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ATP	� Adenosine triphosphate
ADP	� Adenosine diphosphate
AMP	� Adenosine monophosphate
ANLS	� Astrocyte-neuron lactate shuttle
CoA	� Coenzyme A
E1	�E 1 subunit of PDH
E2	�E 2 subunit of PDH, also known as dihydrolipoyl 

acetyltransferase
E3	�E 3 subunit of PDH, also known as dihydrolipoyl 

dehydrogenase
E3BP	�E 3 binding protein
FAD	� Flavin adenine dinucleotide
FADH2	� Reduced form of FAD
GDP	� Guanosine diphosphate
GTP	� Guanosine triphosphate
HIF1	� Hypoxia inducible factor 1
LDH	� Lactate dehydrogenase
MPC	� Mitochondrial pyruvate carrier
NAD+	� Nicotinamide adenine dinucleotide
NADH	� Reduced form of NAD+

PC	� Pyruvate carboxylase
PDH	� Pyruvate dehydrogenase
PDK	� Pyruvate dehydrogenase kinase
PDP	� Pyruvate dehydrogenase phosphatase
PEPCK	� Phosphoenolpyruvate carboxykinase
PGC-1α	� PPARγ coactivator 1α

Pi	� Phosphate ion
PK	� Pyruvate kinase
ROS	� Reactive oxygen species

Introduction

Pyruvate is a keystone molecule critical for numerous 
aspects of eukaryotic and human metabolism. Pyruvate is 

Abstract  Pyruvate is a keystone molecule critical for 
numerous aspects of eukaryotic and human metabolism. 
Pyruvate is the end-product of glycolysis, is derived from 
additional sources in the cellular cytoplasm, and is ultimately 
destined for transport into mitochondria as a master fuel 
input undergirding citric acid cycle carbon flux. In mitochon-
dria, pyruvate drives ATP production by oxidative phospho-
rylation and multiple biosynthetic pathways intersecting the 
citric acid cycle. Mitochondrial pyruvate metabolism is regu-
lated by many enzymes, including the recently discovered 
mitochondria pyruvate carrier, pyruvate dehydrogenase, and 
pyruvate carboxylase, to modulate overall pyruvate carbon 
flux. Mutations in any of the genes encoding for proteins reg-
ulating pyruvate metabolism may lead to disease. Numerous 
cases have been described. Aberrant pyruvate metabolism 
plays an especially prominent role in cancer, heart failure, 
and neurodegeneration. Because most major diseases involve 
aberrant metabolism, understanding and exploiting pyruvate 
carbon flux may yield novel treatments that enhance human 
health.
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the end-product of glycolysis, is derived from additional 
sources in the cellular cytoplasm, and is ultimately destined 
for transport into mitochondria where it is the master fuel 
input undergirding citric acid cycle carbon flux (Fig.  1). 
Accordingly, pyruvate is critical for mitochondrial ATP 
generation and for driving several major biosynthetic path-
ways intersecting the citric acid cycle (Fig. 2).

Disruption in pyruvate metabolism, depending on the 
location or severity of the mutation, causes mild to severe 
disease (Table 1). Tissues with a high demand for ATP are 
most affected, with the nervous system being particularly 
vulnerable because of its predominate reliance on carbo-
hydrate metabolism for ATP generation. Aberrant pyruvate 
metabolism may arise from mutations in any of the many 
genes coding for enzymes that regulate it. Most of these 
enzymes have been well studied for decades, yet additional 
critical aspects of pyruvate metabolism are just beginning 

to be understood. The mitochondrial pyruvate carrier 
(MPC), which serves as a highly critical link between 
cytosolic and mitochondrial pyruvate metabolism, was 
only recently identified [1, 2]. This review will discuss the 
enzymes regulating major aspects of pyruvate metabolism, 
their structures, and the biochemical bases for the reactions 
they catalyze, the roles dysfunctional forms play in caus-
ing human disease, and major diseases for which aberrant 
pyruvate metabolism is a prominent characteristic.

Cytosolic pyruvate metabolism

Cytosolic pyruvate originates from several sources (Fig. 1). 
In most cells, the major source of pyruvate is the last step 
of glycolysis, where pyruvate kinase converts phospho-
enolpyruvate to pyruvate. Other significant sources include 

Fig. 1   Enzymes involved in proximal pyruvate metabolism. Pyru-
vate plays an essential role in central carbon metabolism. Pyruvate 
is generated from several sources, including the oxidation of lactate, 
the transamination of alanine, or as the terminal product of glycolysis. 
Entry of pyruvate into the mitochondrial matrix is mediated by the 
MPC. Once in the matrix, pyruvate can be converted to acetyl-CoA 
or oxaloacetate. Oxaloacetate can enter the citric acid cycle to replen-
ish intermediates, or be converted to phosphoenolpyruvate as part 

of the gluconeogenic pathway. Phosphoenolpyruvate can be formed 
from oxaloacetate by PEPCK within the mitochondria or within the 
cytoplasm. The molecular structures of pyruvate and related metab-
olites, as well the names of the enzymes involved in their catalysis, 
are shown. PK pyruvate kinase, LDH lactate dehydrogenase, ALT 
alanine aminotransferase, MPC mitochondrial pyruvate carrier, PDH 
pyruvate dehydrogenase, CoA Coenzyme A, IMS mitochondrial inner 
membrane space, PEPCK phosphoenolpyruvate carboxykinase
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Fig. 2   Pyruvate and citric acid cycle carbon flux. Pyruvate is the 
master carbon fuel input supporting overall citric acid cycle carbon 
flux. Pyruvate transits the inner mitochondrial membrane (IMM) 
through the mitochondrial pyruvate carrier (MPC) to reach the mito-
chondrial matrix. In the matrix, pyruvate carbon enters the citric acid 
cycle as citrate or oxaloacetate, depending on the need to replenish 

oxaloacetate. Numerous metabolic pathways intersect the citric acid 
cycle. The modulation of mitochondrial pyruvate flux balances for 
anaplerotic carbon entrance and cataplerotic carbon exit to ensure 
continued cycle flux. Disruption of mitochondrial pyruvate flux may 
subsequently disrupt carbon flux through any of the pathways inter-
secting the citric acid cycle

Table 1   Overview of enzymes involved in proximal pyruvate metabolism

This table summarizes the reactions catalyzed by the enzymes involved in proximal pyruvate metabolism as well as the symptoms and inci-
dences, where known, of the metabolic deficiencies characterized by their misregulation, mutation, or loss in human patients

Enzyme Reaction Metabolic deficiency symptoms Incidence

Pyruvate dehydrogenase (PDH) Pyruvate +NAD → CO2  
+ Acetyl-CoA + NADH

Neurodegeneration, lactic acidosis, hyper-
pyruvicemia, psychomotor retardation/
developmental delay

Rare (350 + cases) [89, 90]

Lactate dehydrogenase (LDH) Pyruvate + NADH  
↔ lactate + NAD+

Myoglobinuria, elevate pyruvate levels, 
low endurance/exercise intolerance

1:1,000,000 [34, 294]

Pyruvate carboxylase (PC) Pyruvate + ATP + CO2  
→ Oxaloacetate + ADP

Highly variable, depends upon classifica-
tion (Types A, B, or C) May include 
lactic acidosis, developmental delay, and 
elevated proline and alanine levels

1:250,000 [127]

Pyruvate kinase (PK) Phosphoenolpyruvate + ADP  
→ Pyruvate + ATP

Hemolytic anemia, hyperbilirubinemia 1:20,000 [15]

Alanine aminotransferase (ALT) Pyruvate + glutamate ↔  
Alanine + α-ketoglutarate

Unknown (mild) 2.5:1,000 [48]

Mitochondrial pyruvate carrier 
(MPC)

PyruvateIMS ↔ pyruvateMatrix Neurodegeneration, lactic acidosis, hyper-
pyruvicemia, psychomotor retardation

Very rare (2 cases) [1, 68]

Pyruvate dehydrogenase phos-
phatase (PDP)

P-PDH → PDH + Pi Lactic acidosis, elevated pyruvate and 
alanine levels, exercise intolerance, 
hypotonia

Very rare (2 cases) [113, 114]

Pyruvate dehydrogenase kinase 
(PDK)

PDH + ATP → P-PDH  
+ ADP

N/A N/A
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lactate via lactate dehydrogenase (LDH) and alanine via 
alanine aminotransferase (ALT).

Pyruvate kinase

Pyruvate kinase (PK) catalyzes the dephosphorylation of 
phosphoenolpyruvate into pyruvate during the final, irrevers-
ible step of glycolysis. The breakdown of glucose via glycol-
ysis yields two molecules of pyruvate and two net molecules 
of ATP. Thus, glycolysis is an important source of energy for 
most cells in the body. It is especially important in red blood 
cells which lack mitochondria and in skeletal muscle during 
intense periods of work, when ATP production by oxidative 
phosphorylation is insufficient to power muscle contraction. 
PK plays a prominent role here because it catalyzes one of 
the two energy-generating reactions in glycolysis, allowing 
for glycolysis to be an energy-producing pathway.

Four unique PK isozymes, PKM1, PKM2, PKL, and 
PKR, enable the tissue-specific regulation of PK activ-
ity [3]. The PKLR gene encodes both PKL and PKR tran-
scripts through use of alternative promoters and differential 
splicing. PKR is found only in erythrocytes whereas PKL 
is expressed in the liver, kidney, and small intestines [3]. 
The PKM gene encodes the two M or muscle-type iso-
forms, PKM1 and PKM2, which differ by a single alter-
natively spliced exon [4, 5]. In addition to skeletal muscle, 
PKM1 is also expressed in the heart, brain, and most other 
tissues [6]. PKM2 is the embryonic isoform and is found in 
all tissues early in life. As development progresses, PKM2 
is replaced with the other isoforms [7]. Elevated PKM2 
is associated with cancer and will be discussed in greater 
detail in the “Cancer” section of this review.

Crystal structures of several rabbit PK isoforms, as well 
as human PKR, have been determined [8–10]. These struc-
tures show similarity between the human PKR and rabbit 
PKM1 isoforms, suggesting human PKM1 is similarly struc-
tured [10, 11]. The active form of PKR is a homotetramer 
of ~60-  kDa subunits [12]. Each subunit consists of four 
domains: a small N-terminal domain, and domains A, B, and 
C. The A and C domains are involved in domain–domain 
interactions where each monomer is involved in head-to-
head and tail-to-tail interactions with neighboring subunits 
[8, 10]. The phosphoenolpyruvate binding site is formed in a 
cleft between the A and B domains and contains the magne-
sium and potassium ion cofactors essential for catalysis. For 
the reaction to proceed, both phosphoenolpyruvate and ADP 
must bind within this active site. Phosphoenolpyruvate is sta-
bilized by interactions with the magnesium and potassium 
cofactors. The phosphoryl group of phosphoenolpyruvate is 
transferred to ADP, creating ATP and enolpyruvate, which 
undergoes tautomerization to form pyruvate.

