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Abstract

Previous studies indicate that conscious face perception may be related to neural activity in a large

time window around 170-800ms after stimulus presentation, yet in the majority of these studies

changes in conscious experience are confounded with changes in physical stimulation. Using

multivariate classification on MEG data recorded when participants reported changes in conscious

perception evoked by binocular rivalry between a face and a grating, we showed that only MEG

signals in the 120-320ms time range, peaking at the M170 around 180ms and the P2m at around

260ms, reliably predicted conscious experience. Conscious perception could not only be decoded

significantly better than chance from the sensors that showed the largest average difference, as

previous studies suggest, but also from patterns of activity across groups of occipital sensors that

individually were unable to predict perception better than chance. Additionally, source space

analyses showed that sources in the early and late visual system predicted conscious perception

more accurately than frontal and parietal sites, although conscious perception could also be

decoded there. Finally, the patterns of neural activity associated with conscious face perception

generalized from one participant to another around the times of maximum prediction accuracy.

Our work thus demonstrates that the neural correlates of particular conscious contents (here, faces)

are highly consistent in time and space within individuals and that these correlates are shared to

some extent between individuals.
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Introduction

There has been much recent interest in characterizing the neural correlates of conscious face

perception, but two critical issues remain unresolved. The first is the time at which it

becomes possible to determine conscious face perception from neural signals obtained after

a stimulus is presented. The second is whether patterns of activity related to conscious face

perception generalize meaningfully across participants, thus allowing comparison of the

neural processing related to the conscious experience of particular stimuli between different

individuals. Here, we addressed these two questions using MEG to study face perception

during binocular rivalry. We also examined several more detailed questions, including

which MEG sensors and sources were the most predictive, which frequency bands were

predictive, and how to increase prediction accuracy based on preprocessing and pre-

selection of trials.

The neural correlates of conscious face perception have only been studied in the temporal

domain in a few recent EEG studies. The most commonly employed strategy in those studies

was to compare neural signals evoked by masked stimuli that differ in stimulus-mask onset

asynchrony that results in differences in visibility of the masked stimulus (Babiloni et al.,

2010; J. A. Harris, Wu, & Woldorff, 2011; Liddell, Williams, Rathjen, Shevrin, & Gordon,

2004; Pegna, Darque, Berrut, & Khateb, 2011; Pegna, Landis, & Khateb, 2008). However,

because all but one of these studies (Babiloni et al., 2010) compared brief presentations with

long presentations, the stimuli (and corresponding neural signals) differed not only in terms

of whether or not they were consciously perceived, but also in terms of their duration.

Conscious perception of a stimulus was thus confounded by physical stimulus characteristics

(Lumer, Friston, & Rees, 1998). Moreover, all of these earlier studies used conventional

univariate statistics, comparing (for example) the magnitude of averaged responses between

different stimulus conditions across participants. Such approaches are biased towards single

strong MEG/EEG sources and may overlook distributed, yet equally predictive information.

It remains controversial whether relatively early or late event-related potential/field (ERP/

ERF) components predict conscious experience. The relatively early components in question

are the N170 found around 170ms after stimulus onset and a later response at around 260ms

(sometimes called P2 or N2 (depending on the analyzed electrodes) and sometimes P300 or

P300-like). The N170 is sometimes found to be larger for consciously perceived faces than

for those that did not reach awareness (Babiloni et al., 2010; J. A. Harris et al., 2011; Pegna

et al., 2011), yet this difference is not always found (Liddell et al., 2004; Pegna et al., 2008).

Similarly, the P2/N2 correlated positively with conscious experience in one paper (Babiloni

et al., 2010) and negatively in others (Liddell et al., 2004; Pegna et al., 2011). Additionally,

both the N170 (Pegna et al., 2008) and the P2/N2 (Liddell et al., 2004; Pegna et al., 2011)

depend on invisible stimulus characteristics, suggesting that these components reflect

unconscious processing (but see J. A. Harris et al., 2011).

Late components are found between 300 and 800ms after stimulus presentation. Two studies

point to these components (300-800ms) as reflecting conscious experience of faces (Liddell

et al., 2004; Pegna et al., 2008), yet these late components are only present when stimulus

durations differ between conscious and unconscious stimuli and not when stimulus duration
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is kept constant across the entire experiment and stimuli are classified as conscious or

unconscious by the participants (Babiloni et al., 2010).

Here, we therefore sought to identify the time range for which neural activity was diagnostic

of the contents of conscious experience in a paradigm where conscious experience changed,

but physical stimulation remained constant. We used highly sensitive multivariate pattern

analysis (MVPA) of MEG signals to examine the time when the conscious experience of the

participants viewing intermittent binocular rivalry (Breese, 1899; Leopold, Wilke, Maier, &

Logothetis, 2002) could be predicted. During intermittent binocular rivalry, two different

stimuli are presented on each trial – one to each eye. Although two different stimuli are

presented, the participant typically reports perceiving only one image and this image varies

from trial to trial. In other words, physical stimuli are kept constant, but conscious

experience varies from trial to trial. This allowed us to examine whether and when MEG

signals predicted conscious experience on a per-participant and trial-by-trial basis.

Consistent with previous studies using multivariate decoding, we collected a large dataset

from a relatively small number of individuals (Carlson, Hogendoorn, Kanai, Mesik, &

Turret, 2011; Haynes, Deichmann, & Rees, 2005; Haynes & Rees, 2005; Raizada &

Connolly, 2012), employing a case-plus-replication approach supplemented with group

analyses where necessary.

Having established the temporal and spatial nature of the neural activity specific to

conscious face perception by use of MVPA applied to MEG signals, we further sought to

characterize how consistently this pattern generalized between participants. If the pattern of

MEG signals in one participant was sufficient to provide markers of conscious perception

that could be generalized to other participants, this would provide one way to compare

similarities in neural processing related to the conscious experience of particular stimuli

between different individuals.

After having examined our two main questions, two methods for improving multivariate

classification accuracy were also examined: Stringent low-pass filtering to smooth the data

and rejection of trials with unclear perception. Next, univariate and multivariate prediction

results were compared in order to find correlates of conscious face perception that are not

revealed by univariate analyses. This analysis was performed at the sensor level as well as

on activity reconstructed at various cortical sources. In addition to these analyses, it was

examined whether decoding accuracy was improved by taking into account information

distributed across the ERF or by using estimates of power in various frequency bands.

