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Abstract

Voltammetric measurements of catecholamines in the medial prefrontal cortex (mPFC) are

infrequent because of lack of chemical selectivity between dopamine and norepinephrine and their

overlapping anatomical inputs. Here, we examined the contribution of norepinephrine to the

catecholamine release in the mPFC evoked by electrical stimulation of the ventral tegmental area

(VTA). Initially, electrical stimulation was delivered in the midbrain at incremental depths of −5

to −9.4mm from bregma while catecholamine release was monitored in the mPFC. Although

catecholamine release was observed at dorsal stimulation sites that may correspond to the dorsal

noradrenergic bundle (DNB, containing noradrenergic axonal projections to the mPFC), maximal

release was evoked by stimulation of the VTA (the source of dopaminergic input to the mPFC).

Next, VTA-evoked catecholamine release was monitored in the mPFC before and after knife

incision of the DNB, and no significant changes in the evoked catecholamine signals were found

These data indicated that DNB fibers did not contribute to the VTA-evoked catecholamine release

observed in the mPFC. Finally, while the D2-receptor antagonist raclopride significantly altered

VTA-evoked catecholamine release, the α2-adrenergic receptor antagonist idazoxan did not.

Specifically, raclopride reduced catecholamine release in the mPFC, opposite to that observed in

the striatum, indicating differential autoreceptor regulation of mesocortical and mesostriatal

neurons. Together, these findings suggest that the catecholamine release in the mPFC arising from

VTA stimulation was predominately dopaminergic rather than noradrenergic.
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INTRODUCTION

Many executive functions such as working memory, associative learning, selective attention

and decision-making are under control of the medial prefrontal cortex (mPFC). Moreover,

experimental evidence indicates that dopamine and norepinephrine in the mPFC play a
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critical modulatory role in these cognitive functions (Robbins and Arnsten, 2009).

Impairment of catecholamine (CA) neurotransmission in the mPFC has been linked to

deficits in memory and attention (Lapiz and Morilak, 2006, Nelson et al., 2011), while

reward and discrimination learning was accompanied by elevated CA levels in the mPFC

(Mingote et al., 2004, George et al., 2011). Together, these findings support an important

role of dopamine and norepinephrine activity in the mPFC and investigation of the activity

of both CA in this brain area is important for understanding many cognitive functions.

Along with microdialysis, pharmacological and lesion studies, the dynamics of CA activity

can be assessed in awake animals by using fast-scan cyclic voltammetry (FSCV; Robinson

et al., 2008). The advantage of FSCV over other analytical techniques is that it provides high

temporal and spatial resolution, and it is currently used for electrochemical detection of

nanomolar concentrations of CA release in brain slices (Miles et al., 2002, Calipari et al.,

2012) as well as intact brains of anaesthetized (Kuhr and Wightman, 1986, Herr et al., 2012)

and awake animals (Phillips et al., 2003, Robinson et al., 2011). However, chemical

selectivity is a potential problem associated with voltammetric detection. Based on the

specific properties of electroactive compounds to be oxidized and reduced at different

applied potentials, FSCV provides selective detection of such brain chemicals as ascorbic

acid, pH and CA (Ewing et al., 1982, Runnels et al., 1999). However, this technique does

not distinguish between dopamine and norepinephrine, as both CA are oxidized, and their

catecholamine-o-quinone forms are reduced, at almost identical potentials versus an Ag/

AgCl reference electrode (Kissinger et al., 1973, Park et al., 2011).

The mPFC receives dopaminergic input from the ventral tegmental area (VTA) via the

medial forebrain bundle (MFB) and norepinephrine input from the locus coeruleus via the

dorsal noradrenergic bundle (DNB) that merges with the MFB rostral to the VTA

(Ungerstedt, 1971, Berridge and Waterhouse, 2003). CA release in the mPFC evoked by

electrical stimulation of the VTA or the MFB has been measured by FSCV in anaesthetized

rats (Garris et al., 1993, Lavin et al., 2005) and mice (Yavich et al., 2007) or via local

stimulation in brain slices (Mundorf et al., 2001). Anatomically, dopaminergic and

noradrenergic projections are overlapping in much of the MFB and electrical stimulation of

this pathway would result in release of both neurotransmitters in the mPFC, while

stimulation of the VTA is thought to evoke only dopamine release. However, the locus

coeruleus receives dopamine projections from the VTA and stimulation of the VTA may

lead to activation of the norepinephrine neurons in the locus coeruleus. For example, Deutch

and colleagues observed increased norepinephrine metabolites in the PFC induced by kainic

acid stimulation of the VTA, which was prevented by severing the DNB, suggesting that