Domain C also contains allosteric effector binding sites. 
Fructose 1,6 bisphosphate is a critical positive effector for 

PK activity. In the absence of fructose 1,6 bisphosphate, 
PK exists mainly as a monomer. When fructose 1,6 bispho-
sphate is present, PK tetramerizes and becomes catalyti-
cally active [12]. PKR, PKL, and PKM2, but not PKM1, 
are regulated in this fashion [13, 14]. While PKM1 and 
PKM2 differ only in 21 amino acids, the region that dif-
fers is composed of two alpha-helices that are involved in 
subunit–subunit contacts, shifting PKM1 into a more con-
stitutively active conformation [13, 14].

The PKL isozyme is regulated at the transcriptional and 
posttranscriptional level in response to various hormones. 
In response to glucagon, PKL is phosphorylated by PKA 
and inhibited, serving to inhibit glycolysis during times of 
glucose scarcity [7]. In contrast, insulin activates various 
protein phosphatases that dephosphorylate PKL, reactivat-
ing the enzyme. Glucagon and insulin also modulate PKL 
transcription [7].

Metabolic deficiencies have been reported related to 
the loss of the PKR isozyme [15]. This is the most com-
mon metabolic deficiency associated with glucose metabo-
lism with an incidence of 1:20,000 [15]. Red blood cells 
are highly affected by the loss of PKR because they lack 
mitochondria and are therefore reliant upon glycolysis for 
ATP generation. Patients with a loss of PKR activity suf-
fer from hemolytic anemia [16]. Low ATP levels in the red 
blood cell trigger hemolysis which, at high rates, leads to 
bilirubinemia and anemia. Severe cases of anemia may lead 
to death, though transfusion treatments are routinely suc-
cessful. Hemolytic anemia is especially lethal in newborns 
because high levels of bilirubin in the brain cause tissue 
damage that can be lethal [17]. High bilirubin levels can be 
treated with a photo treatment in which light is applied to 
the child, breaking down the bilirubin into products which 
are easily eliminated from the body. Adults are not affected 
by bilirubinemia from red blood cell lysis because they 
possess a complete blood–brain barrier that prevents biliru-
bin access to the brain. There may be a selective advantage 
for heterozygotes carrying a PKR mutation as these muta-
tions may confer some resistance to malaria [18, 19].

Numerous etiologies for PKR deficiency have been 
characterized, including point mutations, frameshift muta-
tions, and large deletions within the PKR gene [15–17, 
20–22]. Although some mutations affecting PKR will also 
affect PKL, liver dysfunction is very rarely observed [23]. 
PK deficiency, to some extent, is compensated by continu-
ous PKL protein synthesis in the liver [16, 21–23].

Lactate dehydrogenase

The major cytosolic fate of pyruvate produced by PK 
is reduction to lactate. LDH is a ubiquitously expressed 
enzyme that reversibly catalyzes reduction of pyruvate to 
L-lactate coupled with the oxidation of NADH to NAD+. 
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LDH is an important enzyme in cellular metabolism, espe-
cially in skeletal muscle and cancer cells. During intense 
exercise, the energy requirements to support continued 
muscle contraction often exceed mitochondrial capacity 
for ATP production by oxidative phosphorylation. Further-
more, because glycolysis requires NAD+, ATP production 
by glycolysis is hindered when NAD+ levels diminish and 
NADH accumulates. LDH facilitates glycolytic ATP pro-
duction by regenerating NAD+. With a steady supply of 
NAD+, and until acidosis becomes limiting, glycolysis can 
produce ATP to support work rates exceeding those that 
could be supported by oxidative phosphorylation alone 
[24, 25]. Lactate produced in muscle is transported into the 
blood where it circulates and is taken up by the liver. In the 
liver, LDH converts lactate back into pyruvate where it sup-
ports citric acid cycle flux and gluconeogenesis. This entire 
process is called the Cori cycle. LDH also plays an impor-
tant role facilitating the Warburg Effect in cancer cells and 
will be discussed in the “Cancer” section.

LDH is a tetrameric complex composed of two different 
isoforms, termed H and M. The M isoform, or LDHA, is 
so named because it is the predominate isoform in the skel-
etal muscle, while the H isoform, or LDHB, predominates 
in the heart [26]. Five distinct LDH isozymes have been 
characterized, each differing in the ratio of H and M subu-
nits present in the tetramer, ranging from all type H (H4) to 
all type M (M4) [24]. The two LDH isoforms are function-
ally distinct. LDHA favors the production of lactate and is 
not inhibited by high concentrations of pyruvate. On the 
other hand, LDHB favors the production of pyruvate and 
is inhibited by high concentrations of pyruvate [25, 27, 28]. 
In the liver, lactate import coupled to mitochondrial con-
sumption of pyruvate drives the formation of pyruvate from 
lactate to support gluconeogenesis as part of the Cori cycle.

A third LDH isoform, termed LDHC, also forms a homo-
tetrameric complex and is found only in the testes [29, 30]. 
Finally, the coding sequence to a fourth LDH, LDHD, has 
been identified. This protein sequence is highly homolo-
gous to yeast d-lactate dehydrogenases. However, these pro-
teins, and their role in human metabolism, have remained 
relatively uncharacterized [31]. In mice, Ldhd mRNA lev-
els are decreased upon fasting, and return to basal levels 
upon refeeding [32]. Additionally, Ldhd mRNA levels are 
increased in mouse models of type 2 diabetes [33].

LDHA deficiency is characterized by the complete 
absence of the M isoform [34, 35]. The symptoms of 
LDHA deficiency include myoglobinuria resulting from 
muscle degeneration, low endurance, elevated blood pyru-
vate levels, and, in some cases, skin disorders. Interest-
ingly, this deficiency is not lethal. It seems that, to some 
extent, the H isoform can compensate for the loss of the 
M isoform in most tissues. Conversely, LDHB deficiency, 
characterized by complete loss of the H isoform, is largely 

asymptomatic [34]. Additional mutations have also been 
identified in both LDHA and LDHB, though symptoms are 
relatively mild and not life-threatening [36].

Alanine aminotransferase

Pyruvate can be generated through the catabolism of vari-
ous amino acids, including alanine, serine, and threonine. 
Alanine is worthy of special consideration because it is 
one of the major gluconeogenic precursors [37]. ALT, also 
frequently referred to as glutamic pyruvate transaminase 
or GPT, catalyzes the reversible transamination of alanine 
and α-ketoglutarate to glutamate and pyruvate. These four 
intermediates function as important links between carbohy-
drate and amino acid metabolism.

Pyruvate and alanine are the central substrates in the 
alanine cycle, a recycling and scavenging pathway linking 
muscle and liver metabolism [38]. In muscle, pyruvate is 
transaminated into alanine and exported from the cell. The 
liver recovers the alanine and deaminates it back to pyru-
vate, which supports citric acid cycle flux and the multiple 
pathways intersecting it. The alanine cycle is quite similar 
to, and often occurs in parallel with, the Cori cycle. How-
ever, the alanine cycle is less efficient than the Cori cycle 
because glutamate is deaminated by glutamate dehydro-
genase, creating α-ketoglutarate. This reaction produces 
ammonia, which must be detoxified by the urea cycle [39].

Two isoforms of ALT have been identified. ALT1 
(~54 kDa) is localized to the cytosol. ALT2 (~57 kDa) is 
found in the mitochondrial matrix. Both isoforms display 
different, but overlapping, tissue expression profiles. ALT1 
is more strongly expressed in brown and white adipose 
tissue, intestine, and liver. ALT2 is strongly expressed in 
the muscle and the brain. Interestingly ALT1 and ALT2 
expression profiles vary greatly between different species. 
In some species, like rats and mice, both ALT1 and ALT2 
are highly expressed in the liver. In contrast, ALT1 is the 
predominate isoform in humans, with little or no expres-
sion of ALT2 in the liver [40, 41]. A splice variant of ALT2 
termed ALT2-2, has been discovered, which displays no 
aminotransferase activity and lacks the first ~100 amino 
acids found in ALT2 [42]. The physiological significance 
of this isoform is currently unknown.

Historically, serum ALT activity has been an important 
biomarker signaling liver damage. Normally an intracel-
lular protein, elevated levels of ALT activity in the blood 
has been taken to indicate liver tissue damage during which 
the cellular components leak into the circulating blood sup-
ply [43]. More recently, isoform specific ALT assays have 
been developed that are able to differentiate between inju-
ries that increase ALT1 or ALT2 levels in the blood. For 
example, in response to liver damage, the proportion of 
ALT1 specific activity increased in the serum. In response 
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to muscle damage the proportion of ALT2 specific activity 
increases [40].

ALT is regulated at multiple levels. Fasting and refeed-
ing experiments have shown that both ALT1 and ALT2 
mRNA levels increase during fasting and return to baseline 
upon refeeding [32]. This is to be expected as, during pro-
longed fasting, amino acids are used as a fuel source. Since 
alanine can be converted directly into pyruvate, it serves 
as a key gluconeogenic precursor. In non-hepatic tissues 
ALT2, but not ALT1, expression is regulated by androgens 
[44]. Finally, multiple acetylation sites on ALT2 have been 
identified, though the functional significance has yet to be 
determined [45, 46]. In vitro experiments have shown that 
ALT1 can be inhibited by spontaneous glycation [47].

To date, no severe metabolic defect has been conclusively 
associated with ALT deficiency. Multiple ALT null patients 
have been described [48–51]; however, ALT deficiency may 
predispose, or be secondary to, the disorders described in 
these reports. In fact, far more concern has been expressed 
in the potential misdiagnoses that could result from the arti-
ficially reduced serum ALT activity levels in null patients 
rather than any deleterious phenotype [51].

Mitochondrial pyruvate metabolism

Pyruvate kinase, lactate dehydrogenase, and alanine ami-
notransferase are the major sources of cytosolic pyruvate. 
Once produced in the cytoplasm, most pyruvate is ulti-
mately destined for the mitochondrial matrix. In the matrix, 
carbon from pyruvate drives citric acid cycle flux thereby 
supporting ATP production by oxidative phosphorylation 
and multiple biosynthetic pathways (Fig. 2).

Mitochondrial pyruvate carrier

The mitochondrial pyruvate carrier transports pyruvate 
from the mitochondrial intermembrane space to the mito-
chondrial matrix. Pyruvate and other small molecules 
freely diffuse from the cytoplasm to the intermembrane 
space through porins. However, the inner mitochondrial 
membrane is impermeable to charged molecules, which 
enables it to sustain the proton gradient necessary for oxi-
dative phosphorylation. To transit the inner mitochondrial 
membrane and reach the matrix, pyruvate requires a spe-
cific carrier, the MPC. Thus, the MPC effectively links 
cytosolic pyruvate metabolism with the citric acid cycle. 
While the existence of the biochemically inhibitable MPC 
activity has been known for several decades [52–55], the 
molecular identify of the MPC was only recently discov-
ered [1, 2].