Experimental methods

MEG signals were measured from healthy human participants while they experienced

intermittent binocular rivalry. Participants viewed binocular rivalry stimuli (images of a face

and a sinusoidal grating) intermittently in a series of short trials (Fig. 1A) and reported their

percept using a button press. This allowed us to label trials by the reported percept, yet time-

lock analyses of the rapidly changing MEG signal to the specific time of stimulus

presentation instead of relying on the timing of button press reports, which are both delayed
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and variable with respect to the timing of changes in conscious contents. The advantages of

this procedure have been described elsewhere (Kornmeier & Bach, 2004).

Participants

8 healthy young adults (6 females) between 21 and 34 years of age (mean=26.0, SD=3.55)

with normal or corrected-to-normal vision gave written informed consent to participate in

the experiment. The experiments were approved by the UCL Research Ethics Committee.

Apparatus and MEG recording

Stimuli were generated using the MATLAB toolbox Cogent (http://www.vislab.ucl.ac.uk/

cogent.php). They were projected onto a 19” screen (resolution: 1024×768 pixels; refresh

rate: 60Hz) using a JVC D-ILA, DLA-SX21 projector. Participants viewed the stimuli

through a mirror stereoscope positioned at approximately 50cm from the screen. MEG data

was recorded in a magnetically shielded room with a 275 channel CTF Omega whole-head

gradiometer system (VSM MedTech, Coquitlam, BC, Canada) with a 600Hz sampling rate.

After participants were comfortably seated in the MEG, head localizer coils were attached to

the nasion and 1 cm anterior (in the direction of the outer canthus) of the left and right tragus

to monitor head movement during recording.

Stimuli

A red Gabor patch (contrast = 100 %, spatial frequency = 3 cycles/degree, standard

deviation of the Gaussian envelope = 10 pixels) was presented to the right eye of the

participants, and a green face was presented to the left eye (Fig. 1A). To avoid piecemeal

rivalry where each image dominates different parts of the visual field for the majority of the

trial, the stimuli rotated at a rate of 0.7 rotations per second in opposite directions, and to

ensure that stimuli were perceived in overlapping areas of the visual field, each stimulus was

presented within an annulus (inner/outer r = 1.3/1.6 degrees of visual angle) consisting of

randomly oriented lines. In the center of the circle was a small circular fixation dot.

Procedure

During both calibration and experiment participants reported their perception using three

buttons each corresponding to either face, grating, or mixed perception. Participants

swapped the hand used to report between blocks. This was done in order to prevent the

classification algorithm from associating a perceptual state with neural activity related to a

specific motor response. In order to minimize perceptual bias (Carter & Cavanagh, 2007),

the relative luminance of the images was adjusted for each participant until each image was

reported equally often (+/− 5%) during a one minute long continuous presentation.

Each participant completed 6-9 runs of 12 blocks of 20 trials, i.e. 1440-2160 trials were

completed per participant. On each trial, the stimuli were displayed for approximately

800ms. Each trial was separated by a uniform gray screen appearing for around 900ms.

Between blocks, participants were given a short break of 8 seconds. After each run,

participants signaled when they were ready to continue.
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Preprocessing

Using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), data were downsampled to 300Hz and

high-pas filtered at 1Hz. Behavioral reports of perceptual state were used to divide

stimulation intervals into face, grating or mixed epochs starting 600ms before stimulus onset

and ending 1400ms after. Trials were baseline-corrected based on the average of the 600ms

pre-stimulus activity. Artifacts were rejected at a threshold of 3 picotesla (pT). On average

0.24% (SD=0.09) of the trials were excluded for each participant due to artifacts.

Event related field (ERF) analysis

Traditional, univariate event related field (ERF) analysis was first performed. For this

analysis, data were filtered at 20Hz using a 5th order Butterworth low-pass filter, and face

and grating perception trials were averaged individually using SPM8.

Source analysis

Sources were examined using the multiple sparse priors (MSP) (Friston et al., 2008)

algorithm. MSP operates by finding the minimum number of patches on a canonical cortical

mesh that explain the largest amount of variance in the MEG data, this tradeoff between

complexity and accuracy is optimized through maximization of model evidence. The MSP

algorithm was first used to identify the electrical activity underlying the grand average face-

grating contrast maps at a short time window around the M170 and the P2m (100ms to

400ms after stimulus onset). Afterwards, the MSP algorithm was used to make a group-level

source estimation based on template structural MR scans using all trials (over all conditions)

from all 8 participants. The inverse solution restricts the sources to be the same in all

participants, but allows for different activation levels. This analysis identified 33 sources

activated at stimulus onset (see Table 1). Activity was extracted on a single trial basis across

the 33 sources for each scan of each participant and thus allowed for analyses to be

performed in source space.

Multivariate prediction analysis

Multivariate pattern classification of the evoked responses was performed using the linear

Support Vector Machine (SVM) of the MATLAB Bioinformatics Toolbox (Mathworks).

The SVM decoded the trial type (face or grating) independently for each time point along

the epoch. Classification was based on field strength data as well as power estimates in

separate analyses.

Conscious perception was decoded within and between participants. For within-subject

training/testing, 10-fold cross-validation was used (Fig. 1B). For between-subject training/

testing, the SVM was trained on all trials from a single participant and tested on all trials of

each of the remaining participants. The process was repeated until data from all participants

had been used to train the SVM (Fig. 1B).

In order to decrease classifier training time (for practical reasons), the SVM used only 100

randomly selected trials of each kind (200 in total). As classification accuracy cannot be

compared between classifiers trained on different numbers of trials, participants were
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excluded from analyses if they did not report 100 of each kind of analyzed trials. The

number of participants included in each analysis is reported in the “Results” section.

In addition to the evoked response analysis, a moving window discrete Fourier transform

using was used to make a continuous estimate of signal power in selected frequency bands

over time: Theta: 3-8Hz, Alpha: 9-13Hz, low beta: 14-20Hz, high beta: 21-30Hz as well as 6

gamma bands in the range 31-90Hz, each consisting of 10Hz (Gamma1, for instance, would

thus be 31-40Hz) but excluding the 50Hz band. The duration of the moving window was set

to accommodate at least 3 cycles of the lowest frequency within each band (e.g. for theta

(3-8Hz) the window was 900ms).