VTA stimulation activated locus coeruleus neurons projecting to the PFC (Deutch et al.,

1986). Moreover, in rats the VTA is located close to the ventral noradrenergic bundle

(VNB) that carries norepinephrine fibers to the VTA, septum and hypothalamus and

eventually merges into the MFB (Ungerstedt, 1971, Johnston et al., 1987); these fibers could

be antidromically activated upon electrical stimulation of the VTA. Together, these studies

suggest that VTA stimulation may also activate some noradrenergic fibers, resulting in

norepinephrine release simultaneously with the dopamine release in the mPFC.
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The goal of the present study was to examine the relative contributions of dopamine and

norepinephrine to CA release in the mPFC evoked by electrical stimulation of the VTA. We

hypothesized that VTA-evoked CA release in the mPFC was primarily dopaminergic. In

Experiment 1, we evaluated CA release in the mPFC evoked by midbrain electrical

stimulation at progressive depths, in order to optimize the placement of electrical stimulation

in the VTA. In Experiment 2, we determined the effect of severing the DNB on CA release

in the mPFC evoked by electrical stimulation of the VTA. In Experiment 3, we compared

CA release evoked by VTA stimulation to that evoked by more dorsal sites that may

correspond to the DNB. In Experiment 4, we pharmacologically challenged the VTA-

evoked CA release in the mPFC with D2 and α2-adrenergic receptor antagonists to reveal

autoreceptor modulation of the CA signal.

MATERIALS AND METHODS

Animals

Adult male Sprague-Dawley rats (N=29) were purchased from Charles River (Raleigh, NC)

and housed in temperature- and humidity-controlled rooms with a 12h:12h light:dark cycle.

Food and water were continuously available ad libitum and rats weighed 345±5 g at the time

of recording. All procedures involving the animals were in accordance with the Guide for

Care and Use of Laboratory Animals and were approved by the Institutional Animal Care

and Use Committee of the University of North Carolina at Chapel Hill.

Surgical preparation

Rats were anesthetized with urethane (1.5g/kg, i.p.) and placed in a parallel rail stereotaxic

frame (Leica Microsystems, Buffalo Grove, IL, USA) on a heated pad. The dorsal skull

surface was exposed and holes were drilled in the skull for reference (Ag/AgCl), stimulating

and carbon-fiber electrodes. Anterior-posterior (AP), medial-lateral (ML) and dorsal-ventral

(DV) positions were referenced from bregma and all coordinates were obtained from a rat

brain atlas (Paxinos and Watson, 1998). The reference electrode was placed in the left

hemisphere and secured to the skull with a stainless-steel screw and dental cement. The

stimulating electrode was placed above the right VTA (AP −5.2mm, ML +0.8mm, DV as

noted for each experiment). In Experiment 2, an additional hole was drilled for placement of

the stainless-steel surgical blade (2.75mm width, Fine Science Tools, Foster City, CA) with

coordinates from bregma AP −4.2mm, ML 0 to +3mm, DV −5.0mm. The coordinates were

chosen based on the CA projection mapping by Ungerstedt (1971). After the dura mater was

punctured and carefully removed, the carbon-fiber microelectrode was lowered into the

mPFC (AP +3.7mm, ML +2.0mm, DV −3.5mm, angle 22° toward midline). In all

experiments, the position of the microelectrode remained at this implantation site during the

entire recording. In Experiment 4, carbon-fiber electrodes were also placed in the caudate-

putamen (CPu; AP +1.3mm, ML +1.4mm, DV −4.5mm).

Fast-scan cyclic voltammetry

Single carbon fibers (6-μm diameter) were pulled and sealed in glass capillaries. The

exposed carbon fiber extended 60-120μm from the glass seal. Voltammetric recordings were

made at the carbon-fiber microelectrodes every 100ms as previously described (Robinson et
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al., 2005), except that the applied potential was −0.4 to +1.3V versus the Ag/AgCl reference

and the scan rate was 400V/s. Voltammetric parameters, electrical stimulation parameters,

and data acquisition were controlled by a computer using locally-written LabVIEW

instrumentation software (National Instruments, Austin, TX, USA).