In humans, the MPC is formed by two paralogous 
subunits, MPC1 and MPC2, in a currently unknown 

stoichiometry [1, 2]. Little is also known about the physi-
ological regulation of the MPC. It has been reported that 
MPC activity is increased in response to glucagon and 
decreased in response to insulin [56, 57]. Large-scale 
transcriptome and mitochondrial proteome studies have 
revealed that molecular regulation does occur. For exam-
ple, fasting and refeeding studies in mice have shown that 
MPC2 transcript levels increase approximately 1.5-fold 
under fasting conditions compared to baseline and refed 
conditions [32]. Furthermore, in mice, acetylation of MPC2 
on K19 and K26 has been observed [45]. Finally, hydroxy-
lation of MPC2 on P92 has also been observed [46]. How-
ever, the physiological relevance of these posttranslational 
modifications is currently unknown. Regulation of MPC1 
was not reported but cannot be excluded because targeted 
studies were not performed.

The MPC1 and MPC2 paralogs almost certainly arose 
from an ancient, though as of yet unidentified, gene dupli-
cation event. Both proteins are predicted to contain two to 
three transmembrane domains [1, 2]. Interestingly, they do 
not contain any sequence homology to other known mito-
chondrial carrier proteins, such as the phosphate carrier PiC 
or the adenosine nucleotide transporter ANT, as was previ-
ously proposed [58]. They have recently been proposed to 
belong to the PQ-loop/MtN3/MPC superfamily [59]. PQ-
loop family members perform diverse functions throughout 
the cell and are located in a variety of organelles, including 
the mitochondria, ER, Golgi, and, in plants, chloroplasts 
[60]. Characteristics typical of the PQ-loop family include 
seven transmembrane domains and two conserved proline 
glutamine motifs. MPC1 and MPC2 are only half the size 
of other PQ-loop family members, each containing poten-
tially three of the typical seven transmembrane domains 
[60]. Thus, MPC1 and MPC2 may be homologous to the 
N-terminal or C-terminal halves of the other PQ-loop pro-
teins. Inclusion into this family assumes that MPC1 and 
MPC2 homo- or heterodimerize and fold into a structure 
reminiscent of full-length PQ-loop proteins. Further work 
is required to determine whether MPC1 and MPC2 are true 
members of the PQ-loop family.

Mitochondrial pyruvate uptake has been proposed to be 
coupled with the electrochemical gradient, occurring with 
the symport of one proton, or alternatively, exchange with 
one hydroxide ion [55, 61]. Pyruvate is the most impor-
tant, but not sole, substrate of the MPC. Compounds such 
as dichloroacetate and other small halogenated monocar-
boxylates can be transported by the MPC, and this trans-
port can be inhibited [53, 55]. Several compounds have 
been shown to inhibit MPC activity, including α-cyano-
4-hydroxy cinnamate, UK-5099, and several thiazolidin-
ediones compounds [53, 55, 62, 63]. Both UK-5099 and 
α-cyano-4-hydroxy cinnamate have been reported to also 
inhibit the monocarboxylate transporters found at the 
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plasma membrane and therefore potentially cellular pyru-
vate uptake. However, α-cyano-4-hydroxy cinnamate is 
approximately 30-fold and UK-5099 is approximately 300-
fold more potent at inhibiting the MPC compared to the 
monocarboxlate transporters [53, 64–67].

Mutations in MPC1 have been linked in three families 
to pyruvate transport deficiency [1, 68]. The first case was 
reported in 2003 and characterized a patient with a homozy-
gous R97W mutation in MPC1 [68]. The patient displayed 
severe developmental delay and died at age 19 months. The 
patient suffered from lactic acidosis that was not responsive 
to bicarbonate treatment. PDH activity was normal. A sec-
ond MPC1 mutation, encoding an L79H change, has also 
been identified, but no clinical description has been reported 
except that the phenotype is less severe than the R97W 
mutation [1]. The incidence of functional MPC1 and MPC2 
mutations is unknown and awaits further study.

Several additional key questions regarding the MPC are 
still unknown with many of them centered on the regulation 
of the MPC. For example, are MPC1 and MPC2 transcrip-
tionally regulated in response to normal physiological stim-
uli leading to changes in protein abundance? Is the MPC 
activity regulated by posttranslational modification of the 
MPC proteins? What is the structure of MPC complex and 
how do the R97W and L79H mutations impair transport? 
Is the MPC activity pathologically misregulated in dis-
eases featuring aberrant pyruvate metabolism? Is the MPC 
a viable therapeutic drug target for these disorders? Given 
the critical node the MPC inhabits within cellular metabo-
lism, changes in MPC function may play a prominent role 
in metabolic disease.

Pyruvate dehydrogenase

After passage through the MPC, pyruvate has several 
potential fates within the mitochondrial matrix. However, 
the majority is oxidized to carbon dioxide by the citric acid 
cycle to ultimately support the generation of ATP by oxi-
dative phosphorylation. Over a sequence of reactions, the 
pyruvate dehydrogenase complex (PDH) irreversibly con-
verts pyruvate and NAD+ into acetyl-CoA, NADH, and 
carbon dioxide. The acetyl-CoA enters the citric acid cycle. 
Acetyl-CoA may also be used to drive multiple anabolic 
processes, including lipogenesis, the formation of choles-
terol, and the generation of acetylcholine, a key neurotrans-
mitter (Fig. 2). NADH and FADH2 are produced from the 
reactions of the citric acid cycle and are utilized to generate 
the proton gradient necessary for oxidative phosphoryla-
tion. Thus, PDH serves to bridge glycolytic metabolism in 
the cytosol with the citric acid cycle and oxidative phos-
phorylation [69, 70].

Given the central role PDH plays in cellular metabo-
lism, its activity must be finely regulated to maintain 

cellular energy homeostasis as well as supply necessary 
carbon to the biosynthetic pathways intersecting the cit-
ric acid cycle (Fig.  2). The activity of the PDH complex 
is fine-tuned by the energy state of the cell. High amounts 
of ATP, NADH, and acetyl-CoA all inhibit the complex 
[69, 71]. The genes of the PDH complex are also regulated 
transcriptionally. Under times of energetic stress, such as 
fasting, transcripts for PDH-complex proteins are down-
regulated. Transcript levels return to baseline levels upon 
refeeding [32]. Rapid regulation of the PDH activity is 
achieved by phosphorylation and dephosphorylation, func-
tions performed by the pyruvate dehydrogenase kinases 
(PDK) and the pyruvate dehydrogenase phosphatases 
(PDP). Both PDK and PDP, and the roles they play in the 
regulation of PDH, will be discussed in greater detail fol-
lowing this section.

PDH is a massive protein complex weighing in at 
~9.5 MDa and is composed of four protein sub-complexes: 
pyruvate dehydrogenase (E1), dihydrolipoamide acetyl-
transferase (E2), dihydrolipoamide dehydrogenase (E3), 
and E3 binding protein (E3BP, also known as PDH Protein 
X) [72]. The central core structure is comprised of E2 and 
E3BP [73–75], which in turn recruit E1 and E3 [76].

E1 is a heterotetrameric complex containing two cop-
ies each of the proteins E1α and E1β [77]. Some 20–30 
E1 complexes associate with the E2/E3BP core complex 
through interactions between E1 and E2 [72]. The E1 
active site is a deep cleft formed at the interface between 
the α and β subunits and contains a thiamine pyrophosphate 
cofactor and a magnesium ion. The PDH reaction begins 
here in which the oxidative decarboxylation of pyruvate 
is coupled with the reductive acetylation of the lipoamide 
cofactor. This acetyl group is subsequently transferred from 
thiamine pyrophosphate to a lipoate moiety covalently 
bound to E2.

E2 catalyzes the transfer of the acetyl group from the 
lipoate moiety to CoA, forming acetyl-CoA and dihy-
drolipoate. Between 40 and 42 E2 subunits are found 
per PDH complex. Structurally, E2 is composed of four 
domains, each connected by a flexible linker. Starting at 
the C-terminus, these domains include an inner domain, a 
subunit binding domain, and two lipoyl domains, named 
lipoyl domain 1 (L1) and lipoyl domain 2 (L2) [74, 75]. 
The inner domain mediates formation of the core complex 
with E3BP and contains the acetyltransferase catalytic 
activity. The subunit binding domain binds and recruits E1 
to the core complex. The lipoyl domains contain covalently 
bound lipoate moieties. These lipoate moieties are sequen-
tially transferred between the E1, E2, and E3 active sites 
via a so-called ‘swinging arm’ mechanism. More recently, 
an alternative role for E2 has been discovered: E2 has been 
shown to localize to the nucleus and act in signal transduc-
tion pathways [78].
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E3 catalyzes the regeneration of the lipoate group from 
dihydrolipoate. The oxidation of dihydrolipoate is ini-
tially performed by reduction of a bound FAD to FADH2. 
However, FADH2 is in turn re-oxidized by NAD+, form-
ing NADH and regenerating FAD [79]. Once regenerated, 
FAD and the lipoate group can participate in the next reac-
tion cycle. Structurally, E3 is a homodimer with 6–12 E3 
complexes associating with the core PDH complex through 
interactions between it and the subunit binding domain of 
E3BP. Each E3 dimer can interact with two E3BP proteins 
at the subunit binding domain, creating crosslinks between 
E3BP proteins [76].

E3 is associated not only with the PDH complex but also 
with the α-ketoglutarate dehydrogenase complex and the 
branched chain amino acid dehydrogenase complex, where 
it performs a similar catalytic function. However, E3 binds 
PDH much more strongly compared to the core complex of 
the branch chain amino acid dehydrogenase complex [80, 
81]. This difference is attributed to the presence of an arginine 
residue in the E3 binding protein of the branched chain amino 
acid dehydrogenase complex, whereas an asparagine is in the 
PDH complex. It is thought that the larger arginine residue 
causes a steric clash, reducing the binding affinity [80, 81].

E3BP is the final component of the PDH complex and 
is a structural protein with no enzymatic function. E3BP 
is organized in a similar fashion as E2, and contains an 
inner domain, a subunit binding domain, and a single lipoyl 
domain, lipoyl domain 3 (L3) [76, 82]. Between 18 and 20 
E3BP are found in each PDH core complex. E3BP is criti-
cal for the proper formation of the central core structure 
and the recruitment of E3 to the complex [73, 74].