Statistical testing

All statistical tests were two-tailed. Comparisons of classification accuracies were

performed on a within-subject basis using the binomial distributions of correct/incorrect

classifications. In order to show the reproducibility of the within subject significant effects

across individuals we used the cumulative binomial distribution:

(1)

Where n is the total number of participants, the within-subject significant criterion is p

(=0.05) and x is the number of participants that reach this criterion and  is the

binomial coefficient.

Prediction accuracy for each power envelope was averaged across a 700ms time window

after stimulus presentation (211 sampling points) for each participant. Histogram inspection

and Shapiro-Wilk tests showed that the resulting accuracies were normally distributed. One

sample t-tests (N=8) were used to compare the prediction accuracy level of each power band

to chance (0.5). Bonferroni correction for 10 comparisons was used as 10 power bands were

analyzed.

Results

EEG research points to the N170 and the component sometimes called the P2 as prime

candidates for the correlates of conscious face perception (following convention, we shall

call these M170 and P2m hereafter), but later sustained activity around 300-800ms may also

be relevant. In order to search for predictive activity even earlier than this, activity around

the face-specific M100 was also examined. Before analyses, trials with unclear perception

were identified and excluded from subsequent analyses.

Identification of unclear perception based on behavioral data

Analyses were optimized by contrasting only face/grating trials on which perception was as

clear as possible. Participants generally reported perception to be unclear in two ways, both

of which have been observed previously (see Blake, 2001). First, participants reported

piecemeal rivalry where both images were mixed in different parts of the visual field for the
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majority of the trial. Such trials were not used in the MEG analyses. Second, participants

sometimes experienced brief periods (<200ms) of fused or mixed perception at the onset of

rivalry. Participants were not instructed to report this initial unclear perception if a stable

image was perceived after a few hundred milliseconds in order to keep the task simple. To

minimize the impact of this type of unclear perception on analyses, we exploited the

phenomenon of stabilization that occurs during intermittent rivalry presentations, which will

be explained below.

On average, participants reported face perception on 45.5% (SD=15.1) of the trials, grating

perception on 42.6% (SD=16.1), and mixed perception on 11.9% (SD=10.6). Mean RT

across participants (N=8) was 516ms (SD=113) overall, and the frequency histogram of the

data in Fig. 1A shows the variance in RT. Average RT was 497ms (SD=112) for face

perception, 493ms (SD=134) for grating perception, and 628ms (SD=117) for mixed

perception, reflecting a longer decision making time when perception was unclear (Fig. 1C).

During continuous rivalry, the neural population representing the dominant image strongly

inhibits the competing neural population, but as adaptation occurs, inhibition gradually

decreases until perception switches after a few seconds (Freeman, 2005; Noest, van Ee, Nijs,

& van Wezel, 2007; Wilson, 2003, 2007). In contrast, during intermittent presentation

adaptation does not easily reach the levels at which inhibition decreases significantly while

at the same time the percept-related signal stays high possibly due to increased excitability

of the dominant neurons (Wilson, 2007) or increased sub-threshold elevation of baseline

activity of the dominant neurons (Noest et al., 2007). Behaviorally this results in a high

degree of stabilization, i.e. the same image being perceived on many consecutive trials, and

a swift inhibition of the non-dominant image is thus to be expected on such stabilized trials.

This should result in minimization of the brief period of fused or mixed perception, causing

a faster report of the perceived image. We hypothesized that stabilization-related perceptual

clarity builds up gradually across trials following a perceptual switch, and tested this by

examining reaction times. If the hypothesis is correct, a negative correlation between RT and

trial number counted from a perceptual switch would be expected for face/grating, but not

for mixed perception. In other words, when stabilization increases across time, perceptual

clarity is expected to increase and RT to decrease. When perception remains mixed, no such

effect is expected even though participants press the same response button on consecutive

trials.

As can be seen in Fig. 1D, log-transformed RT did indeed correlate negatively with time

after a perceptual switch for face/grating perception (r = −0.39, p<0.001), but not for mixed

perception (r = −0.11, p=0.37). This gradual build-up of stabilization-related perceptual

clarity was confirmed in additional MEG analyses to be reported elsewhere (Sandberg et al.,

in preparation). Based on both these findings, we analyzed only MEG trials for which

participants had reported at least 10 identical percepts. We refer to these as “stable trials”. A

similar criterion was used by Brascamp et al. (2008). After artifact rejection and rejection of

unstable trials, on average 396 face perception and 393 grating perception trials remained

per participant.
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The impact of rejection of unstable trials on decoding accuracy is reported in “Appendix:

Improving decoding accuracy”. Please note that results remain highly significant without

rejection of these trials.

Univariate event-related field (ERF) and source differences

We first examined which ERF components varied with conscious perception. We calculated

a face-grating contrast using stable trials, and as shown in Fig. 2A, activity related to face

perception differed clearly from that related to grating perception particularly at two time

points, 187ms (M170) and 267ms (P2m), after stimulus presentation. The three face-specific

peaks, the M100, M170 and P2m are shown in Fig. 2B-C. Fig. 2D shows that the difference

at 187ms was localized almost exclusively to temporal sensors.

The electrical activity underlying the grand average face-grating contrast maps was

estimated using the MSP algorithm, and the solution explained 97% of the variance in the

MEG signals for the period from 100ms to 400ms after stimulus onset. The posterior

probability map, showing those cortical locations with 95% probability of having non-zero

current density at t=180ms (the time of maximal activity difference) is plotted in Fig. 2E.

The activity pattern was strikingly consistent with activation of the face-processing network

(Haxby, Hoffman, & Gobbini, 2000) with the right occipital face area (OFA) indicated as

the largest source.

Within-subject decoding of conscious perception

In order to determine the times when MEG activity accurately predicted conscious

experience, multivariate SVM classifiers were trained to decode perception on each trial. To

demonstrate that results remained significant without any pre-selection of trials, classifiers

were first trained on 1-20Hz filtered data from 100 randomly selected trials of each kind

(face/grating), thus including both stable and unstable trials.

Conscious perception was predicted at a level significantly above chance in the 120-300ms

time window with average classification performance peaking at around 180ms and 260ms

after stimulus onset (Fig. 3A, C-J) (the third, smaller peak at around 340ms was not

observed for all participants and was not replicated in the between-subjects analyses).