Electrical stimulation was accomplished with a bipolar, parallel, stainless-steel electrode

(Ervin, 1971) insulated to the tip (0.2mm diameter for each tip; Plastics One, Roanoke, VA,

USA). The tips were separated by 1.0mm. Stimulus pulses were computer-generated and

were electrically isolated from the voltammetric system (NL800A Neurolog; Digitimer Ltd.,

UK). The electrical stimulation consisted of 24 biphasic, square-wave pulses (125μA, 2ms/

phase) applied at a frequency of 60Hz.

Experimental design

Experiment 1 assessed CA release in the mPFC evoked by electrical stimulation at

incremental dorsal-to-ventral positions in the midbrain in order to reveal the optimal

position of the stimulating electrode to evoke CA release in the mPFC. The carbon-fiber

microelectrode was positioned in the mPFC and the stimulating electrode was initially

placed −5mm from bregma. CA overflow in the mPFC was monitored while the electrical

stimulation was delivered, then the stimulating electrode was lowered 0.2mm, where the

next stimulation was delivered. This continued until the stimulating electrode reached

−9.4mm depth. In all experiments, electrical stimulations were delivered 5min apart; this

time interval allowed for reproducible CA release in response to a given stimulation

(Montague et al., 2004).

Experiment 2 was conducted to examine the contribution of the norepinephrine fibers in the

DNB to the VTA-evoked CA release in the mPFC. At the beginning of the experiment, CA

release was evoked by VTA stimulation (−8.6mm depth) and detected at the carbon-fiber

electrode positioned in the mPFC; only signals with a signal-to-noise ratio of at least 5 were

used. The carbon-fiber electrode was secured with dental acrylic. Next, the surgical blade

was placed 1mm anterior to the stimulating electrode and lowered to 5mm below bregma.

CA release was evoked by VTA stimulation every 5min and monitored in the mPFC while

the blade was lowered from the initial depth of −5.0 to −9.4mm from bregma in 0.4mm

increments.

Experiment 3 compared characteristics of the CA signal when evoked by stimulation at the

level of the DNB versus the VTA and detected at the same recording site. With the carbon-

fiber electrode positioned in the mPFC, the stimulating electrode was first placed in the

DNB (−7.4mm depth, based on results from Experiment 1) and evoked CA release was

measured. The stimulating electrode was then lowered to the VTA (−8.6mm depth) and the

stimulation repeated.

Experiment 4 was conducted to pharmacologically modulate dopamine or norepinephrine

release by applying systemic autoreceptor blockers, using the same rats as Experiment 3.

Rats were separated into 3 groups (6 rats per group) that received 3mg/kg raclopride,

5mg/kg idazoxan or saline; the doses were derived from the literature (Herr et al., 2012). All

injections were made intraperitoneally at volumes of 0.6ml/kg. CA release in the mPFC was
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evoked every 5min with electrical stimulation of VTA (−8.6mm depth). Four electrically-

evoked CA signals 5min apart were collected as a baseline measurement. Next, saline was

injected in all rats as a control to provide a within-subject analysis of injection effects on

release and clearance of CA in the mPFC. Four evoked CA signals were collected after

saline pretreatment, and then raclopride, idazoxan or saline was injected. Electrochemical

recordings of VTA-evoked CA continued for 40min following the last injection. As a

positive control for Experiment 4, additional rats were used to evaluate the effect of

raclopride on evoked CA overflow in the CPu. The same experimental design as described

above was used except that the carbon-fiber electrode was positioned in the CPu.

Histology

At the end of each experiment, the carbon-fiber electrode placement was marked by

electrical lesion made by applying continuous current (30μA for 10s) to the electrode at its

recording site in the mPFC. Next, rats were cardiovascularly perfused with saline followed

by 10% formalin in saline. Brains were removed and stored in 10% formalin, followed by

10% formalin/30% sucrose, then frozen and sectioned into 50-μm coronal or sagittal slices

with a cryostat.

