

suggested that a truncated splice variant of CaVβ4 lacking the GK and the C-terminal

domains interacts directly with the heterochromatin protein 1 (HP1), attenuating its function

as gene silencing factor.48 More recently, Zhang et al.49 confirmed that full-length CaVβ

subunits may function as transcription regulators. In particular, CaVβ3 can interact and

suppress the transcriptional activity of Pax6(S), a critical factor for the development of the

eye and the nervous system. In addition, upon neuronal differentiation, CaVβ4 can interact

with B56δ, a nuclear regulatory subunit of the phosphatase 2A (PP2A), and the

heterochromatin protein, HP1γ. This complex relocates to the nucleus, where it regulates the

dephosphorylation of histones, a key mechanism in transcriptional regulation, and associates

to the tyrosine hydroxylase (TH) promoter through the nuclear transcription factor thyroid

hormone receptor α. This signaling cascade evidences the role of CaVβ4 as a repressor

recruiting platform to control neuronal gene expression.50,51

Given their essential role in the functional expression and modulation of HVA CaV

channels, it is not surprising that CaVβ auxiliary subunit mutations have been implicated in

disease. Cavβ knockout animals and spontaneous occurring mutants have severe phenotypes

that are in some cases lethal.9,12,52 For instance, the CaVβ1a subunit isoform is selectively

expressed in skeletal muscle where it partners with CaV 1.1α1 subunit and is necessary for

excitation-contraction coupling. Consequently, the Cavβ1a subunit knockout mice, similar to

CaV1.1α1 knockouts, are motionless and die after birth from asphyxiation.44 Similarly,

CaVβ2b expression is predominant in the heart and knockouts of this subunit die prenatally
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due to lack of cardiac contractions.45 CaVβ3 subunit knockouts show altered perception of

inflammatory pain as a result of reduced N-type CaV channel expression in dorsal root

ganglia47 and have compromised sympathetic control, likely due to reduced N- and L-type

channel activity.53 Last, lethargic (lh) mice are naturally occurring CaVβ4 subunit

knockouts. The lethargic phenotype includes ataxia, seizures, absence epilepsy, and

paroxysmal dyskinesia,46,52 associated with reduced excitatory neurotransmission in

thalamic neurons.54

In humans, two point mutations in the CaVβ2b subunit have been implicated in

cardiovascular diseases. The first mutation contributes to a type of sudden death syndrome

characterized by a short QT interval and an elevated ST-segment,55 and the other is linked to

the Brugada syndrome.56 Likewise, mutations in the CACNB4 gene have been linked to

epilepsy and episodic ataxia.57

As mentioned earlier, CaV1α1 and CaV2α1 channel subunits show poor surface expression

by themselves, however, upon coexpression of the auxiliary subunits currents are

significantly increased reflecting either enhanced channel open probability or cell surface

expression.58,59 The increase in surface expression can be observed both in native and

recombinant channels with any of the CaVβs and seems to be dependent on binding to the

AID, as point mutations that disrupt the AID/CaVβ interaction reduce or abolish CaVβ-

mediated current stimulation.8 Interestingly, in heterologous systems the GK domain can

recapitulate the function of the full-length CaVβ subunits increasing channel surface

expression.60,61

An initial explanation of how the CaVβ subunits enhance channel surface expression was

that they antagonize an endoplasmic reticulum (ER) retention signal located in the I-II linker

that severely restricts the plasma membrane incorporation of the CaVα1 subunit58 (Figure

2(a)). More recently, this idea has been enriched based on data obtained after transferring

the intracellular linkers of the CaV1.2α1 subunit into a T-type channel (CaV3.1). The results

of these experiments suggest that the I-II linker of CaV1.2α1 has an ER export signal of 9

amino acids downstream the AID.62 On the other hand, all other intracellular linkers,

including the N- and C-termini, were found to contain ER retention signals. Consequently, it

was proposed that the intracellular regions in the CaVα1 subunit form a complex that yields

a prevailing ER retention signal, and when the CaVβ subunit binds to the I-II linker, it

triggers a switch in the channel complex such that the ER export signal becomes dominant,

enhancing CaVα1 surface expression (Figure 2(b)). In this process, the CaVα1 C-terminus

may play also an important role for Cavβ-dependent channel upregulation.12,62,63

There are also studies that point to the importance of intramolecular domains in the

physiology of the CaVβ subunits. In particular, it has been reported that CaVβ3 contains two