Activity after 350ms only predicted conscious experience to a very small degree or not at

all. The temporal positions of the two peaks in classification performance corresponded well

with the M170 and the P2m. Based on the binomial distribution of correct/incorrect

classifications, classification accuracy was above chance at the p<0.05 level at 187ms for all

8 participants and at 270ms for 7 out of 8 participants. The probability of finding

significantly above chance within-subject prediction accuracies for 7 or 8 of the total 8

participants in this case-study-plus-replication design by chance was p=6.0*10−9 and

p=3.9*10−11 respectively (uncorrected for comparisons over latencies). At no time point

around the M100 were significant within-subject differences found for more than 2

participants, giving a combined p=0.057, thus indicating that little or no group differences

between face and grating perception were present at the M100. Overall the main predictors

of conscious perception thus appeared to be the M170 (at 187ms) and to a slightly lesser

extent the P2m (at 270ms).
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Having determined that conscious experience could be predicted within participants in the

120-300ms time range, SVM classifiers were trained on data from one participant to decode

the conscious content of a different participant (Fig. 1B bottom panel).

Between-subject decoding of conscious perception

For between-subject decoding, peaks were observed around the M170 and the P2m, but no

above-chance accuracy was observed around the M100 (Fig. 3B). Accuracy was

significantly above chance for 7 of 8 participants at 180ms and for 5 of 8 participants at

250ms. The probability of observing these within-participant repeated replications were

p=6.0*10−9 and p=1.5*10−5 respectively. No significant differences were found around the

M100.

Overall, the M170 was thus found to be the component that predicted conscious experience

most accurately and significantly both within and between individuals, closely followed by

the P2m. Before initiating further analyses, we examined how different analysis parameters

might change decoding accuracy as described below.

We hypothesized that decoding accuracy could be increased in two ways: by rejecting trials

for which perception was not completely clear, and by applying a more stringent filter to the

data. Participant’s reports (see Results, above) suggested that the probability of clear

perception on a given trial increased the further away the trial is from a perceptual switch.

We thus tested classifiers trained on stable vs. unstable trials, and on 1-300Hz, 1-20Hz, and

2-10Hz filtered data. This analysis is reported in the “Appendix: Improving decoding

accuracy” and showed that the best results were obtained using 2-10Hz filtered data from

stable trials. Please note that this should not be taken as an indication that higher frequencies

are considered noise in a physiological sense, simply that the ERF components in the present

experiment may be viewed as half-cycles of around 3-9Hz and that the temporal smoothing

of a 10Hz low-pass filter may have minimized individual differences in latency of the M170

and P2m.

Moreover, in the Appendix we also report an analysis of the predictive ability of power in

various frequency bands (“Appendix: Decoding using power estimations”. This analysis

shows that the low frequencies dominating the ERF components are the most predictive, yet

prediction accuracy was never better than for analyses based on the evoked field strength

response. The following analyses are thus performed on 2-10Hz filtered data from the 6

participants who reported at least 100 trials of stable face/grating perception.

Identification of predictive sensors

One advantage of multivariate decoding over univariate analyses is the sensitivity to

distributed patterns of information. We therefore examined which group of sensors was most

predictive of conscious face perception independently of whether these sensors showed the

largest grand average difference.

Identification of predictive sensors was based on the standard CTF labeling of sensors

according to scalp areas as seen in Fig. 2D. First, the number of randomly selected sensors

distributed across the scalp required to decode perception accurately around the most
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predictive component, the M170, was examined. Decoding accuracy peaked at around 50

sensors, thus indicating that a group of >10 sensors from every site was enough to decode

perception significantly above chance (Fig. 4A).

Next, the ability of the sensors in one area alone to decode conscious perception at the M170

was examined (Fig. 4B). As expected, low decoding accuracy was found for most sites

where previous analyses showed no grand average difference (central sensors: 56.7%,

parietal sensors: 60.5%, and frontal sensors: 57.9%) while decoding accuracy was high for

temporal sensors (75.2%) where previous analyses had shown a large grand average

difference. However, decoding accuracy was numerically better when using occipital

sensors (78.0%). This finding was surprising as previous analyses had indicated little or no

grand average difference over occipital sensors.

Therefore, the predictability of single sensor data was compared to the group-level decoding

accuracy. In Fig. 4D, individual sensor performance is plotted for occipital and temporal

sensors. The highest single sensor decoding accuracy was achieved for temporal sensors

showing the greatest grand average difference in the ERF analysis. In the plots, it can be

seen that for occipital sensors, the group level classification (black bar) is much greater than

that of the single best sensor whereas this is not the case for temporal sensors. In fact, a

prediction accuracy of 74.3% could be achieved using only 10 occipital sensors with

individual chance-level performance (maximum of 51.3%).

Just as multivariate classification predicted conscious face perception at sensors that were at

chance individually, it is possible that perception might be decoded using multiple time

points for which individual classification accuracy was at chance. It may also be possible

that the information at the P2m was partially independent from the information at the M170,

causing joint classification accuracy to increase beyond individual classification. For these

reasons, we examined classification accuracy when the SVM classifiers were trained on data

from multiple time points. The formal analysis is reported in “Appendix: Decoding using

multiple time points” and shows that including a wide range of time points around each peak

(11 time points, 37ms of data) does not improve decoding accuracy. Neither does inclusion

of information at both time points in a single classifier, and finally, decoding of

consciousness perception is not improved above chance using multiple time points

individually at chance.

Decoding in source space

Our finding that signals from single time points at the sensors close to visual areas of the

brain were the most predictive does not necessarily mean, however, that the activity at these

sensors originates from visual areas. In order to test this, analyses of sources are necessary.

Therefore, activity was reconstructed at the 33 sources that were most clearly activated by

the stimuli in general (i.e. independently of conscious perception), and decoding was

performed on these data. The analysis was performed on 2-10Hz filtered data from stable

trials using the 6 participants who had 100 or more stable trials with reported face/grating

perception.
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First, decoding accuracy was examined across time when classifiers were trained/tested on

data from all sources (Fig 5A). Next, classifiers were trained on groups of sources based on

cortical location (see Table 1). Comparisons between the accuracies achieved by each group

of sources may only be made cautiously as the number of activated sources differs between

areas, and the classifiers were thus based on slightly different numbers of features. The

occipital, the face-specific, the frontal, and the parietal groups, however, included almost the

same number of sources (8, 8, 7, and 6 respectively). Overall, Fig. 5A-B shows that for all

sources, decoding accuracy peaked around the M170 and/or the P2m, and that conscious

perception could be predicted almost as accurately from 8 occipital or face-specific sources

as from all 33 sources combined. This was not found for any other area.