Drugs and reagents

The α2 antagonist idazoxan–HCl was obtained from Sigma-Aldrich (St. Louis, MO, USA)

and the D2 antagonist raclopride was obtained from Santa Cruz Biotechnology, Inc. (Santa

Cruz, CA, USA). Both drugs were dissolved in saline. Urethane was obtained from Sigma-

Aldrich (St. Louis, MO, USA), dissolved in saline at concentration of 50% w/w and injected

at dose of 1.5 g/kg with boosters as needed to produce a surgical plane of anesthesia.

Data analysis

Voltammetric data are presented as color plots, cyclic voltammograms, concentration-

versus-time and current-versus-time traces (Michael et al., 1998). Color plots and cyclic

voltammograms were used to verify the presence of CA, and the current-versus-time traces

and concentration-versus-time traces were used to quantify the CA signals. Background-

subtracted cyclic voltammograms were obtained by digitally subtracting voltammograms

collected during baseline recording (5s immediately preceding stimulation) from those

collected during and after stimulation. Temporal aspects of CA release were determined by

monitoring the current at the peak oxidation potential for CA in successive voltammograms.

In the traces, the peak signal amplitude ([CA]max) and clearance half-life (T1/2) were taken

as measurements of evoked CA release and CA clearance, respectively (Yorgason et al.,

2011). The signal-to-noise ratio (S:N) of the observed voltammetric signals were calculated

as the signal equal to the maximal current (Imax) and the noise equal to the root mean square

of the oxidative current in the 5s immediately before the stimulation.

As the electrochemical signals for CA and pH often overlapped during FSCV measurements

(Venton et al., 2003), the contributions of each of these analytes to cyclic voltammograms

were separated via principal component regression by using locally-written software (Heien

et al., 2005, Keithley and Wightman, 2011). In brief, training sets of template cyclic

voltammograms of electrically-evoked CA and pH (5 each) were used to identify principle
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components in the voltammograms. Those components were then used to extract the relative

contributions of CA and pH from the electrochemical signal in each file, yielding a

concentration-versus time trace for CA (by using the in vitro calibration factor) and a

current-versus-time trace for pH (in arbitrary units).

The electrical lesion for the verification of the electrode placements in the mPFC damaged

the carbon fiber and precluded post-experimental calibration of electrode sensitivity. Thus,

to estimate CA concentration from current measurements, we used the average calibration

factor (μm/nA) of 86 electrodes used in previous experiments in our lab, adjusted for

carbon-fiber length. Those electrodes were calibrated post-experiment, in vitro with a TRIS

buffer containing 0, 0.5 or 1μM dopamine, as previously described (Robinson et al., 2009).

Based on those electrodes, the present experiments used a calibration factor of

0.08±0.002μM CA per nA current.

Data are represented as mean ± SEM unless otherwise noted. Data were compared by using

repeated-measures ANOVA or paired t-test (SigmaPlot 11.0, Systat Software, Inc., San Jose,

CA, USA). If the data were not normally distributed, then they were transformed by rank

before analysis or analyzed with a nonparametric test (Friedman repeated-measures

ANOVA on ranks or Wilcoxon signed-rank test).

RESULTS

CA release in the mPFC evoked by midbrain electrical stimulation at progressive depths

Histological examples of electrode placements are depicted in Supplemental Figure 1 (A,
B). In Experiment 1, we investigated heterogeneity of CA release in the mPFC evoked by

electrical stimulation delivered from −5.0 to −9.4mm DV at the midbrain area above and

below the VTA (Figure 1) in order to optimize the site of electrical stimulation in the VTA

and minimize stimulation of the DNB in the following experiments. The carbon-fiber

electrode was placed to the mPFC and remained at this site during the entire recording,

while the stimulating electrode was placed above the right VTA (−5.0 mm bellow bregma)

and lowered every 5 min with the inclement 0.2 mm followed by electrical stimulation.