PEST-like sequences, potential signals for rapid protein degradation,64 sensitive to the Ca2+-

dependent protease calpain. CaVβ3 mutants lacking the PEST sequences induce increased

CaV2.2 current densities,64 suggesting that CaVβ subunit proteolytic cleavage may be

important for Ca2+ channel surface expression.
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Likewise, the role of CaVβs as critical determinants of channel cell surface expression has

been also evidenced by protein–protein interaction assays. Using a yeast two-hybrid

screening approach, Béguin et al.36 initially uncovered a link between regulation of CaV

channel trafficking and signaling by small guanosine triphosphatases (GTPases). Using the

CaVβ3 subunit as bait to screen a cDNA library these authors identified the Ras-like GTPase

kir/Gem as an interacting partner. Interestingly, the binding of kir/Gem to CaVβ3 inhibited

their assembly with the CaVα1 subunit, such that kir/Gem cotransfection drastically

inhibited CaV channel functional expression.36

In line with this, using an extracellular epitope to probe for surface expression of the

channels, subsequent studies showed a drastic reduction of fluorescent signal when channels

and their subunits were coexpressed with the small GTPase RGK.37,38 This led to the initial

conclusion that the RGK proteins disrupt the CaVα1/CaVβ subunit association, thus retaining

newly synthesized channels in the ER and reducing the number of functional channels in the

plasma membrane. However, it has been shown more recently that the reduction in surface

expression of CaV 1.2 channels by small GTPases (e.g. Rem), seems to occur by enhancing

the dynamin-dependent endocytosis pathway rather than by a sequestration of the CaVβ

subunits by the small GTPase.16 Interestingly, restoring CaV1.2 surface expression by

coexpressing a dominant negative dynamin mutant was not sufficient to restore current

densities, suggesting that Rem has at least one other mode of action to inhibit currents, most

likely an effect on channel open probability.65,66

Recent work from Colecraft’s group offers new insight into the complex mode of RGK-

mediated CaV channel inhibition. According to their proposal which is based on a

customized mechanism at both the channel and GTPase level, distinct RGKs differentially

use CaVβ-binding-dependent and CaVα1-binding-dependent mechanisms to inhibit CaV1

and CaV2 channels.17 In this scenario, Rem may inhibit CaV 1.2 channel using both CaVβ-

binding-dependent and independent mechanisms and binding to CaVβ is required for Rem-

mediated decrease in CaV1.2 channel surface density and open probability. On the other

hand, Rem associates directly with CaV1.2α1 to initiate β-binding-independent inhibition

while inhibits CaV2.2 channels using a solely CaVβ-binding-dependent mechanism.17

The CaVβ subunits have been also implicated in trafficking of CaV channels to specific

subcellular regions. Vendel et al.67 found that CaVβ4a, one of the two alternative splicing

variants of the N-terminal A domain of the CaVβ4 auxiliary subunit,68 may exert functions

other than modulation of channel gating and trafficking by interacting with the microtubule-

associated protein 1A (MAP1A) as well as synaptotagmin I, an important protein for

presynaptic vesicle release. These interactions suggest that the CaVβ4a subunit may act as a

scaffolding element to facilitate coupling of Ca2+ signaling with neurotransmitter release.

Since the Cavβ4a-synaptotagmin I interaction is disrupted by Ca2+,67 it has been speculated

that at basal Ca2+ levels CaVβ4a may interact both with the CaV2.1α1 subunit and the vesicle

protein to organize the machinery necessary for vesicle release, and that Ca2+ entry via CaV

channels disrupts this interaction, thus releasing the vesicle to allow fusion with the plasma

membrane.43
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More recently, it has been found that different members of the RIM family, putative

effectors of Rab3, may functionally link CaV channels to proteins in the active zone at the

presynapsis which are related to the machinery for exocytosis69 (Figure 3). Moreover, it has

been reported that several proteins in the active zone including RIM1 modulate neuronal

CaV2.1 channels through interactions with the CaVβ subunits. These interactions not only

modify the inactivation properties of the channels and cause a sustained Ca2+ influx, but

also anchor the neurotransmitter-containing vesicles to the channels in the vicinity.40,41