Given the critical role PDH plays in cellular energy 
metabolism and biosynthetic pathways, multiple levels of 
regulation are applied so that the demands of the cell are 
balanced. A critical regulatory mechanism is the reversible 
phosphorylation of three serine residues, Ser-264 (site #1), 
Ser-271 (site #2), and Ser-203 (site #3), on the E1α subunit 
[83], a role performed by PDK. Four isoforms of PDK have 
been characterized, though these proteins will be explored 
in greater depth below [84, 85]. Phosphorylation of any site 
is sufficient to ablate enzymatic activity. Site 1 is the most 
frequent target [86, 87]. These serine residues are located 
in loops which, upon phosphorylation, lose the ability to 
bind and recruit the lipoyl domains to the activity site of E1 
[83]. Counteracting the PDKs are the PDPs, which dephos-
phorylate E1α, restoring PDH activity. Two PDP isoforms 
have been characterized and will be explored in greater 
detail below [88].

Pyruvate dehydrogenase complex deficiency

Pyruvate dehydrogenase complex deficiency is defined 
by reduced PDH activity in patient cells [89]. To date, 

mutations in all four PDH subunits have been described 
that cause PDH deficiency. The severity of the deficiency 
varies widely depending upon the mutation and the subunit 
affected. Deficiencies in specific subunits will be discussed 
below. For a more in-depth discussion of PDH deficiency, 
the reader is recommended to two excellent recent reviews 
[89, 90]. Symptoms of PDH deficiency include lactic aci-
dosis, elevated pyruvate levels, and ataxia. In longer-lived 
patients, symptoms include developmental delay, psycho-
motor retardation, and decreased cognitive capacity [89–
91]. These symptoms demonstrate that the nervous system, 
due to its reliance upon carbohydrate metabolism, is espe-
cially sensitive to perturbations in PDH activity.

Treatment of PDH deficiency varies greatly, due in part 
to the multiple etiologies of this disease [92]. In many 
cases, treatment with bicarbonate is initiated to counteract 
the lactic acidosis. Treatment with thiamine and dichloro-
acetate has been successful in some, though not all, cases. 
Dichloroacetate is a well-known inhibitor of PDK and 
therefore causes increased PDH activity. Thiamine is a pre-
cursor to the thiamine pyrophosphate cofactor present in 
the active site of E1. Thiamine supplementation increases 
the fraction of PDH complexes which have adequate thia-
mine pyrophosphate. Additionally, a ketogenic diet, which 
is a diet high in lipid calories and low in carbohydrate calo-
ries, is often prescribed. This decreases the overall reli-
ance of acetyl-CoA generation on mitochondrial pyruvate 
and PDH. Instead, alternative metabolic pathways, such 
as β-oxidation of lipids and use of ketone bodies, are used 
for ATP production. However, the overall prognosis is poor 
and most patients die at a young age even with treatment 
[89–92].

Mutations present in the X-linked E1α subunit are the 
most common cause of PDH deficiency [89, 90]. Missense 
and frameshift mutations have been identified that affect 
the ability of E1α to bind the thiamine pyrophosphate 
cofactor, to properly assemble into the heterotetramer, and 
to be properly targeted and transported into the mitochon-
dria. Defects in E1β are rarer and primarily characterized 
by point mutations that disrupt the formation of the E1 het-
erotetramer and E1 catalytic activity [93].

Defects in E2 are extremely rare, with less than ten 
cases having been reported in the literature [91, 94, 95]. 
The cause of E2 deficiency includes point mutations and 
mRNA mis-splice events. Patients with this defect do not 
display the lactic acidosis typical of PDH deficiency, and 
overall PDH activity is decreased only ~30–50 %. Afflicted 
patients exhibit developmental delay and psychomotor 
motor retardation but can survive into adulthood when 
placed on a ketogenic diet [91].

E3 deficient patients present symptoms similar to those 
above but suffer additional complications because E3 is 
involved in multiple dehydrogenase complexes, such as 
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the branched chain amino acid degradation pathway. This 
results in elevated levels of valine, leucine, and isoleucine 
[79–81, 92]. Point mutations, frameshift mutations, and 
mRNA processing defects have all been characterized to 
cause E3 deficiency. Point mutations, by far the most com-
mon defect, affect subunit organization, FAD binding, and 
NAD+ binding [79, 89].

Finally, E3BP mutations have also been reported, includ-
ing the complete loss of E3BP due to a nonsense mutation 
[89, 95–97]. Patients were reported to have developmental 
delay, elevated pyruvate, lactate, and alanine levels, as well 
as reduced PDH activity (~27–33 % control). No E3BP pro-
tein was detected in patient samples [96]. It is not currently 
known how the loss of E3BP greatly affects PDH activity. 
Multiple hypotheses can be generated. First, loss of E3BP 
may cause the core structure of PDH to be lost, compromis-
ing the precise channeling of substrate from one enzyme to 
the next. This would decrease the overall efficiency of the 
reaction and may explain the decreased PDH activity. Alter-
natively, the central core could still be formed, composed 
solely of E2 subunits, as is seen in purified E2 protein prep-
arations. Thus, the main effect on PDH activity would be 
diminished E3 recruitment to the core complex.

Pyruvate dehydrogenase kinase

The rapid downregulation of PDH activity is achieved by 
phosphorylation of the E1α subunit; a task performed by 
PDK. Phosphorylation of PDH decreases its activity, reduc-
ing flux through PDH and downstream metabolic path-
ways. This results in the overall conservation or redirection 
of mitochondrial pyruvate to other metabolic fates. This is 
important, for example, during fasting, in which pyruvate 
is utilized to produce glucose via gluconeogenesis to main-
tain blood sugar levels.

Four PDK isoforms have been characterized, termed 
PDK1–PDK4 [84, 85]. These isoforms vary slightly in 
size. PDK1 is the largest at ~48 kDa; the remaining three 
isoforms are ~45  kDa. Each isoform displays unique, but 
overlapping tissue expression profiles. For example, all 
four isoforms are present in the heart and skeletal muscle, 
though PDK2 and PKD4 predominate. PDK3 is found only 
in heart and skeletal muscle. PDK2 is highly expressed 
in heart, skeletal muscle, and the liver. PKD4 is highly 
expressed in kidneys, brain, and liver [84, 85, 98–101]. 
Active PDK is a dimer, and can be either a homo- or heter-
odimer, depending on whether the tissue under examination 
expresses more than one PDK isoform [102].

Recruitment of PDK to the PDH complex is facilitated 
by binding of PDK to either the inner lipoyl domain 2 [103] 
or the outer lipoyl domain 1 of E2 [104]. Only 1–2 cop-
ies of PDK are associated with each PDH complex [72]. 
Therefore, for fully inactive PDH, PDK must move across 

the entire surface of PDH. A hand-over-hand model has 
been proposed. At any given time, one of the PDK subunits 
is bound to an inner lipoyl domain 2. The free subunit is 
then able to swing around and bind with other nearby lipoyl 
domain 2s. In this fashion, PDK can move across PDH 
without dissociating from the complex [100, 105].

Structurally, each PDK polypeptide chain is composed 
of two domains, termed the C-terminal domain and the 
N-terminal domain. The C-terminal domain is involved in 
mediating the dimerization of PDK subunits through exten-
sive B-sheet interactions [101]. The active site is a cleft 
formed at the interface between the two domains. Each of 
the four isoforms is kinetically distinct, with slightly dif-
ferent specific activities towards the E1 phosphorylation 
sites, binding affinities for the lipoyl domain 2, and stimu-
lation upon lipoyl domain 2 binding. For example, all four 
isoforms are able to phosphorylate sites 1 and 2, but only 
PDK1 can phosphorylate site 3 [86]. PDK3 has the highest 
specific activity toward site 2, while PDK2 has the highest 
for site 1 [86, 87, 106]. The binding affinity of the PDK 
isoforms for lipoyl domain 2 varies. PDK3 has been shown 
to have the strongest affinity for lipoyl domain 2 while 
PDK4 displays the weakest affinity [103, 104]. Finally, 
in some cases, the specific activity and binding affinity of 
PDK for lipoyl domain 2 is modulated by the redox state 
of the lipoyl group. The apparent activity of PDK increases 
when the lipoyl moiety on lipoyl domain 2 is in a reduced 
or acetylated state (active). Conversely, specific activity is 
decreased when the lipoyl moiety is oxidized (inactive or 
resting state) [104].

PDK occupies an important role in controlling metabolic 
pyruvate flux, and, as such, is highly regulated. PDK iso-
forms are transcriptionally regulated, and this regulation is 
tissue-dependent. For example, during fasting conditions, 
PDK2 and PDK4 expression is increased in the liver, con-
sistent with conditions of decreased carbohydrate oxida-
tion [107]. Posttranslational modifications have also been 
identified. PDK1 has recently been shown to be phospho-
rylated by the receptor tyrosine kinase fibroblast growth 
factor receptor 1, which increases the activity of PDK1 by 
several-fold [108].

Unlike the other enzymes discussed in this review, no 
metabolic deficiencies have been identified with PDK as 
the root cause. This may indicate that other isoforms are 
able to compensate for the loss of one.

Pyruvate dehydrogenase phosphatase 

Pyruvate dehydrogenase phosphatase acts in opposition to 
PDK by removing the phosphorylation marks on PDH E1α, 
thereby reactivating the PDH complex. Reactivation of the 
PDH complex increases acetyl-CoA flux into the citric acid 
cycle to support oxidative phosphorylation or biosynthesis.
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Two PDP isoforms, PDP1 and PDP2, are found in 
humans [88]. Each isoform displays distinct but overlap-
ping tissue expression profiles. PDP1 is highly expressed 
in the brain, heart, skeletal muscle, and testis, while PDP2 
is highly expressed in the liver and adipose tissue [109]. 
Structurally, PDP1 is a heterodimer composed of a catalytic 
subunit of ~ 52 kDa and a regulatory subunit of ~ 97 kDa. 
Only a catalytic subunit for PDP2 has been identified. A 
regulatory subunit is hypothesized to exist but has yet to 
be found [110]. The catalytic subunit of both PDP isoforms 
is related to the protein phosphatase 2C family of serine 
phosphatases [88, 111]. Two magnesium ions cofactors are 
required for activity.

PDP1 and PDP2 are themselves regulated. In response 
to fasting, PDP1 and PDP2 mRNA and protein levels 
decrease, though the differences are isoform- and tissue-
specific to some extent. Decreases in PDP abundance and 
activity could function to reduce PDH activity for chan-
neling of pyruvate carbon into gluconeogenesis during 
fasting. Levels return to basal conditions upon refeeding 
[109]. Additionally, PDP1 and PDP2 are phosphorylated 
by PKCδ which increases PDP activity, and, subsequently, 
PDH activity [112]. Activity of PDP1, but not PDP2, is 
increased in response to calcium. Calcium in skeletal mus-
cle, where PDP1 is highly expressed, stimulates muscle to 
contract and do work. Therefore, calcium, acting through 
PDP1, signals to increase the activity of PDH. This facili-
tates increased mitochondrial ATP production to support 
the energetic demands of muscle contraction. PDP2 activity 
is increased in the presence of spermine, a naturally pro-
duced polyamine, though the biological significance of this 
interaction is still unclear [88].