Decoding accuracy was also calculated for the individual sources at the M170 (Fig. 5C) and

the P2m (Fig. 5D) using the individual peaks of each participant (see Fig. 3). The single

most predictive source with an accuracy of 64% at the M170 and 59% at the P2m was the

right OFA (occipital face area) – a face-sensitive area in the occipital lobe. The majority of

the remaining predictive sources were found in occipital and face-specific areas with the

exception of a ventral medial prefrontal area, and possibly an area in the superior parietal

lobe around the P2m. The peak classification accuracies for groups of sources (black bars in

Fig. 5C-D) were also the highest for occipital and face-specific sources, yet when combined

the sources in other areas also became predictive above chance. Overall, it appeared that the

most predictive sources were in the visual cortex although information in other areas also

predicted conscious perception. Generally, little or no difference was observed regarding

which sources were predictive at the M170 and at the P2m.

Discussion

Two unresolved major questions were presented in the introduction. The first was the

question of which temporal aspects of the MEG signal are predictive of conscious face

perception.

M170 and P2m predict conscious face perception

Multivariate classification on binocular rivalry data demonstrated that activity around the

face-specific M170 and P2m components differed on a single trial basis depending on

whether a face was perceived consciously or not. Perception was predicted significantly

better than chance from temporal sensors showing large average activity differences, and

around these sensors group-level decoding accuracy was dependent on the single best sensor

used. Additionally, perception could be decoded as well or better when using occipital

sensors that showed little or no mean activity differences between conscious perception of a

face or not. At these locations perception was predicted as accurately when using sensors

that were individually at chance as when using all temporal sensors, thus showing a

difference that was not revealed by univariate analyses. No predictive components were

found after 300ms, thus arguing against activity at these times predicting conscious

experience.

Interestingly, the event-related signal related to conscious face perception found in the

masking study using identical durations for “seen” and “unseen” trials (Babiloni et al., 2010)
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appeared more similar to that found in the present experiment than to those found in other

EEG masking experiments. This indicates that when physical stimulation is controlled for,

very similar correlates of conscious face perception are found across paradigms. In neither

experiment were differences found between late components (in fact, no clear late

components are found).

MEG/EEG sensor and source correlates of visual consciousness

Our findings appear to generalize to not only to conscious face perception across paradigms,

but also to visual awareness more generally. For example, Koivisto and Revonsuo (2010)

reviewed around 40 EEG studies using different experimental paradigms and found that

visual awareness correlated with posterior amplitude shifts around 130-320ms, also known

as visual awareness negativity (VAN), whereas later components did not correlate directly

with awareness. Furthermore, they argued that the earliest and most consistent ERP correlate

of visual awareness is an amplitude shift around 200ms, corresponding well with the

findings of the present study.

Nevertheless, other studies have argued that components in the later part of the VAN around

270ms (corresponding to the P2m of the present study) correlate more consistently with

awareness, and that the fronto-parietal network is involved at this stage and later (Del Cul,

Baillet, & Dehaene, 2007; Sergent, Baillet, & Dehaene, 2005). In the present study, the same

frontal and parietal sources were identified, but little or no difference was found in the

source estimates at the M170 and the P2m, and in fact, the frontoparietal sources were

identified already at the M170. At both the M170 and the P2m, however, occipital and later

face-specific source activity was more predictive than frontal and parietal activity, and early

activity (around the M170) was much more predictive than late activity (>300ms). One

reason for the difference in findings, however, could be that these studies Del Cul et al. and

Sergent et al. examined having any experience versus having none (i.e. seeing versus not

seeing) whereas our study examined one conscious content versus another (but participants

perceived something consciously on all trials.

Overall, the present study appears to support the conclusion that the most consistent

correlate of the contents of visual awareness is activity in sensory areas at around

150-200ms after stimulus onset. Prediction of conscious perception was no more accurate

when taking information across multiple time points (and peaks) into account, than when

training/testing the classifier on the single best time point.

Between-subject classification

The second question of our study was whether the conscious experience of an individual

could be decoded using a classifier trained on a different individual. It is important to note

that between-subject classifications of this kind do not reveal neural correlates of

consciousness that generally distinguish a conscious from an unconscious state, or whether a

particular, single content is consciously perceived or not, but they do allow us to make

comparisons between the neural correlates of particular types of conscious contents (here,

faces) across individuals.
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The data showed that neural signals associated with specific contents of consciousness

shared sufficient common features across participants to enable generalization of

performance of the classifier. In other words, we provide empirical evidence that the neural

activity distinguishing particular conscious content shares important temporal and spatial

features across individuals, which implies that the crucial differences in processing are

located at similar stages of visual processing across individuals. Nevertheless, generalization

between individuals was not perfect, indicating that there are important inter-individual

differences. Inspecting Fig. 3, for instance, it can be seen that the predictive time points

around the M170 varied with up to 40ms between participants (from ~170ms for S3 to

~210ms for S2). At present, it is difficult to conclude whether these differences in the neural

correlates indicate that the same perceptual content can be realized differently in different

individuals or whether they indicate subtle differences in the perceptual experiences of the

participants.

Methodological decisions

The results of the present experiment were obtained by analyzing the MEG signal during

binocular rivalry. MEG signals during binocular rivalry reflect ongoing patterns of

distributed synchronous brain activity that correlate with spontaneous changes in perceptual

dominance during rivalry (Cosmelli et al., 2004). In order to detect these signals associated

with perceptual dominance, the vast majority of previous studies have ‘tagged’ monocular

images by flickering them at a particular frequency that can subsequently be detected in the

MEG signals (e.g. Brown & Norcia, 1997; Kamphuisen, Bauer, & van Ee, 2008; Lansing,

1964; Srinivasan, Russell, Edelman, & Tononi, 1999). This method, however, impacts on

rivalry mechanisms (Sandberg, Bahrami, Lindelov, Overgaard, & Rees, 2011) and causes a

sustained frequency-specific response, thus removing the temporal information in the ERF

components associated with normal stimulus processing. This not only biases the findings,

but also makes comparison between rivalry and other paradigms difficult. To avoid this, yet

maintain a high SNR, we exploited the stabilization of rivalrous perception associated with

intermittent presentation (Leopold et al., 2002; Noest et al., 2007; Orbach, Ehrlich, & Heath,

1963) to evoke signals associated with a specific (stable) percept and time locked to

stimulus onset. Such signals proved sufficient to decode spontaneous fluctuations in

perceptual dominance in near real-time and in advance of behavioral reports. We suggest

that this general presentation method may be used in future ambiguous perception

experiments when examining stimulus-related differences in neural processing.