Similar results have been reported for recombinant L-type channels (of the CaV1.2 and

CaV1.3 class) in insulin-secreting cells.42

THE CaVα2δ SUBUNITS

As in the case of CaVβs, the ability of the CaVα2δ auxiliary subunits to promote membrane

expression of HVA CaV channels is well established.6,70 Four subtypes of CaVα2δ proteins

encoded by four separate genes with several known splice variants have been described.71,72

In general, the Cacna2d genes (coding the CaVα2δ subunits) are translated as precursor

proteins that are proteolytically cleaved into a transmembrane δ region and an extracellular

α2 domain, that remain linked by a disulphide bond.3,6,70 The extracellular α2 region is

heavily glycosylated and contains several functional domains, including a 178 amino acid

von Willebrand factor-A (vWFA) domain similar to extracellular matrix-binding regions of

integrins, a 5 amino acid metal ion-dependent adhesion site (MIDAS) motif and a poorly

understood 92 amino acid Cache domain6 (Figure 1(d)). The transmembrane domain of δ

and some extracellular regions of α2 are thought to associate with the CaVα1 subunit of

HVA channels.73

Although the functional relevance of the CaVα2δ subunits is not fully understood, there is

compelling evidence indicating a role in trafficking and also in the modulation of channel

biophysical properties. Heterologous expression of CaVα2δ with various CaVα1 and CaVβ

subunits results in increased current densities, as well as altered current kinetics and current–

voltage relationships.23,25,74–79 The increase in current density is generally explained by

improved targeting of CaV channels to the plasma membrane74,78 and significant reduction

in the rate of entry of surface resident channels into degradation pathways.80 Additionally,

the CaVα2δ subunits have been involved in cell surface organization of CaV channels. It has

been shown that CaVα2δ-1 (and likely the other CaVα2δ subunits) not only partitions into

lipid rafts itself but also mediates raft-partitioning of neuronal CaV2.2 channel

complexes.81–83

Recently, a mechanism has been proposed for CaV channel localization to lipid rafts which

challenges the conventional structural model of the CaVα2δ subunits. This suggests that

CaVα2δ associates with the plasma membrane via a glycosylphosphatidylinositol (GPI)

anchor in the δ domain.84 In order to examine the role of membrane anchoring of the

CaVα2δ-1 subunit on its biochemical and functional properties, Dolphin and her colleagues

generated a CaVα2δ-1 truncated at the putative GPI-anchor ω-site, which removes the C-

terminal hydrophobic domain (α2δ-1 ΔC-term85). Unexpectedly, the α2δ-1 ΔC-term protein

was able to produce a significant increase of Ca2+ currents in cells expressing CaV2.1/CaVβ1

channels. Likewise, these authors did not observe any effect upon external application of
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secreted α2δ-1Δ C-term, which suggested that an intracellular interaction with other subunits

may be needed for the complete functionality of the CaVα2δ-1 subunit in the channel

complex. Last, a large proportion of α2δ-1 Δ C-term was secreted into the medium, but

despite the lack of a C-terminal membrane anchor, the α2δ-1Δ C-term proteins remained

partially associated with the plasma membrane. It has been speculated that this interaction

may occur via a noncovalent linkage formed during the maturation and trafficking of the

protein.85 Other studies, have also shown that the raft localization of CaVα2δ is preserved

after replacement of the GPI anchoring motif,83 which is consistent with the idea that the

CaVα2δ subunits may reside in lipid rafts via protein–protein and/or specialized lipid–

protein interactions.

As mentioned earlier, during biosynthesis the CaVα2δ subunits are generated as precursor

proteins which undergo post-translational cleavage, oxidation, and glycosylation to yield

mature proteins comprised of disulphide-linked α2 and δ glycopolypeptides.86–88 Although

the precise functional role of the post-translational modifications of the CaVα2δ subunits has

not yet been fully defined, it has been suggested that they could play a role in channel

trafficking. Initial experiments by Gurnett et al.75 showed that N-linked glycosylation play a

critical role for surface expression of CaV2.2 channels since the Ca2+ current stimulation

normally observed after CaVα2δ coexpression was virtually abolished by deglycosylation.