Several reports have highlighted PDP deficiencies in 
human patients. In 2005, a case study with two patients 
described a frameshift mutation causing the in-frame dele-
tion of leucine-213 [113]. Patient symptoms included 
elevated lactate levels, hypotonia, feeding difficulties, and 
exercise intolerance coupled with slight developmental 
delay. According to structural information for the catalytic 
domain of PDP1, it has been proposed that removal of Leu-
213 disrupts the position of Asp-220 [111, 113]. Asp-220 
is part of a hydrogen bond network critical for the proper 
structure of the active site. This frameshift mutation may 
also have caused protein instability as PDP1 levels were 
~20 % of wild-type [113]. At the time of the report, both 
patients were alive and being treated with a ketogenic diet.

A second report published in 2009 described a mutation 
in PDP1 creating a premature stop codon (E93X), gen-
erating a null mutation with no detectable PDP1 protein 
[114]. This patient presented symptoms including lactic 
acidosis and elevated alanine and proline levels. Bicarbo-
nate treatment was well-received and maintained; however, 
at 6  months of age, the patient died of acute respiratory 

distress. Lysates from patient fibroblasts showed greatly 
reduced PDH activity that could be corrected by addition 
of recombinant PDP1 protein or dichloroacetate. This study 
also showed that PDP2 can, to some extent, compensate for 
loss of PDP1.

Pyruvate carboxylase

As an alternative to decarboxylation by PDH, the second 
major fate of mitochondrial pyruvate is the irreversible, 
ATP-dependent carboxylation of pyruvate to oxaloacetate 
by pyruvate carboxylase (PC) [115, 116]. Oxaloacetate 
is a critical intermediate in metabolism, linking carbohy-
drate, lipid, amino acid, and nucleotide metabolism (Fig. 2) 
[117–119].

The utility of mitochondrial pyruvate is not limited to 
the production of ATP but also includes providing car-
bon to several major biosynthetic pathways intersect-
ing the citric acid cycle (Fig.  2). Many citric acid cycle 
intermediates are important for the biogenesis of the non-
essential amino acids. For example, α-ketoglutarate is a 
key intermediate for the biogenesis of glutamine, gluta-
mate, arginine, and proline, while oxaloacetate is used 
to generate aspartate and asparagine [119]. Oxaloacetate 
and citrate also support the major biosynthetic pathways 
of gluconeogenesis and lipogenesis, respectively. Heme, 
a key biological molecule important for the transport of 
oxygen throughout the body, is produced from succinyl-
CoA [120]. However, the pool of citric acid cycle carbon 
is limited. Any intermediates removed for biosynthetic 
purposes must be replenished in order to maintain cit-
ric acid cycle carbon flux. Reactions that replenish citric 
acid cycle intermediates are termed anaplerotic [119]. 
Oxaloacetate generated by PC fulfills a critical role ana-
plerotically replenishing the citric acid cycle by serving 
as an acceptor for acetyl-CoA produced by PDH. Another 
key anaplerotic pathway is the catabolism of glutamine 
and glutamate to α-ketoglutarate, which is especially vital 
for the growth of many cancer cells [121].

In humans, a single PC isoform is expressed and found 
only in the mitochondrial matrix [122, 123]. Structurally, 
PC is a homotetramer, arranged as a dimer of dimers, with 
each subunit approximately 120  kDa in size. The quater-
nary structure of PC is necessary as monomeric PC has no 
activity. PC contains four distinct domains which include, 
starting at the N-terminus, a biotin carboxylase domain, 
the first half of an allosteric regulatory domain, a carboxyl 
transferase domain, the second half of the allosteric regula-
tory domain, and a biotin carboxyl carrier protein domain 
[117, 124, 125]. The reaction begins at the active site of the 
biotin carboxylase domain where a carboxy-biotin inter-
mediate is produced from ATP, bicarbonate, and biotin. 
The carboxybiotin group is transferred to a neighboring 
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carboxyl transferase domain [117, 118, 125]. There, the 
carboxyl group is transferred from carboxybiotin to pyru-
vate, generating oxaloacetate and regenerating the biotin 
cofactor.

Given PC’s importance in cellular metabolism, its activ-
ity is tightly regulated. PC expression is nearly ubiquitous 
throughout the body, though higher expression levels are 
found in certain tissues, such as the liver, kidney, adipose 
tissue, and the heart [116]. PC specific activity is positively 
regulated by acetyl-CoA [118]. High acetyl-CoA levels 
indicate that either (1) cellular energy demand is being met 
and pyruvate should utilized for gluconeogenesis or (2) that 
there is inadequate oxaloacetate to accept the acetyl-CoA 
being produced by PDH during energetic stress. Under 
the first condition, PC plays the critical role of channeling 
pyruvate carbon towards gluconeogenesis. Under the sec-
ond, PC provides a critical anaplerotic shunt to maintain 
citric acid cycle carbon flux. The combined regulation 
of PC and PDH determines where overall carbon flux is 
channeled.

In accord with PC’s critical role in gluconeogenesis, it is 
regulated by fasting and refeeding. In response to insulin, 
PC activity is downregulated, diminishing gluconeogenic 
carbon flux during times of high glucose levels. In response 
to fasting, PC mRNA levels increase and support increased 
gluconeogenesis [45, 46, 118, 126]. More recently, mito-
chondrial proteome studies have identified a hydroxylation 
site and multiple acetylation sites on PC [45, 46]. However, 
the physiological significance of these modifications, if 
any, is not yet known.

Deficiencies in PC vary in type and severity and are 
generally classified into three groups [127–129]. Type A, 
or the North American type, is associated with decreased, 
but not completely absent, PC activity. These patients 
exhibit elevated alanine and proline levels and episodic 
lactic acidosis, and suffer from some form of developmen-
tal delay. However, with treatment, patients can survive for 
several years. Type B, or French Type, PC deficiency is 
generally characterized by nearly absent PC activity, and 
in many cases absent PC protein [92]. These patients suf-
fer from severe lactic acidosis and neurological issues, and 
generally do not survive longer than several months [127]. 
Finally, Type C is a relatively mild form of PC deficiency. 
These patients suffer episodes of lactic acidosis but do not 
display the neurological issues shown by Type A or Type 
B patients [127, 129, 130]. These cases are rare and the 
molecular basis is unknown [131]. The molecular bases of 
Type A and Type B PC deficiency are varied, with some 
overlap. Type A patients tend to harbor missense muta-
tions that reduce PC activity. Type B patients also harbor 
missense mutations and display more severe defects that 
ablate mature protein expression, such as mis-splice events 
and truncations [127].

Major diseases characterized by aberant pyruvate 
metabolism

Pyruvate occupies a critical node in central carbon metabo-
lism and, as discussed above, altered pyruvate metabolism 
can cause disease. Aberrant pyruvate metabolism plays an 
especially prominent role in cancer, neurodegeneration, 
heart failure, and other conditions that will be discussed 
below.

Cancer

Many cancer cells are, in part, defined by a metabolic 
switch termed the Warburg Effect, in which glycolytic car-
bon flux is highly upregulated while oxidative phospho-
rylation is significantly downregulated (Fig. 3) [132–134]. 
The factors involved in this metabolic switch are many, 
and vary according to cancer type. Within the context of 
this review, major factors such as PKM2, HIF1, and p53 
will be discussed in terms of their relationships to pyruvate 
metabolism. Potential therapies will be briefly discussed. 
For a more general treatment of these proteins, the reader 
is suggested to read the many excellent recent reviews, on 
PKM2 [135, 136], HIF1 [137], and p53 [138]. It should 
also be noted that some cancers do not display the Warburg 
Effect, and many only partial aspects depending upon stage 
or location. The foregoing are features of many but not all 
cancers.

A direct consequence of the Warburg Effect is the highly 
elevated production of lactate as the primary metabolic 
end product. Furthermore, lactate itself is used to further 
advantage by cancer cells. First, the conversion of pyruvate 
to lactate regenerates the NAD+ cofactor necessary for the 
continuation of glycolysis. Second, export of lactate out of 
the cell, which is facilitated by the monocarboxylate trans-
porters, is proton-linked, contributing to the acidification 
of the extracellular environment surrounding the cancer 
cells [132]. Acidification of the extracellular environment 
provides a measure of protection from the immune system 
[132]. For example, an acidic environment and high lactate 
concentrations impair the ability of cytotoxic T lympho-
cytes, white blood cells which destroy infected or dam-
aged cells, to proliferate, produce cytokines, and mediate 
the destruction of cancer cells [139, 140]. Furthermore, 
lactic acid appears to influence the activity of matrix-asso-
ciated metalloproteinases, which breakdown the extracel-
lular matrix adjacent to the tumor, aiding in proliferation 
and metastasis [141–143]. Finally, lactate can be utilized 
as a fuel source by cancer cells located at the surface of 
the tumor, where, after conversion back to pyruvate, oxy-
gen levels are sufficient to support oxidative phosphoryla-
tion. Glucose is thereby conserved for the cancer cells bur-
ied inside tumor [144]. Thus, cancer cells derive immense 
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benefit from diverting pyruvate from its normal cellular fate 
and converting it into lactate.

A key factor influencing the transition away from pyru-
vate oxidation and towards the Warburg Effect is the tran-
scription factor hypoxia inducible factor 1, or HIF1. HIF1 
is an important regulator of pyruvate metabolism and is 
frequently overexpressed in many cancers [145]. HIF1 
is a heterodimer composed of HIF1α, a basic helix loop 
helix transcription factor, and HIF1β (also known as aryl 
hydrocarbon receptor nuclear translocator, or ARNT). 
Under normoxic conditions, HIF1α is hydroxylated at 
either Pro402 or Pro564, or both, which targets the protein 
for proteosomal degradation [146–148]. However, under 
hypoxic conditions, hydroxylation does not occur, stabiliz-
ing HIF1α and targeting it for translocation into the nucleus 
[141, 145]. HIF1β, on the other hand, is a constitutively 
expressed transcription factor which is involved in several 
other signaling pathways, most notably the detoxifica-
tion of polyaromatic hydrocarbons [149]. Several hundred 
genes are transcriptionally regulated by HIF1. In regards 
to pyruvate metabolism, HIF1 regulates factors involved in 
glycolysis as well as PDK1, MCT4, and LDHA [150, 151]. 
PDK1 inhibits the PDH complex and has been discussed in 

greater detail within this review. MCT4, or monocarboxy-
late transporter 4, is a member of a family of membrane 
proteins which mediate the translocation of small mono-
carboxylates, like pyruvate and lactate, across the plasma 
membrane. MCT4 is frequently upregulated in cancer cells 
and functions in the export of lactate plus a proton from 
the cytoplasm into the extracellular environment [152]. 
Finally, LDHA catalyzes the formation of lactate from 
pyruvate, which can then be used for myriad purposes as 
discussed above. Indeed, the upregulation and overexpres-
sion of LDHA is an important part of cancer metabolism, 
as knockdown affects cancer progression, proliferation, and 
survival [153]. Furthermore, HIF1 upregulates MIX Inter-
actor 1, a transcription factor that represses cMYC, lead-
ing to a decrease in mitochondria biogenesis and mass, fur-
ther decreasing pyruvate oxidation [151, 154]. Due to the 
important role HIF1 performs in mediating the metabolism 
and survival of cancer cells, it has become an important 
therapeutic target. Multiple aspects of HIF1 biology have 
been targeted, including regulation of protein abundance, 
protein stability, and transcript abundance, among oth-
ers. Reduction of HIF1 activity is correlated with reduced 
tumor growth and reduced metastatic ability [145, 155].