Potential confounds

There were two potential confounds in our classification analysis: eye movements and motor

responses. These are, however, unlikely to have impacted on the results as source analysis

revealed that at the time of maximum classification, sources related to visual processing

were most important for explaining the differences related to face and grating perception.

Additionally, the fact that the motor response used to signal a perceptual state was swapped

between hands and fingers every 20 trials makes it unlikely that motor responses were

assigned high weights by the classification algorithm. Nevertheless, our findings of

prediction accuracy slightly greater than chance for power in high frequency bands may

conceivably have been confounded by some types of eye movements.
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Although we may conclude that specific evoked activity (localized and distributed) is related

to conscious experience, this should not be taken as an indication that induced oscillatory

components are not important for conscious processing. Local field potentials, for instance,

in a variety of frequency bands are modulated in monkeys by perception during binocular

rivalry (Wilke, Logothetis, & Leopold, 2006).

Apart from potential confounds in the classification analyses, it could be argued that the use

of rotating stimuli is alters the stimulus-specific components. The purpose of rotating the

stimuli in opposite directions was to minimize the amount of mixed perception throughout

the trial (Haynes & Rees, 2005). It is possible, and remains a topic for further inquiries,

whether this manipulation affects the mechanisms of the rivalry process, for instance in

terms of stabilization of perception. Inspecting the ERF in Fig. 2, it is nevertheless clear that

we observed the same face-specific components as are typically found in studies of face

perception as reported above. Our M170 was observed slightly later than typically found

(peaking at 187ms). This has previously been observed for partially occluded stimuli (A. M.

Harris & Aguirre, 2008), and the delay in the present study might thus be due to binocular

rivalry in general, or rotation of the stimuli. The impact of rotating the stimuli upon face-

specific components thus appears minimal.

Conclusion

In the present study, participants viewed binocular rivalry between a face and a grating

stimulus, and prediction of conscious face perception was attempted based on the MEG

signal. Perception was decoded accurately in the 120-300ms time window, peaking around

the M170 and again around the P2m. In contrast, little or no above-chance accuracy was

found around the earlier M100 component. The findings thus argue against earlier and later

components correlating with conscious face perception.

Additionally, conscious perception could be decoded from sensors that were individually at

chance performance for decoding, whereas this was not the case when decoding using

multiple time points. The most informative sensors were located above the occipital and

temporal lobes, and a follow-up analysis of activity reconstructed at the source level

revealed that the most predictive single sources were indeed found in these areas both at the

M170 and the P2m. Nevertheless, conscious perception could be decoded accurately from

parietal and frontal sources alone, although not as accurately as from occipital and later

ventral stream sources. These results show that conscious perception can be decoded across

a wide range of sources, but the most consistent correlates are found both at early and late

stages of the visual system.

The impact of increasing the number of temporal features of the classifier was also

examined. In contrast to including more spatial features, more temporal features had little or

no impact on classification accuracy. Furthermore, the predictive strength of power

estimation was examined across a wide range of frequency bands. Generally, the low

frequencies contained in the evoked response were the most predictive, and the peak time

points of classification accuracy coincided with the latencies of the M170 and the P2m. This
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indicates that the main MEG correlates of conscious face perception are the two face-

sensitive components, the M70 and the P2m.

Finally, the results showed that conscious perception of each participant could be decoded

above chance using classifiers trained on the data of each of the other participants. This

indicates that the correlates of conscious perception (in this case, faces) are shared to some

extent between individuals. It should be noted, though, that generalization was far from

perfect, indicating that there are significant differences as well for further exploration.
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Appendix

Improving decoding accuracy

We hypothesized that decoding accuracy could be increased in two ways: by rejecting trials

for which perception was not completely clear, and by applying a more stringent filter to the

data. Participant’s reports (see Results, above) suggested that the probability of clear

perception on a given trial increased the further away the trial is from a perceptual switch.

Classifiers were thus trained and tested on unstable perception (trials 1-9 after a switch) and

stable perception (trial 10 or more after a switch) separately and decoding accuracies were

compared. 5 participants reported 100 trials of all kinds (stable/unstable faces/gratings)

required for training the classifier, and the analysis was thus based on these. Fig. A1a shows

that analyzing using stable trials as compared to unstable trials results in a large

improvement in classification accuracy of around 10-15% around the M170 (~187ms), 5-8%

around the P2m (~260ms), and similarly 5-8% around the M100 (~93ms). Significant

improvements in classification accuracy was found for at least 3 out of 5 participants for all

components (cumulative p=0.0012, uncorrected).

Some components analyzed (M100, M170 and P2m) had a temporal spread of around

50-130ms (see Fig. A1a-c), yet the classifiers were trained on single time points only in the

analyses above. This makes classification accuracy potentially vulnerable to minor

fluctuations at single time points. Such fluctuations could reflect small differences in latency

between trials as well as artifacts and high-frequency processes that the classifier cannot

exploit, and analyses based on field strength data may thus be improved if the impact of

these high-frequency components and trial-by-trial variation is minimized. There are two

methods to do this: classification may either use several neighboring time points, or a low

low-pass filter may be applied before analysis to temporally smooth the data.

Given the temporal extent of the three analyzed components (50-130ms), they can be seen as

half-cycles of waves with frequencies of 4-10Hz (i.e. around 100-250ms). For this reason,

we compared classification accuracies for non-filtered data, 1-20Hz filtered data, and
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2-10Hz filtered data. We used only stable trials. Six participants had 100 stable trials or

more of each kind (face/grating) and were thus included in the analysis.