Moreover, by combining electrophysiology with site-directed mutagenesis two N-

glycosylation sites were found in the α2 domain of the protein that are required for the

auxiliary subunit-induced current stimulation. Given that the mutation of these sites

prevented current stimulation without altering its kinetic properties, a regulation on the

number of functional channels at the plasma membrane was suggested.86

In addition, alterations in the proteolytic cleavage that typically separates the extracellular

α2 from the transmembrane δ domain89 may interfere with proper assembly and trafficking

of the CaV2.2 channel complex. After mutation of the amino acids in the proteolytic site,

CaVα2δ becomes insensitive to proteolytic cleavage and loses its ability to increase currents.

These changes are not accompanied with alterations in the voltage dependence or kinetics of

the channels, suggesting a reduction in the number of channels targeted to the plasma

membrane.87

Disulfide bond formation seems to be also important for channel cell surface expression.

Recent studies have shown that a pair of conserved cysteine residues at positions 404 and

1047, located in the vWFA region of α2 and the extracellular domain of δ, respectively,

form a single intermolecular disulfide bridge required for normal α2δ−1 subunit function.88

In these studies, it was shown that whereas there was a significant increase in current density

through CaV2.2α1/β3 channels upon cotransfection with wild-type CaVα2δ−1, Cys404Ser,

and Cys1047Ser mutations had little influence in current density, implying that formation of

an intra-subunit disulfide bond between these residues is essential for CaVα2δ-1 functional

enhancement of currents, and perhaps for CaV channel trafficking to the plasma membrane.

Likewise, some insights into the role of the CaVα2δ auxiliary subunits in vivo come from a

series of spontaneously occurring mutations in mice. These include two mutations in

CaVα2δ-2 (ducky and entla) that result in similar phenotypes characterized by ataxia,
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paroxysmal dyskinesia, and spike wave seizures.52,90,91 In humans, a mutation in CaVα2δ-4

that introduces a premature stop codon that truncates one-third of the corresponding open

reading frame presumably underlies a channelopathy leading to cone-rod dysfunction in the

visual system.92 More recently, a novel gene defect in CACNA2D2 encoding the CaVα2δ-2

subunit has been associated with early infantile epileptic encephalopathy a disease that

usually manifest as severely impaired cognitive and motor development.93 Last, mutations

in the CACNA2D1 gene might be associated with some forms of cardiac dysfunction,

including the Brugada and long QT syndromes.94,95

Interestingly, it has been reported that experimental peripheral nerve injury results in

increased levels of Caα2δ-1 mRNA in damaged dorsal root ganglion (DRG) sensory

neurons, as well as a corresponding increase in protein levels in the neuronal cell bodies and

at their presynaptic terminals in the spinal cord.96–98 Furthermore, mice overexpressing the

CaVα2δ-1 subunit show a neuropathic phenotype of hyperalgesia and tactile allodynia in the

absence of nerve injury,99 suggesting that CaVα2δ-1 is instrumental to the excitability of

DRG neurons and the expression of neuropathic pain.

Evidence supporting the role of the CaVα2δ subunits in the promotion of surface expression

of channels comes, in part, from the fact that CaVα2δ is the principal target for a group of

small molecules with analgesic effects called gabapentinoids.100 Although the mechanisms

by which these drugs alleviate pain is not well understood, they seem to act intracellularly

after chronic but not acute treatment.79,101–105 Therefore, Vega-Hernandez and Felix102

initially formulated the hypothesis that gabapentinoids could be impairing the ability of

CaVα2δ to enhance the number of channels in the plasma membrane, via an effect on

trafficking. Subsequent studies showed that indeed GBP acting chronically by displacing an

endogenous ligand that is normally a positive modulator of CaVα2δ, could be interfering

with the function of the vWFA domain impairing CaV channel trafficking to the

membrane78,104 (Figure 4).

In addition, gabapentin has been shown to inhibit Rab11-dependent recycling of N-type CaV

channels from the plasma membrane.106 However, not only the trafficking and recycling of

recombinant CaV channels appears to be impeded by gabapentin but also the enhancement

of native N-type channel at the cell surface associated with chronic pain.98 It is worth

mentioning that endosomal trafficking may represent an important mechanism for

maintaining proper plasma membrane expression of distinct native CaV channels,107,108

though the role of CaVα2δ in this process, if any, is yet to be determined.