Fig. 3   Pyruvate dysmetabolism in cancer. Pyruvate metabolism and 
carbon flux is altered in many cancer cells. Arrows show the relative 
carbon flux through different metabolic pathways in cancer (gray por-
tion of the large arrows) and in normal cells (black portion of the 
large arrows). Generally, cancer cells upregulate glycolysis and the 
pentose phosphate pathway and downregulate the citric acid cycle 
and oxidative phosphorylation. Modulators of cancer metabolism 
include: HIF1, which upregulates transcription of MCT1, LDHA, and 
PDK1; p53, which downregulates glycolysis by transcriptional induc-
tion of Mir-34A and TIGAR, upregulates oxidative phosphorylation 
(OxPhos), and is typically silenced in cancer; and dimeric PKM2, 

which impairs pyruvate production and therefore OxPhos and also 
causes accumulation of glycolytic intermediates and increased bio-
synthetic carbon flux through the pentose phosphate pathway (PPP). 
Finally, several therapeutics and their effects are shown: 2-deoxyglu-
cose (2-DG) and 3-bromopyruvate directly inhibit glycolytic enzymes 
thereby decreasing aerobic glycolysis. DCA inhibits PDK thereby 
activating PDH and increasing citric acid cycle flux and oxidative 
phosphorylation. HK hexokinase, PPP pentose phosphate pathway, 
DCA dichloroacetate, 2-DG 2-deoxyglucose, TIGAR tp53 induced 
glycolysis and apoptosis regulator
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Cancer cells further modulate pyruvate metabolism 
through the downregulation of important cellular regula-
tors, such as p53. P53 is a master regulator of the cell well 
known for the role it plays in cell cycle control, apoptosis, 
DNA damage and repair, and metabolism [138, 156, 157]. 
p53 functions as a tumor suppressor by halting cell cycle 
progression and by activating apoptosis in response to cel-
lular damage. More recently, however, p53 has been shown 
to function as a tumor suppressor by directly modulating 
glucose metabolism through the transcription of mir-34A, 
a micro-RNA [157]. After proper processing, mir-34A is 
loaded into the RNA-induced silencing complex and medi-
ates the silencing of many glycolytic enzyme transcripts, 
resulting in an overall decrease in glycolysis. Furthermore, 
p53 upregulates the transcription of tp53-induced glyco-
lysis and apoptosis regulator, or TIGAR, which can func-
tion to metabolize fructose 2,6 bisphosphate [158], thereby 
suppressing the activity of phosphofructokinase 1 and gly-
colysis in general [138, 156]. Thus, p53 functions to regu-
late glycolysis, and therefore pyruvate formation and oxi-
dation, in normal cells. In cancer cells with silenced p53, 
this level of control is lost, contributing to the increase in 
glycolysis as well as pyruvate and lactate formation. It 
is likely, however, given the myriad roles p53 plays, that 
additional functions and pathways will be elucidated link-
ing p53 activity to cellular metabolism. It is not surprising 
then that p53 is frequently silenced or mutated in cancer 
cells [138].

Finally, cancer cells directly alter pyruvate metabolism 
by shifting the expression pattern of glycolytic enzymes, 
specifically that of pyruvate kinase, in favor of the M2 
(PKM2) isoform [6, 108]. Unlike the other PK isoforms, 
which form stable tetramers [159], PKM2 has been shown 
to associate as either a tetramer or a dimer. Homotetra-
meric PKM2 is highly active and efficiently catalyzes 
the formation of pyruvate from phosphoenolpyruvate. In 
contrast, dimeric PKM2 is essentially inactive [135, 160]. 
Interconversion of PKM2 between the dimer and tetramer 
forms is quite dynamic [135, 136], and can be modulated 
by various posttranslational modifications as well as sev-
eral allosteric effectors and binding partners [159, 160]. 
Cancer cells take advantage of the dynamic nature of 
PKM2 to modulate glucose-derived carbon flux. Dimeric 
(inactive) PKM2 creates a constriction through glycolysis 
at the terminal reaction resulting in the accumulation of 
glycolytic intermediates [6, 159], which are channeled into 
other pathways, such as the pentose phosphate pathway, 
which is an anabolic pathway which generates precursors 
for nucleotide and aromatic amino acid biosynthesis, all of 
which are necessary for the rapid proliferation typical of 
cancer cells. Furthermore, the pentose phosphate pathway 
produces reducing equivalents in the form of NADPH, 
which can be used to support lipid biosynthesis and 

regeneration of reduced glutathione. Reduced glutathione 
is used to counteract the effects of reactive oxygen species 
and other forms of oxidative damage. Compared to normal 
cells, cancer cells display increased oxidative stress [161–
163] and are reliant upon antioxidant systems to prevent 
catastrophic damage that would lead to cell death [164]. 
Thus, dimeric PKM2 function effectively redirects the car-
bon flux away from the production of pyruvate and cellular 
energy but towards anabolic pathways required for rapid 
cell growth.

The greatly altered metabolism displayed by cancer cells 
is an attractive target for the development of various thera-
peutics and drugs combating cancer initiation and progres-
sion. Various treatment options are now being explored that 
specifically seek to modulate pyruvate metabolism to com-
bat cancer. One of the best-known small molecule drugs 
is dichloroacetate [92]. Dichloroacetate inhibits the activ-
ity of all PDK isoforms resulting in the reactivation of the 
PDH complex, the increased consumption of pyruvate, and 
the decreased formation of lactate. Increased PDH activ-
ity, in turn, causes increased generation of ROS generated 
through aerobic respiration. In general, normal tissues are 
able to survive this increase. However, cancer cells are 
inherently pro-oxidative [161] and are unable to cope with 
the additional stress, which eventually leads to apoptosis 
[164, 165]. Studies in multiple cancer types, such as non-
small cell lung carcinomas [166], squamous cell carcino-
mas [165], and breast carcinomas [167], have shown that 
upon dichloroacetate treatment cancer cell proliferation and 
tumor size decrease [168].

A second therapeutic target is LDHA. As discussed 
above, the generation of lactate is critically important to 
cancer cell metabolism and survival, both of which would 
be impaired by LDHA inhibition [169]. Furthermore, inhi-
bition of LDH would increase the concentration of pyruvate 
within the cancer cell, which could then be metabolized 
in the mitochondria. Again, increased aerobic respiration 
would lead to increased ROS production, oxidative dam-
age, and apoptosis. Specific inhibition of LDHA, and the 
dominant LDH isoform in cancer, is a clear goal in cancer 
research [28]. Fortunately, inhibition of LDHA should be 
well-tolerated in normal cells, as patients which are LDHA 
null have been described and display relatively mild symp-
toms [34].

Finally, given the strong dependence of cancer cells on 
glycolysis, directly impairing glycolysis may be a viable 
therapy. One such therapy is 2-deoxyglucose, a glucose 
analog which, upon phosphorylation by hexokinase, is 
unable to progress through glycolysis. 2-deoxyglucose is 
believed to compete with glucose at hexokinase, inhibit 
glycolysis, reduce intracellular ATP levels, and increase 
oxidative stress [170]. Additional hexokinase inhibitors are 
being studied as possible therapeutics to combat cancer. 
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In many cancer cells, hexokinase 2, an embryonic isoform 
with limited expression in adult tissue, is highly upregu-
lated in cancer [171, 172]. Inhibition or genetic ablation of 
hexokinase 2 is correlated with decreased tumor size and 
metastasis and increased life span [171]. A very promising 
drug, 3-bromopyruvate, has been shown to inhibit hexoki-
nase, as well as other glycolytic enzymes, and causes ATP 
depletion in cancer cells, with complete eradication of the 
tumors possible [173]. One potential drawback to this strat-
egy is the off-target effects on non-cancerous cell types that 
are highly reliant upon glycolysis for their energy needs, 
such as activated T-lymphocytes and astrocytes [174]. 
These inhibitors would reduce the excessive pyruvate pro-
duction in cancer cells that spills over into lactate.

Interestingly, several key characteristics of cancer 
metabolism and the Warburg Effect are shared in Pulmo-
nary Arterial Hypertension. Multiple etiologies can give 
rise to pulmonary arterial hypertension, though the symp-
toms are similar and are characterized by the constriction 
of the blood vessels in the lungs, which in turn increases 
blood pressure leading to hypertrophy and, eventually, 
heart failure [175, 176]. An interesting hallmark of Pulmo-
nary Arterial Hypertension is the vascular remodeling that 
takes place in the muscle and epithelial tissues lining the 
constricted blood vessels. These cells display cancer-like 
characteristics including increased glycolytic metabolism, 
decreased oxidative phosphorylation, increased prolifera-
tion, and resistance to apoptosis [175, 177]. Indeed, many 
of the same factors previously mentioned in this review, 
such as HIF1 and PDK1, play important roles in the pro-
gression of pulmonary arterial hypertension [137].

Neurodegeneration

The human brain is an incredibly complex and highly 
metabolic organ that is almost completely reliant upon glu-
cose and pyruvate metabolism to generate cellular energy. 
Indeed, the brain accounts for 20–25 % of the body’s daily 
glucose consumption [178]. Ketone bodies may also be 
used, but only at significant levels during fasting [179]. 
Therefore, perturbations in glucose and pyruvate metabo-
lism are expected to have striking neurological conse-
quences. The severity of the neurological defect can be 
quite variable, correlating to some extent with the severity 
of the metabolic deficiency. Specific reports have described 
defects in PDH, MPC, PDP, and PC causing or associated 
with neurological disorders [1, 68, 89, 90, 113, 127, 130].