Fig. A1b shows the differences between the three filter conditions for within-subject

decoding. Improvement in decoding accuracy was found comparing no filter and the filtered

data. Comparing unfiltered and 1-20Hz filtered data at the M170 and P2m, differences of

5-10% were found around both peaks, and around the M100 a difference of around 5% was

found. Decoding accuracy was significantly higher for 5 out of 6 participants at the 187ms

(cumulative probability of p=1.9*10−6, uncorrected), and for 4 out of 6 participants at

260ms (cumulative probability of p=8.7*10−5, uncorrected), but only for 2 out of 6

participants at 90ms (cumulative probability of p=0.03, uncorrected). The largest

improvement of applying a 20Hz low-pass filter was thus seen for the two most predictive

components, the M170 and the P2m. The only impact of applying a 2-10Hz filter instead of

a 1-20Hz filter was significantly increased accuracy for 2 participants at 187ms, but

decreased for 1.

As between-subject ERF variation is much larger than within-subject variation (Sarnthein,

Andersson, Zimmermann, & Zumsteg, 2009), we might expect that the most stringent filter

mainly improved between-subject decoding accuracy. Fig. A1c shows a 2-3% improvement

of using a 2-10Hz compared to a 1-20Hz filter at the M170 and the P2m, and a <1%

improvement at the M100. This improvement was significant for 2 participants at the 180ms

and 260ms (cumulative p=0.03, uncorrected, for both, and 1 participant around the M100 at

117ms (cumulative p=0.27, uncorrected).

Overall, the best decoding accuracies were achieved using stable trials and filtered data.

Numerically better and slightly more significant results were achieved using 2-10Hz filtered

data compared to 1-20Hz filtered data. Importantly, using this more stringent filter did not

alter the time points for which conscious perception could be decoded – it only improved

accuracy around the peaks.

Decoding using power estimations

Power in several frequency bands (for all sensors) was also used to train SVM classifiers.

This analysis revealed that theta band power was the most highly predictive of perception

followed by alpha power (Fig. A2). Again the data were the most informative at around

120-320ms after stimulus onset. Power estimates in the higher frequency bands related to

both face and grating perception (40-60Hz) and possibly also some related to face

perception alone (60-80Hz) could be used to predict perception significantly better than

chance (Duncan et al., 2010; Engell & McCarthy, 2010). In these bands, the prediction

accuracy did not have any clear peaks (Fig. A2).

Using Bonferroni correction, average prediction accuracies across participants across the

stimulation period were above chance in the theta (t(7)=4.4, p=0.033), gamma2 (40-49Hz)

(t(7)=4.9, p=0.017), and gamma3 (51-60Hz) (t(7)=4.2, p=0.038) bands. Without Bonferroni

correction, alpha (t(7)=3.2, p=0.0151), low beta (t(7)=3.7, p=0.0072), high beta (t(7)=3.1,
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p=0.0163), gamma4 (61-70Hz) (t(7)=3.3, p=0.0123), and gamma5 (71-80Hz) (t(7)=2.4,

p=0.0466) were also above chance.

The classification performance based on the moving window spectral estimate was always

lower than that based on the field strength. Also, spectral classification was optimal for

temporal frequencies dominating the average evoked response (inspecting Fig. 2B-C, it can

be seen, for instance, that for faces, the M170 is half a cycle of a 3-4Hz oscillation). Taken

together, this suggests that the predictive information was largely contained in the evoked

(i.e. with consistent phase over trials) portion of the single trial data.

Decoding using multiple time points

The potential benefit of including multiple time points when training classifiers was

examined. As multiple time points increase the number of features drastically, the SVM was

trained on a subset of sensors only. For these analyses, 16 randomly selected sensors giving

a performance of 72.6% when trained on a single time point were used (see Fig. 4A). As the

temporal smoothing of low-pass filter would theoretically remove any potential benefit of

using multiple time points for time intervals shorter than one cycle of activity, these analyses

were performed 1 Hz high-pass filtered data. Here, the sampling frequency of 300Hz is thus

the maximum frequency.

We tested the impact of training on up to 11 time points (37ms) around each peak (M170

and P2m) and around a time point for which overall classification accuracy was at chance

(50ms). At 50ms, the signal should have reached visual cortex, but a 37ms time window did

not include time points with individual above-chance decoding accuracy. We also tested the

combined information around the peaks. As seen in Fig. A3, the inclusion of more time

points did not increase accuracy, and the use of both peaks did not increase accuracy beyond

that obtained at the M170 alone. This may indicate that the contents of consciousness (in

this case rivalry between face and grating perception), is determined already around 180ms.
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Figure A1. Improvements to prediction accuracy by filtering and trial selection
The figure plots the impact of using stable trials only as well as filtering the data. Dotted

gray line represents the 95% binomial confidence interval around chance (uncorrected). A)

Prediction accuracy for stable and unstable trials respectively. The comparison is based on

the 5 participants who reported enough trials of all conditions (stable/unstable faces/

gratings) to train the classifiers. B-C) Within-subject (B) and between-subject (C) prediction

accuracy for data that has not been low-pass filtered compared to data low-pass filtered at 20

and 10Hz respectively. This analysis was based on stable trials, and the data reported are

from the analysis of the six participants reporting enough stable face and grating trials to

train the classifier.
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Figure A2. Prediction accuracy across time for various frequencies (stable trials)
6 participants had enough trials to train the classifiers on stable trials alone. The figure plots

the data from these participants. The dotted gray line indicates the threshold for which a

binomial distribution of the same number as the total number of trials the prediction is

performed upon is different from chance (uncorrected). Average prediction accuracy is

plotted across participants based on estimates of power in different frequency bands as a

function of time. Support vector machines were trained to predict reported perception (face

vs. grating) for each time point.
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Figure A3. Prediction based on multiple time points (stable trials)
Six participants had enough trials to train the classifiers on stable trials alone. The figure

plots the data from these participants. Classifiers were trained/tested on 1Hz high-pass

filtered data from 16 randomly distributed sensors. A-C) Prediction accuracy as a function

of the number of neighboring time samples used to train the classifier around the M170 peak

(A), the P2m peak (B), and 50ms after stimulus onset (C). No improvement was found at the

peaks nor at 50ms when classifier baseline accuracy was close to chance. D) Prediction

accuracy when classifiers were trained on data around both peaks combined vs. each peak

individually.
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Figure 1. Experimental design and results
A) Experimental design. Rivaling stimuli (face/grating) were presented for trials lasting