Based on previous studies and atlases (Park et al., 2009, Paxinos et al., 2009), we expected

any CA release due to the DNB to be observed at depths of −5.5 to −7.5mm, while release

due to VTA stimulation would occur below −8.0mm. Representative current versus time

traces with corresponding background-subtracted cyclic voltammograms recorded in the

mPFC of an individual rat at the various stimulation depths are shown in Figure 1A. When

electrical stimulation was made at −5.0mm below bregma, neither the current trace nor the

corresponding voltammograms indicated CA release. At −5.8mm, electrical stimulation

produced the first detectable changes in voltammetric current in this rat, and the cyclic

voltammogram from the peak of the signal established that this change in current was due to

CA release. The maximum increase in the observed voltammetric current in this rat was

observed when stimulation was delivered at −8.6mm, also confirmed to be due to oxidation

of CA by the cyclic voltammogram.

A schematic illustration of the track of electrical stimulation through the midbrain is

presented in Figure 1B. Two regions potentially capable to provide CA release in the mPFC
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were the DNB for norepinephrine and the VTA for dopamine. For each rat, we obtained the

pattern of CA release in the mPFC evoked by electrical stimulation at progressive depths.

Next, the peak current of the evoked CA signals at various depths (Id) were normalized to

the maximal response (Id
max) observed in each rat. In Figure 1C, the normalized signals

recorded in the mPFC (n=5 rats) are shown as a function of stimulation depth. Electrically-

evoked CA responses observed in the mPFC progressively increased with lower stimulations

from −5.0mm (18±7% of Id
max) to −7.4mm (61±10% of Id

max), although the increased

oxidative current was not significantly different from baseline (i.e., signals at depth −5.0

mm). Across rats, the Id
max detected in the mPFC was observed at depths from −8.4 to −9.0

mm from bregma, and the group-average Id
max was evoked by electrical stimulation at −8.4

to −8.6mm, corresponding to the VTA (Paxinos et al., 2009). The average VTA-evoked CA

response detected in the mPFC was 1.9±0.8nA at −8.4mm and 1.9±0.7nA at −8.6mm.

Friedman repeated-measures ANOVA on ranks of Id by stimulation depth revealed a

significant effect of depth (χ2
21=65.9, p<0.001), and posthoc comparison confirmed that

only stimulation of the VTA (depths −8.4 to −9.0mm) yielded significantly larger Id versus

−5.0mm (Dunnett's method of multiple comparisons versus control depth, all q'>3.1, all

p<0.05).

It was possible that electrical stimulation at depths near the DNB were releasing

norepinephrine in the mPFC, but the carbon-fiber microelectrodes were insensitive to

norepinephrine. To test this we calibrated 8 additional electrodes in vitro for both

norepinephrine and dopamine. The electrodes detected both neurotransmitters, but were

twice as sensitive to dopamine versus norepinephrine; the signal for 1μM NE was 7.7±1.6nA

and for 1μM DA was 13.9±2.1nA (paired t-test, t7=5.2, p<0.01).

Effect of DNB knife cut on CA release in the mPFC evoked by VTA stimulation

In Experiment 2, we examined the contribution of norepinephrine to mPFC CA release

evoked by electrical stimulation of the VTA. We hypothesized that if norepinephrine

contributed to the mPFC signal, then severing DNB fibers would decrease VTA-stimulated

release. To test this, we detected VTA-evoked CA release in the mPFC and then situated a

surgical blade at 5.0mm below bregma, 1mm anterior to the stimulating electrode (AP: −4.2

mm from bregma). Next, the blade was lowered in 0.4mm increments while the stimulating

electrode was fixed in the VTA and evoked CA release was monitored in the mPFC. A

histological example of the knife placed ~1 mm anterior from the stimulating electrode is

depicted in Supplemental Figure 1C.

Representative current-versus-time traces and corresponding background-subtracted CVs

recorded in the mPFC of an individual rat are shown in Figure 2A and group data are shown

in Figure 2C (n=4 rats). The track of the surgical blade through the midbrain (slightly

anterior to Figure 1B) is schematically presented in Figure 2B, indicating the approximate

placement of the DNB (norepinephrine fibers) and MFB (dopamine fibers). We normalized

VTA-evoked CA signals (Id) for each rat by dividing by the observed response at knife-

depth −5.0 mm (I−5mm) observed in each rat. The average current detected in the mPFC and

evoked by stimulation of the VTA was 0.8±0.2nA when the knife was −5.0mm and

0.9±0.2nA at −7.4mm below bregma. The evoked CA signal decreased only after the knife
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reached −8.6mm (0.6±0.2nA), and continued to decrease until the knife reached −9.4mm

(0.4±0.2nA). A 1-way repeated-measures ANOVA of Id by knife depth (calculated on the

raw data) revealed a significant effect of depth (F11,29=4.2, p<0.001), and posthoc

comparison confirmed that only knife cuts of the MFB at −9.4mm below bregma

significantly reduced Id versus the signal at −5.0mm (Bonferroni t-test, t=4.3, p<0.05).