Altered or aberrant pyruvate metabolism is found in sev-
eral major neurodegenerative disorders including Leigh’s 
syndrome, Alzheimer’s disease, and Parkinson’s disease 
[180]. Increased pyruvate levels in cerebrospinal fluid is 
considered a marker for Alzheimer’s disease [181], and a 
similar phenomenon has been observed in the blood serum 

of Parkinson’s disease patients [182]. Furthermore, Alz-
heimer’s disease patients typically display reduced PDH 
activity even though no change in PDH protein levels is 
observed compared to controls [183]. These observations 
indicate that deficits in CNS pyruvate metabolism contrib-
ute to or result from neurodegenerative disease.

Leigh’s syndrome

Nearly half of patients with PDH complex deficiency are 
diagnosed with Leigh’s syndrome [89, 90]. Historically, 
Leigh’s syndrome is characterized as a neurodegenerative 
disorder arising from deficiencies in the protein complexes 
associated with oxidative phosphorylation [184]. Patients 
with PDH complex deficiency learn to walk and crawl 
later, are less likely to interact with their environment, and 
respond slower to sensory stimuli than those with normal 
PDH function [89]. Leigh’s syndrome primarily affects 
the basal ganglia, thalamus, and brain stem where necrotic 
lesions form, leading to the loss of sensory and motor neu-
rons and control [185]. In general, however, the prognosis 
for the majority of the patients is poor, with few surviving 
past the first decade of life [89].

Alzheimer’s disease

Metabolic dysfunction plays a major role in the patho-
genesis of Alzheimer’s disease (Fig.  4). A comprehensive 
review of normal brain metabolism is beyond the scope of 
this review; however, key points will be summarized here. 
Neurons rely heavily on oxidative metabolism and prefer-
entially take up lactate, which is converted into pyruvate 
for oxidative phosphorylation by LDH, over glucose for 
their energy needs [186, 187]. Glucose, instead, is shuttled 
into the pentose phosphate pathway to create NADPH for 
regenerating reduced glutathione [188]. Astrocytes, on the 
other hand, are highly glycolytic cells that are responsible 
for storing glycogen in the brain, defense against oxidative 
stress, and maintenance of neuronal synapses and extra-
cellular space homeostasis [189–191]. Astrocytes perform 
glycolysis and release lactate into the extracellular space, 
which is subsequently taken up by neurons in a process 
called the astrocyte–neuron lactate shuttle (ANLS). Thus, 
neuronal metabolism is dependent upon the uptake of lac-
tate and its conversion to pyruvate by LDH to be used in 
the mitochondria for the generation of neuronal ATP. The 
ANLS is reviewed in greater detail by Bélanger et al. [192]. 
Recent research points towards ANLS as the critical energy 
supply for neurons [193, 194].

Several factors contribute to the metabolic dysfunc-
tion observed in Alzheimer’s disease, including the gen-
eration of reactive oxygen species (ROS), decreased glu-
cose uptake, and synaptic hyper-excitability [195–200]. 
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Production of ROS is considered to be one of the hall-
marks in the pathogenesis of Alzheimer’s disease. Endog-
enously, ROS is produced by the mitochondria and by the 
membrane-bound enzyme NADPH oxidase [196, 201]. 
ROS species upregulate Beta-Site APP cleavage enzyme 1 
(BACE1), which cleaves amyloid precursor protein (APP) 
into amyloid Beta (Aβ), leading to increased production of 
the Aβ oligomer, the peptide widely accepted as the main 
pathogen in Alzheimer’s disease. One way Aβ exerts neu-
rotoxic effects is by increasing ROS production through 
activation of NAPDH oxidase [202]. Increased ROS, in 
turn, upregulates expression of hypoxia inducible factor-
1α (HIF-1α) which stabilizes expression of BACE1 as well 
as increases the activity of PDK1, thereby reducing PDH 
activity and reducing mitochondrial pyruvate flux through 
oxidative phosphorylation [203]. Furthermore, peroxi-
dation of lipids present in the brain creates a toxic prod-
uct called acrolein, which is a potent inhibitor of lipoate-
containing proteins, such as PDH [180, 204, 205]. An end 

result of neuronal ROS production is decreased PDH activ-
ity, which leads to decreased ATP production and neuronal 
dysfunction. The loss of proper neuronal function is abso-
lutely central to the pathogenesis of Alzheimer’s disease. 
More recently, however, the role of astrocyte dysfunction 
has also been explored.

Astrocytes, as discussed earlier, employ a highly gly-
colytic metabolism. The network of regions in the brain 
where glycolytic metabolism is most prominent is called 
the default mode network (DMN). The DMN contains a 
high percentage of astrocytes [206] and is thought to play 
an important role in memory retrieval, and may be per-
turbed in Alzheimer’s disease [207]. While many questions 
about the pathogenesis of Alzheimer’s disease still exist, it 
is known that metabolic alterations in the DMN are signifi-
cant enough to be detected by advanced FDG-PET imag-
ing during the prodromal stages of Alzheimer’s disease 
[208–211]. A recent imaging study showed spatial cor-
relation in the DMN between Aβ deposition and aerobic 

Fig. 4   Role of pyruvate in neurodegeneration. Normal metabolic 
pathways of astrocyte and neuronal metabolism and pathological 
pathways of Alzheimer’s’s and Parkinson’s disease are drawn with 
black arrows. The gray arrows show the therapeutic pathway of exog-
enous pyruvate administration. In Alzheimer’s disease, ROS activates 
BACE1 and stabilizes HIF-1α, which further upregulates BACE1 
levels. BACE1 produces Aβ, which has been shown to activate mem-
brane-bound NADPH-oxidase leading to increased ROS production. 
HIF-1α also increases PDK levels leading to an inhibition of PDH. 
Peroxidation of lipids by ROS creates acrolein, which further inhibits 
PDH. Accumulation of Aβ has been shown to decrease glucose uptake 
by astrocytes, through a yet to be defined mechanism. The decrease in 

glucose uptake leads to a decrease in ATP fueling the Na/K ATPase, 
which is coupled to EAAT in order to clear glutamate from the syn-
apse. The lingering glutamate in the synapse causes excitatory neu-
rotoxicity. In Parkinson’s disease, the metabolism of DA by the outer 
mitochondrial membrane-bound MAO creates ROS. Furthermore, in 
Parkinson’s disease, PGC-1α, the transcription factor regulating elec-
tion transport chain and pyruvate metabolism enzymes, is downregu-
lated leading to decreased pyruvate metabolism. MPC mitochondrial 
pyruvate carrier, PYR pyruvate metabolism gene set, NADPH OX 
NADPH oxidase, MAO monoamine oxidase, DAT dopamine trans-
porter, DA dopamine, NMDA-R NMDA receptor, EAAT excitatory 
amino acid transporter
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glycolysis in Alzheimer’s patients and cognitively normal 
individuals [212]. However, the difference in Aβ deposi-
tion between Alzheimer’s patients and normal individu-
als was greatest in regions where aerobic glycolysis was 
highest [212]. This raises the question of whether Aβ accu-
mulation may lead to aerobic glycolysis as a protective or 
compensatory process for other metabolic abnormalities 
that accompany Alzheimer’s disease. Furthermore, another 
study found regional variations in the degree of overlap 
among Aβ deposits, hypometabolism, and atrophy in the 
brains of Alzheimer’s disease patients [213]. The lack of 
significant correlation between atrophy and hypometabo-
lism may indicate the operation of region-specific patho-
logical or protective mechanisms. Overall, greater induc-
tion of aerobic glycolysis may be a compensation for 
neuronal dysfunction and hypometabolism. This would 
increase lactate transfer by the ANLS, which is important 
for long-term memory formation and would also support 
neuronal oxidative metabolism by increasing pyruvate 
availability [214, 215].

Parkinson’s disease

Parkinson’s disease is the second most common neurode-
generative disease behind Alzheimer’s disease, and, like 
Alzheimer’s disease, mitochondrial dysfunction plays a 
significant role [216, 217]. Dopaminergic neurons in the 
substantia nigra are especially susceptible to oxidative 
damage because the mitochondrial enzymes involved in 
dopamine metabolism produce ROS (Fig.  4) [216, 218]. 
These neurons are killed by oxidative damage from the 
production of ROS and RNS (reactive nitrogen species) 
[216, 217]. The loss of these neurons leads to significant 
motor and non-motor neurological dysfunction that define 
the clinical course of Parkinson’s disease [219]. While oxi-
dative damage has long been a focus of Parkinson’s dis-
ease, recent research suggests that hypometabolism is a 
significant contributor in the course of the disease. Recent 
studies have shown that, in the dopaminergic neurons of 
the substantia nigra of Parkinson’s disease and sub-clinical 
Parkinson’s disease patients, many genes regulating pyru-
vate metabolism and the electron transport chain are under-
expressed [220]. These genes are under the control of  
PGC-1alpha, a transcription factor responsible for mitochon-
drial biogenesis and regulation, which is under-expressed 
in Parkinson’s disease. Over-expression of PGC-1alpha in a  
mouse model of Parkinson’s disease suppressed dopamin-
ergic neuron loss [220]. This recent research could explain 
why hypometabolism can be seen on FDG-PET imaging in 
Parkinson’s disease patients just like in Alzheimer’s disease 
patients [221]. New research on Parkinson’s disease will 
continue to focus on the role of mitochondrial metabolism 
in pathogenesis and treatment [222].

Therapies

Alzheimer’s disease and Parkinson’s disease share many 
similarities: increased ROS production, hypometabolic 
states, and overall metabolic dysfunction in their respec-
tive regions of the brain. In Alzheimer’s disease, the two 
approved therapeutics are acetylcholine esterase inhibitors 
(AChE-I) and NMDA receptor inhibitors; however, these 
drugs only moderately improve cognition [223]. AChE-I 
increases cortical acetylcholine levels which are decreased 
in Alzheimer’s disease. NMDA receptor inhibitors block 
glutamate binding to the NMDA receptor, preventing 
neuronal excitatory toxicity. Parkinson’s disease patients 
are typically treated with l-Dopa, a dopamine pre-cursor, 
and inhibitors of dopamine catabolism [224]. None of the 
therapies listed address core problems of ROS and hypo-
metabolism. However, administration of pyruvate has been 
shown to correct some of these central issues observed in 
neurodegeneration.

Generation of ROS is central to the pathogenesis of 
Alzheimer’s disease and Parkinson’s disease. Therapies 
that effectively alleviate oxidative stress are needed and 
evidence suggests that pyruvate administration may do 
so. Pyruvate is an endogenous scavenger of reactive oxi-
dants hydrogen peroxide, superoxide, and peroxynitrite 
[225–228]. In cultured primary rat neurons, administration 
of pyruvate prevented Aβ-induced oxidative neuronal death 
[229, 230]. In a mouse model of Parkinson’s disease, the 
administration of ethyl pyruvate, an ethyl ester of pyruvate 
that is hydrolyzed into pyruvate and ethanol, protected sub-
stantia nigra neurons from oxidative neurotoxicity, which 
was attributed to metabolic protection provided by pyruvate 
metabolism [231]. Additional studies have shown that ethyl 
pyruvate administration inhibits RNS and ROS damage 
[232] and protects neurons from peroxide-induced dam-
age [233]. A potential hypothesis explaining the protective 
effect of pyruvate relies on the oxidation of pyruvate and 
subsequent generation of NADH, which can be converted 
into mitochondrial NAPDH via NADP-transhydrogenase, 
which reduces ROS levels by replenishing reduced glu-
tathione [234].