Last, although investigations regarding the role of the auxiliary subunits on subcellular

distributions of CaV channels have primarily focused on the CaVβ subunits in neurons,40,41

initial studies using L-type channels have revealed that the CaVα2δ subunits may also play a

role in this process. Hence, it has been reported that the RalA GTPase regulates CaV channel

activity, and acts as a chaperone for hormone secretory granules to L- and R-type channels

on the plasma membrane, where these granules become tethered, in preparation for the

formation of excitosome complexes with vesicle and plasma membrane SNARE proteins.

Notably, this interaction occurs through a physical association between RalA and

CaVα2δ-1,109 suggesting that the RalA/CaVα2δ-1 complex likely engage and traffic
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secretory granules to the plasma membrane-bound CaVα1 subunits to be able to then

conduct Ca2+ through functional channels at precise sites where hormone release occurs.

ROLE OF THE AUXILIARY SUBUNITS ON HVA CaV CHANNEL REGULATED

DEGRADATION

Recent studies have proposed that the CaVβ auxiliary subunits increase channel surface

expression by preventing CaVα1 ubiquitination and proteasomal degradation.63,110 Indeed,

CaV1.2 channels are tonically ubiquitinated and the degree of ubiquitination seems to be

increased in the absence of the CaVβ subunits by an ER associated ubiquitin ligase called

RFP2. Hence, in the absence of CaVβ, an interaction occurs between the channel and

proteins related to the ER Associated Protein Degradation (ERAD) system. The end result of

this is channel retrotranslocation and proteasomal degradation in the cytosol. On the other

hand, in the absence of the CaVβ subunits, a proteasome inhibitor can rescue CaVα1 surface

expression.110

These results suggest that the Cavβ subunits may be required to help CaVα1 (particularly of

the CaV1.2 and CaV2.2 class) escape the ubiquitin proteasome system (UPS) degradation

pathway.63,110 Consistent with this, reduced levels of bulk CaV2.2 and Ub-CaV2.2 proteins

are observed in the absence of CaVβ subunits.111 In this regard, elements in the proximal C-

terminus of a CaV2.2α1 alternative splice variant (e37b) predispose cloned and native

channels to downregulation by the UPS.111 Therefore, the question arises as to whether

sequences unique to e37b may destabilize the CaV2.2/CaVβ subunit interaction leading to

increased ubiquitination and degradation by the UPS.

In a similar manner, it has been suggested that the CaVα2δ-1 subunit may play a role in

stabilizing CaV channel functional expression once delivered to the plasma membrane. By

examining the binding, internalization, and degradation kinetics of recombinant N-type

(CaV2.2α1δ/CaVβ1b) channels in the presence or the absence of CaVα2/δ-1, Bernstein and

Jones80 proposed that the CaVα2δ subunits may act, at least in part, reducing the entry of

surface resident CaV channels into degradative pathways. Computer modeling of trafficking

data showed that CaVα2δ stabilizes N-type channels after their delivery to the cell surface

through a significant reduction in the rate constants for internalization and degradation.80

These kinetic changes help to explain the enhanced N-type channel expression levels and

suggest that, in conjunction with forward trafficking effects (see the preceding section), the

CaVα2δ subunits play a significant role in defining HVA CaV channel functional expression.

Last, it is well established that skeletal muscle L-type Ca2+ channels contain a CaVγ1

subunit which includes four transmembrane helices.1,3 It was subsequently shown that

neurons express at least four homologues of CaVγ1,112 most notably CaVγ2 also known as

stargazin,113,114 which in addition to regulate CaV channel function may also play a role in

mediating AMPA receptor trafficking to the synapsis.115 In general, the γ subunits appear to

be inhibitory and their physiological relevance is emphasized by the epileptic phenotype in

the stargazer mouse, a spontaneous mutant that lacks the CaVγ2 subunit.52,112,113,115
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Although it has been shown that CaVγ1, CaVγ2, and CaVγ7 drastically reduce Ca2+ current

density in heterologous expression systems,116–119 it is worth noting that these effects may

not be associated with altered channel trafficking but most likely occur as a result of changes

in channel expression. Interestingly, the effect of the CaVγ subunits resemble the inhibition

of the CaV2.2 currents induced by the coexpression of truncated CaV2.2 constructs,120

which occurs after the activation of PERK, a component of the unfolded protein response