~800ms separated by blank periods of ~900ms. Stimuli were dichoptically presented to each

eye and rotated in opposite directions at a rate of 0.7 rotations per second. Participants

reported which of the two images they perceived with a button press as soon as they saw one

image clearly. If perception did not settle, or if the perceived image changed during the trial,

the participant reported mixed perception with a third button press. B) Classification

procedure. Support vector machines (SVM) were trained to distinguish neuromagnetic

activity related to conscious face and grating perception for each participant. The SVMs

were then used to decode the perception of 1) the same participant on different trials (top

panel), and 2) each of the other participants (bottom panel). C) Left: Reaction time (RT) as a

function of perceptual report. Right: RT as a function of trial number after a perceptual

switch. D) RT as a function of time after a perceptual switch by perception. The decrease in

RT for non-mixed perception indicates that perception on average is clearer far from a
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perceptual switch than immediately after. Trials for which the same percept has been

reported at least 10 times are here-after referred to as “stable” whereas other trials are

referred to as “unstable”.
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Figure 2. Univariate analyses on averaged field strength data (stable trials)
A) Topographic maps showing face-grating contrast. The largest differences were found at

187ms and 267ms after stimulus onset. B) Activity at the sensor for which the largest M100

difference was found (MRO32). Generally, only small differences were observed. C)

Activity at the sensor for which the largest M170 and P2m difference was found (MRT44).

Notice that face-related activity is larger than grating-related at both peaks. D) Map of

sensor location. E) Posterior probability map of estimated cortical activity underlying the

average difference between face and grating perception in the 100-400ms time window

using the MSP algorithm. The grey-black scale shows the regions of the cortical surface

with greater than 95% chance of being active. The solution explains 97% of the measured

data. The image is plotted at t=180ms, the peak latency at the peak source location

(38,−81,−17). The activity pattern was consistent with activation of the face processing

network (Haxby et al., 2000).
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Figure 3. Prediction accuracy across time using all trials
Average prediction accuracy for all trials (stable and unstable) across participants is plotted

based on the single trial, 1-20Hz filtered MEG field strength data as a function of time. A

support vector machine (SVM) was trained to predict reported perception (face vs. grating)

for each time point. The dotted gray line indicates the threshold for which a binomial

distribution of the same number as the total number of trials the prediction is performed

upon is different from chance (uncorrected). A) Average within-subject prediction accuracy

for all eight participants is plotted (i.e. classification accuracy when the SVM was trained

and tested on data from the same participant). Notice the two clear peaks (the M170 at

187ms and the P2m at 267ms) indicated by the second and third arrows. The first arrow

indicates the expected timing of the M100. B) Average between-subject prediction accuracy

for all between-subject tests across time (i.e. classification accuracy when the SVM was
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trained and tested on data from different participants). C-J) Prediction accuracy for each

individual participant for the within-subject predictions.
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Figure 4. Predictability by sensor location (stable trials)
Six participants had enough trials to train the classifiers on stable trials alone. The figure

plots prediction accuracy based on 2-10Hz filtered data from these participants. Dotted gray

line represents the 95% binomial confidence interval around chance (uncorrected). A)

Prediction accuracy as a function of the number of randomly selected sensors from all scalp

locations. B) Group-level prediction accuracy as a function of sensor location. Left/Right

indicate that classifier is trained on left/right hemisphere sensors respectively. Other sensors

locations can be seen in figure 2D. C) Average prediction accuracy for within-subject tests

across time when classifier is trained/tested using occipital and temporal sensors

respectively. D) Prediction accuracy at the time of the M170 when the classifier is trained on

single sensors (i.e. univariate classification) or all sensors (multivariate classification) in

occipital/temporal locations. Each grey bar plots accuracy for a single sensor. Black bars

plot group-level performance.
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Figure 5. Predictability by source location (stable trials)
Six participants had enough trials to train the classifiers on stable trials alone. The figure

plots prediction accuracy based on 2-10Hz filtered data from these participants. Prediction is

based on reconstructed activity at the most activated sources. Dotted gray line represents the

95% binomial confidence interval around chance (uncorrected). A-B) Average prediction

accuracy across time when classifier was trained/tested using data from occipital, face-

specific, frontal, parietal, and motor sources respectively. C-D) Prediction accuracy at the

time of the M170 (C) and the P2m (D) when the classifier is trained on single sources (i.e.

univariate classification) or all sources in each area (multivariate classification). Each grey

bar plots accuracy for a single source. Black bars plot group-level performance.
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Table 1
Sources

The 33 sources judged to be most active across all trials independently of perception/stabilization across all

participants. Sources were localized using multiple sparse priors (MSP) to solve the inverse problem. Source

abbreviations: V1: Striate cortex; OCC: Occipital lobe; OFA: Occipital face area; STS: Superior temporal

sulcus. IT: Inferior temporal cortex; SPL: Superior parietal lobule; PC: Precentral cortex; MFG: Middle

frontal gyrus; PFC: Prefrontal cortex; OFC: Orbitofrontal cortex. Navigational abbreviations: l: Left

hemisphere; r: Right hemisphere; p: Posterior; a: Anterior; d: Dorsal; v: Ventral.

Source Area Name X Y Z

1

Occipital Lobe

lV1 −2 −96 5

2 rV1 12 −98 −1

3 lvOCC1 −16 −94 −18

4 rvOCC1 21 −96 −17

5 lvOCC2 −14 −80 −13

6 rvOCC2 15 −80 −12

7 ldOCC −18 −81 40

8 rdOCC 19 −82 40

9
Occipital Face area

lOFA −38 −80 −15

10 rOFA 39 −80 −15

11

Face-specific

lpSTS1 −54 −63 9

12 rpSTS1 53 −63 13

13 lpSTS2 −55 −50 23

14 rpSTS2 54 −49 18

15 lpSTS3 −59 −33 10

16 rpSTS3 55 −34 7

17 lFFA −53 −51 −22

18 rFFA 52 −52 −22

19

Parietal

lSPL1 −40 −37 60

20 rSPL1 36 −37 60

21 lSPL2 −33 −65 49

22 rSPL2 36 −64 46

23 lSPL3 −41 −35 44

24 rSPL3 39 −36 44

25 Motor lPC −54 −12 15

26 rPC 54 −11 13

27

Frontal

laMFG1 −40 18 27

28 raMFG1 38 18 26

29 laMFG2 38 41 19

30 lOFC1 −24 7 −18

31 rOFC1 22 8 −19

32 lOFC2 −43 31 −16

33 rOFC2 41 35 −15
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