The development of a hypometabolic state, a key fea-
ture observed in Alzheimer’s disease and Parkinson’s dis-
ease, may be corrected by the administration of pyruvate. 
In one study, exogenous administration of pyruvate and 
3-beta-hydroxybutyrate directly into the cerebrospinal 
fluid was shown to ablate excitatory neurotoxicity and cor-
rected neuronal energy deficiency in a mouse model of Alz-
heimer’s disease [203]. In astrocytes, the ATP generated 
by aerobic glycolysis is used to fuel glutamate uptake by 
excitatory amino acid transporter [192, 235, 236]. How-
ever, when astrocyte glucose uptake is impaired, astro-
cytes lack the energy to sufficiently clear glutamate from 
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the synapse. This leads to excitatory neurotoxicity, defined 
in part by increased ROS and mitochondrial dysfunction, 
and neuronal death [237]. Astrocytes in mice fed pyruvate 
and 3-beta-hydroxybutyrate had twice the glycogen stores 
compared to standard diet controls. Pyruvate and 3-beta-
hydroxybutyrate were thought to provide a non-glucose 
energy source that spared the use of astrocyte glycogen 
enabling maintenance of synaptic homeostasis [203].

Given pyruvate’s role in mitochondrial metabolism and 
its anti-oxidant capabilities, therapeutics modulating pyru-
vate metabolism may be a fruitful area for future study 
in the treatment for Alzheimer’s disease and Parkinson’s 
disease (Fig. 4). Modulation of pyruvate metabolism may 
also be beneficial in other neurodegenerative diseases with 
mitochondrial dysfunction such as progressive supranu-
clear palsy, a disease that has pathophysiology similar to 
Alzheimer’s disease and Parkinson’s disease [238, 239]. 
Increasing CNS pyruvate metabolism looks like a promis-
ing neuroprotective therapy, but more research and trials 
need to be carried out to establish methods of success-
fully delivering pyruvate to the CNS and mitochondria of 
affected cells.

Heart failure

Heart failure is a condition defined as the inability of 
the heart to adequately supply oxygen and nutrients via 
the blood to the tissues of the body. This disorder affects 
approximately 2 % of the US population and increases to 
6–10 % of people over age 65, representing an incredible 
burden on the US healthcare system [240, 241]. Patients 
diagnosed with heart failure display symptoms including, 
fatigue, weakness, confusion, and increased heart rate. The 
leading causes of heart failure include myocardial infarc-
tion and hypertension [241, 242]. These injurious events 
alter the physiology of the heart resulting in changed gene 
and protein expression patterns [243–245]. In response to 
these changes, the heart fails to produce enough energy to 
meet its large energetic demand. Indeed, patients suffering 
from heart failure have decreased ATP and phosphocreatine 
levels [240, 246].

Many main-stay therapies aim to reduce the workload 
of the failing heart [247]. A complementary approach, 
however, is to modulate cardiac metabolism so that the 
heart produces more energy with the supplies available 
[248–250]. Under normal conditions, the heart obtains the 
majority of its energy through the beta-oxidation of fatty 
acids. However, beta-oxidation of fatty acids is an ineffi-
cient fuel source, requiring greater amounts of oxygen per 
ATP produced as compared to the oxidation of glucose and 
pyruvate [243, 251]. Beta-oxidation creates acetyl-CoA, 
which is consumed through the citric acid cycle and oxi-
dative phosphorylation. Oxidation of glucose and pyruvate, 

however, generates ATP by both substrate level and oxi-
dative phosphorylation, generating more ATP per oxygen 
consumed. Based on the predicted number of ATP mol-
ecules produced per oxygen atom reduced when utilizing 
glucose or fatty acids as an exclusive fuel source, cardiac 
efficiency on fatty acids would be near 10  % less [248, 
252]. However, as empirically observed, due to unknown 
mechanisms, this efficiency decrement approaches 30  % 
[248, 252]. Thus, therapies that increase relative amounts 
of glucose oxidation might substantially increase cardiac 
efficiency and therefore energy reserves and longevity.

These therapies include drugs which either inhibit or 
downregulate the enzymes associated with beta-oxidation 
[242, 248, 253, 254]. Alternatively, glucose and pyruvate 
oxidation can be increased directly. Inhibition of PDK, 
by dichloroacetate, for example, will relieve the negative 
regulation on PDH, thereby increasing PDH activity and 
glucose oxidation [255]. Indeed, dichloroacetate has been 
shown to confer cardioprotective effects and increase car-
diac efficiency in rat hearts [248, 256, 257].

Additional disorders of pyruvate metabolism

Appropriate regulation of pyruvate flux is critical for main-
taining cellular function in multiple contexts. Pyruvate 
dysmetabolism because of excessive inhibition of PDH 
by PDK presents in chronic, progressive diseases such as 
chronic obstructive pulmonary disease (COPD), obesity, 
diabetes, and aging.

Patients with chronic obstructive pulmonary disease 
have impaired skeletal muscle capacity to generate ATP 
leading to exercise intolerance [258–261]. This ATP deficit 
is caused by a decrease in oxidative skeletal muscle fibers 
and a decrease in citric acid cycle carbon flux in skeletal 
muscle fibers [258–261]. Clinical trials of dichloroacetate 
to upregulate pyruvate metabolism during chronic obstruc-
tive pulmonary disease have found improved exercise toler-
ance [262, 263]. The positive results from dichloroacetate 
clinical trials indicate that misregulation of PDH may play 
a role in the pathogenesis of chronic obstructive pulmonary 
disease.

Patients with obesity or type 2 diabetes often have 
impaired regulation of carbohydrate metabolism concomi-
tant with mild exercise intolerance [264, 265]. Metabolic 
inflexibility is the inability to properly switch from fat 
to carbohydrate oxidation either post-prandial or during 
exercise, and is often present in obesity and type 2 diabe-
tes [266, 267]. Increased serum and intramuscular lipids 
increase PDK activity and thereby reduce PDH activity and 
pyruvate flux into the citric acid cycle [268, 269]. Further-
more, in healthy subjects, a high-lipid, low-carbohydrate 
diet leads to impaired PDH activity via PDK upregulation 
[270]. Several studies have shown that pyruvate combined 
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with exercise can restore PDH activity [271–273]. Pyruvate 
supplementation combined with moderate physical activity 
leads to significant decreases in body weight and fat mass 
and a significant increase in exercise tolerance [274]. Thus, 
restoring normal pyruvate metabolism may relieve major 
aspects of the metabolic pathology present in type 2 diabe-
tes and obesity.

Pyruvate dysmetabolism also contributes to failure 
of the pancreatic islet β-cells during late type 2 diabetes. 
In diabetic mouse and rat models, islet β-cell PDH activ-
ity is severely impaired by increased PDK activity [275, 
276]. Furthermore, PC activity is also decreased in the islet 
β-cells of diabetic mice [277]. PC plays a critical role in 
islet cell proliferation [278] and increased insulin secretion 
in compensation for whole-body insulin resistance [279]. 
Inactivation of PC is thought to be involved in the transition 
from mild hyperglycemia to severe hyperglycemia [277].

Pyruvate dysmetabolism is also seen in many organs 
in diabetes. In the heart, PDK4 is upregulated leading to 
excessive fatty acid oxidation and ROS formation in the 
mitochondria [280]. Muscle, liver, and kidney are among 
other tissues are severely affected by diabetes. In diabetic 
skeletal muscle and liver, PDK is expression is increased, 
leading to PDH inhibition [281, 282]. In diabetic kidneys, 
PDH is inhibited by preferential oxidation of fatty acids 
leading to increased ROS production [283, 284]. In dia-
betic rat kidneys, the administration of ethyl pyruvate pro-
tected against diabetic nephropathy, regardless of blood 
glucose levels [285]. Pyruvate administration protected 
against cataract formation and increased cellular ATP lev-
els in a mouse model of diabetes [286]. Pyruvate admin-
istration also prevented zinc-induced islet β-cell death in a 
mouse model of diabetes by protecting cellular ATP levels 
[287]. Recent studies have also shown that altered pyru-
vate metabolism is involved in the aging process. In the 
aging mouse brain, there is an increase in lactate caused 
by diminished pyruvate flux through the citric acid cycle 
[288]. Two studies in Caenorhabditis elegans concluded 
that a long lifespan is dependent on PDH activity, noting 
that inhibition of PDH reduced lifespan [289] and that inhi-
bition of PDK increased lifespan [290].

Misregulation of the PDK–PDH axis may also result 
from a genetic mutation in a regulatory gene. Subjects with 
Chuvash Polycythemia have a mutated form of the Von 
Hippel Lindau protein, preventing it from properly bind-
ing HIF-1α and targeting it for degradation. As with can-
cer, HIF-1α accumulates, thereby increasing transcription 
and activity of PDK. As occurs elsewhere, increased PDK 
activity decreases PDH activity and pyruvate flux through 
the citric acid cycle [291]. This mechanism is thought to 
be central to the exercise intolerance experienced by Chu-
vash Polycythemia subjects [292, 293]. Tests performed on 
Chuvash Polycythemia patients showed increased lactate 

production during exercise and reduced exercise capacity, 
as well as significant increases in mRNA of PDK in skel-
etal muscle, elevated blood pyruvate, and elevated blood 
lactate, compared to controls.

Conclusion

The regulation of pyruvate metabolism in humans is highly 
complex, involving several major enzymes, many encoded 
by multiple genes and comprising numerous individual 
protein subunits. Mutations in any of these genes and dis-
ruption of pyruvate metabolism at any of these major nodes 
may lead to disease. New aspects of pyruvate metabolism 
are being continuously discovered and will lead to greater 
delineation between healthy verses pathological pyruvate 
flux. For example, the recent discovery of the MPC elu-
cidated the molecular basis for metabolic disease in two 
patient families [1, 2]. In addition to targeted approaches to 
specifically modulate defective aspects of pyruvate metabo-
lism, major nodes of pyruvate metabolism may be up- or 
downregulated to treat disease in a compensatory or sec-
ondary manner. Indeed, specific inhibition of the MPC was 
recently shown to increase skeletal muscle insulin sensitiv-
ity by activating the AMP-activated protein kinase pathway 
[63]. Because most major diseases also involve aberrant 
metabolism, understanding and exploiting pyruvate carbon 
flux may yield novel treatments that will enhance human 
health.
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