When considering individual recordings, 3 of the 4 rats exhibited progressive reduction of

CA signals by 60±21% and 74±6% of current recorded at −5.0 mm after knife cut at depth

−9.0 and −9.4 mm, respectively. In the remaining rat, the knife cut reduced CA release at

depths of −9.0 and −9.4 by 15% and 30%, but did not eliminate it.

Dynamics of CA release and clearance in mPFC evoked by electrical stimulation of the
DNB and VTA

Experiment 3 compared CA signals in the mPFC evoked by stimulation at DNB versus VTA

depths (n=18 rats). Initial CA release was evoked by electrical stimulation of the DNB

(−7.4mm depth), and then the stimulating electrode was lowered to the VTA (−8.6mm

depth); DNB and VTA stimulation sites were chosen based on results from Experiment 1.

The S:N of the CA oxidative current in the mPFC evoked by VTA stimulation was 4-fold

higher than that evoked by DNB stimulation (28.8±4.7 versus 7.6±2.2, respectively); this

difference was significant via a Wilcoxon signed-rank test (Z=3.7, p<0.001).

We next compared measures of CA release ([CA]max) and clearance (T1/2) in signals evoked

by DNB versus VTA stimulation. In order to confidently measure [CA]max and T1/2, we

restricted the analysis to rats that yielded S:N ratios >5 at both stimulation sites. (An

example of a voltammetric signal with a S:N ratio of 5.1 is shown in Supplemental Figure
2.) The S:N ratio of VTA-evoked CA release was >5 in all rats, while the ratio of DNB-

evoked CA release was >5 in only 7 rats. We found that electrical stimulation of the DNB

did not evoke sufficient (S:N>5) CA release in the mPFC of 11 rats and averaged peak

current observed in these animals was 1.6-fold smaller (0.53±0.13 nA) than in rats with

S:N>5.0 (0.93±0.13 nA). Figure 3 shows examples of CA release and clearance in the

mPFC evoked by stimulation of the DNB or VTA (−7.4 or −8.6mm from bregma,

respectively). CA signals in the mPFC evoked by electrical stimulation at −7.4 and −8.6mm

in the same rat are shown in Figure 3A. The color plots (Michael et al., 1998) display

current (color) at applied potentials (y-axis) over time (x-axis). Overlaid on the color plot is

the concentration versus time trace at 0.65V (the peak oxidation potential of CA), with the

dotted lines indicating where [CA]max and T1/2 are measured; the electrochemical data were

analyzed with principal component regression before determination of [CA]max and T1/2. In

this rat, [CA]max was reduced while T1/2 was similar when evoked by stimulation of the

DNB versus the VTA. Figure 3B displays composite data across the 7 rats with sufficient

S:N in both stimulation sites. CA release was significantly lower after DNB stimulation than

after VTA stimulation ([CA]max: paired t-test, t6=−4.97, p<0.005). In contrast, there was no

difference in CA clearance between the two stimulation sites (T1/2: paired t-test, t6=0.65,

p>0.05).
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Effect of autoreceptor antagonists on CA release and uptake in the mPFC

Next, in order to further investigate the contributions of dopamine and norepinephrine to the

observed voltammetric signals, Experiment 4 examined the effects of D2- and α2-adrenergic

receptor antagonists (raclopride and idazoxan, respectively) on VTA-evoked CA release and

clearance in the mPFC. We hypothesized that if there was no contribution of norepinephrine

to the CA release evoked by VTA stimulation delivered at depth −8.6 mm from bregma,

then inhibition of α2-adrenergic autoreceptors should not alter the signals. In the 18 rats

from Experiment 3, VTA-evoked CA release was monitored at baseline, after saline and

after drug injection (saline, raclopride or idazoxan); the saline pretreatment allowed within-

subject analysis of drug effects.