(UPR).118,121 When UPR is initiated, an immediate consequence is the inhibition of protein

biosynthesis through phosphorylation of the translation initiation factor eIF2α.122

PERSPECTIVES

Molecular and cellular biological studies have begun to explore the intriguing question of

the spatial and temporal control of CaV channel density in the plasma membrane. These

studies will surely be followed with more mechanistic analyses of the trafficking, targeting,

recycling, and degradation, as well as their interactions with the cytoskeleton and regulation

by cellular activity. Future studies must consider also other important variables such as

distinct cell phenotypes, developmental, and cell cycle stages, and the dynamic arrangement

of microdomains within a given cell. Therefore, the molecular characterization of the

possible roles of CaV channel auxiliary subunits is only one of the crucial early steps

towards understanding how different cells regulate membrane expression and organization

of CaV channels for functional purposes. Undoubtedly, the current shortage of knowledge

will be the motivation for intensive work in this field in the near future.
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FIGURE 1.
Subunit composition of high-voltage-activated Ca2+ channels and structural domains of the

auxiliary subunits. (a) Channel complex is composed of the pore-forming CaVα1 and the

auxiliary CaVα2δ, CaVβ, and CaVγ subunits. The CaVα2δ and CaVγ subunits contain

transmembrane domains, whereas CaVβs are intracellular. (b) The CaVα1 subunits consist of

four transmembrane domains (I–IV) and the linker joining I and II encompasses the α-

interaction domain (AID). (c)The CaVβ subunits are formed by three conserved domains:

PSD95/Dlg1/ZO-1 (PDZ), Scr homology 3 (SH3), and guanylate kinase (GK). The CaVβ

subunit interaction domain (BID) is one of the regions involved in the interaction of the

protein with the CaVα1 subunit. (d) The CaVα2δ subunits consist of α2 (blue), which is an

extracellular subunit, disulphide-bonded to the δ subunit (orange), which is membrane-

associated. The approximate positions of the vWA domain and the two bacterial

chemosensory domains (Cache; C) are also indicated. The sites of interaction between the

CaVα1 subunit and the CaVα2δ subunit are unknown.
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FIGURE 2.
Two distinct models for CaVβ subunit-induced increase in CaV channel expression at the

plasma membrane. (a) In the absence of CaVβ, the CaVα1 subunit remains trapped within the

endoplasmic reticulum (ER) by binding via the I-II loop onto an ER retention protein

(ERRP) of unknown identity. Expression and subsequent binding of the CaVβ subunit to the

I-II loop relieves the trafficking clamp imposed by the ERRP and allows CaV channel

complexes to be targeted to the cell surface. (b) In the absence of CaVβ, an ER export signal

(blue) present on the CaVα1 subunit I-II loop is functionally overcome by ER retention

signals (pink) present in different regions of the protein, leading to channels being retained

in the ER. Upon CaVβ binding to the CaVα1 subunit, a C-terminus-dependent

conformational change of the intracellular domains occurs that diminishes the strength of

ER retention signals leading to channel transport to the plasma membrane.
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FIGURE 3.
Functional coupling between CaV channels and secretory vesicles via the CaVβ subunit. (a)

RIMs anchor synaptic vesicles next to channels through its interaction with zone-specific

proteins (Rab3) and the CaVβ subunit. After depolarization, RIMs regulate the time course

of channel inactivation resulting in a sustained Ca2+ influx. This molecular organization

favors hormone and neurotransmitter release.
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FIGURE 4.
Hypothetical mechanisms of action of gabapentin (GBP). The effect of GBP may be to

displace an endogenous ligand (L-leucine) and impair the ability of the auxiliary CaVα2δ

subunit to increase the number of functional channels at the plasma membrane. GBP may be

entering the cells using the system-L transporter protein LAT4 and might be exerting its

effect on intracellular CaVα2δ subunits during assembly and trafficking of the CaV channel

complex to the cell surface.
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TABLE 1

CaVα1 subunits can be divided into three classes according to amino acid sequence identity, as shown in the

dendrogram. The CaV1 and CaV2 classes are termed High-Voltage-Activated (HVA) channels. The CaV3α1

subunits form the Low-Voltage-Activated (LVA) channels. The original names, molecular nomenclature, and

type of currents are given in purple, yellow, and pink, respectively.
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