Representative effects of the antagonists on VTA-evoked voltammetric signals observed in

individual rats are shown in Figure 4A. Color plots demonstrate that administration of

idazoxan had no effect on VTA-evoked CA release whereas injection of raclopride

decreased mPFC CA release. In addition, concentration-versus-time traces (Figure 4B,

averaged across rats per group) demonstrate slightly decreased evoked CA release in 20 and

40 min after raclopride but not idazoxan injection.

Figure 5A shows the group effects of raclopride, idazoxan and saline on [CA]max in the

mPFC over time. The baseline and saline time points were averaged for clarity (4 evoked

signals each). Saline and idazoxan did not significantly alter [CA]max. In contrast, raclopride

significantly decreased [CA]max by 26% from baseline and 20% from saline pretreatment

within 20min after injection. A 2-way repeated-measures ANOVA yielded a significant

group-by-time interaction (F6,45=4.3, p<0.005) with no significant main effects. Posthoc

comparisons showed that [CA]max in the raclopride group was significantly reduced at 20

and 40min versus baseline and at 20min versus saline (Bonferroni t-test, all t>2.9, all

p<0.05), but not versus idazoxan (all p>0.3). [CA]max in the saline and idazoxan groups did

not change.

The autoreceptor antagonists did not significantly alter CA clearance in the mPFC as

measured by T1/2 versus the saline group (Figure 5B). Across all groups, T1/2 slightly

increased over time, indicating slower clearance, although there was variability across rats,

especially in the idazoxan group. A 2-way repeated-measures ANOVA on T1/2 (transformed

by rank) yielded a significant main effect of time (F6,45=2.9, p<0.05), but no significant

effects of group or group by time interaction (p>0.05). However, no individual timepoints

were significantly different from another after Bonferonni correction (all t<2.7, p>0.05). To

verify that we were not simply underpowered to detect a reliable effect of idaxozan on T1/2,

we calculated the number of rats required to detect a difference: for power = 0.8 and

population parameters equal to those found in this data set, 59 rats would be required to

reach statistical significance, confirming the heterogeneity of T1/2 in response to idaxozan.

Previous studies have shown that D2 receptor antagonists potentiate dopamine release

evoked by MFB stimulation and monitored in the dorsal striatum (Yavich, 1996, Benoit-

Marand et al., 2001, Wu et al., 2002). Therefore, as a positive control to the raclopride-

induced decrease of evoked CA release observed in the mPFC, we examined effect of

raclopride on evoked dopamine release in the CPu (Supplemental Figure 3). The color
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plots and concentration-versus-time traces demonstrate that dopamine release in the CPu

evoked by VTA stimulation was 3-fold larger than CA release in the mPFC. Moreover,

raclopride robustly increased dopamine release in the CPu (n = 2 rats), consistent with

previous studies.

DISCUSSION

While FSCV is the method of choice to evaluate dopamine release and clearance kinetics in

vivo and in real time, its application to cortical dopamine dynamics has been limited by the

ability of FSCV to distinguish dopamine from norepinephrine inputs. Thus, this study aimed

to investigate relative contributions of dopamine and norepinephrine to VTA-evoked CA

release measured in the mPFC of anesthetized rats. We found that electrical stimulation of

either the DNB or the VTA produced CA release in the mPFC. Furthermore, VTA-evoked

CA release was unaffected by a knife cut through the DNB, suggesting that ascending

norepinephrine fibers did not contribute to that mPFC electrochemical signal. Additional

confirmation that the VTA-evoked CA signal was primarily dopaminergic was that a D2

receptor antagonist, but not an α2-adrenergic receptor antagonist, reliably altered [CA]max.

Together, these data provide anatomical and pharmacological evidence that VTA-evoked

CA release in the mPFC is primarily dopaminergic, validating this method for future

measurements of dopamine release and uptake kinetics in animal models of

neuropharmacology and psychiatric disease. Indeed, this initial study revealed differential

effects of D2-autoreceptor regulation on dopamine release in the mPFC as compared to

striatum.

The key challenge of the current study was to differentiate dopamine from norepinephrine

input to the mPFC via selective electrical stimulation of dopamine neurons. While carbon-

fiber electrodes are less sensitive to norepinephrine than to dopamine (e.g., the present

study; Heien et al., 2003, Robinson et al., 2003, Noga et al., 2004), this fact does not exclude

the possibility that norepinephrine might contribute to the CA signals measured in the mPFC

and evoked by electrical stimulation in the midbrain. Axons from the norepinephrine

neurons of A1, A2, A5, A6 and A7 cell groups form the ascending noradrenergic bundle,

which separates into the DNB and VNB. The DNB carries norepinephrine fibers to the

thalamus, hypothalamus and cortex, including the mPFC (Ungerstedt, 1971). During FSCV

measurements of norepinephrine in the anteroventral thalamic nucleus (a target of

norepinephrine axons in the DNB), maximal release was evoked by midbrain electrical

stimulation of −5.5 to −7.0mm depth that presumably activated the DNB (Park et al., 2009).

With a more medial stimulation track than used by Park and colleagues (0.8 versus 1.2mm

lateral), we found two local maxima of CA release upon electrical stimulation of the

midbrain: at −7.4mm and −8.4/−8.6mm below bregma. This spacing is consistent with

histological depictions of the DNB versus the VTA; for example, tyrosine hydroxlase-

positive fibers in the DNB (shown as the dorsal tegmental tract) are located 1.0-1.5mm

above the tyrosine hydroxlase-positive soma and fibers of the VTA and substantia nigra

(Figure 248 in (Paxinos et al., 2009). Thus, we conclude that electrical stimulation at

−7.4mm below bregma in the present experiment activates the DNB and the resulting CA

release is likely to arise predominantly from norepinephrine terminals in the mPFC.
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Although the VTA is spatially distinct from the DNB and the norepinephrine fibers directly

innervating the mPFC, VTA stimulation could conceivably activate the locus coeruleus and,

thus, indirectly activate mPFC-projecting norepinephrine neurons. Specifically, electrical

stimulation of the VTA would activate the VTA projection to the locus coeruleus and may

antidromically activate fibers in the adjacent VNB that arise from the locus coeruleus. Thus,

we assessed the potential contribution of norepinephrine to the VTA-evoked dopamine

signal in the mPFC by severing the DNB and found that [CA]max was unchanged by a knife

lowered from −5.0 to −8.2mm below bregma, which would include the DNB. In fact, a

decrease in [CA]max was not detected until −8.6mm or lower, at the level of the MFB.

Therefore, our data indicate that norepinephrine fibers in the DNB do not contribute to the

transient CA release evoked by VTA stimulation, consistent with previous recordings in the

mPFC in which very similar [CA]max was evoked by VTA/substantia nigra stimulation and

by MFB stimulation (Garris et al., 1993, Garris and Wightman, 1994). Nonetheless, VTA

activity may tonically regulate norepinephrine transmission. Indeed, Deutch et al. (1986)

observed increased norepinephrine metabolites in the mPFC and hippocampus induced by

kainic acid in the VTA that was blocked by a knife cut of the DNB, suggesting that VTA

neurons regulate activity of norepinephrine projections that travel in the DNB (Deutch et al.,

1986). As DNB fibers did not contribute to the immediate CA transient evoked by VTA

stimulation in the present study, we suggest that the VTA regulation of norepinephrine

projections occurs on a slower timescale than is assessed with FSCV.

When comparing CA release in the mPFC evoked by midbrain stimulation at the level of the

DNB versus the VTA, we found that both sites elicited CA release but [CA]max was

significantly larger at VTA stimulation. Considering that the mPFC contains more

norepinephrine than dopamine (Garris et al., 1993), this discrepancy may be due to more

optimal placement of the stimulating electrode to activate dopamine fibers as opposed to

norepinephrine fibers, in addition to enhanced sensitivity to dopamine versus norepinephrine

under the current electrochemical conditions. Indeed, the present study aimed to minimize

DNB stimulation by medial placement of the stimulating electrode. The finding that CA

clearance rates were similar after both stimulation sites was not unexpected, as both

norepinephrine and dopamine are cleared by identical mechanisms in the mPFC, including

uptake by the norepinephrine transporter and metabolism by catechol-O-methyltransferase

and monoamine oxidase (Kaenmaki et al., 2010). Garris et al. (1993) also examined CA

release in the mPFC evoked by midbrain stimulation, lowering the stimulating electrode in a

ventral path. They reported that the first observable increase in [CA]max occurred at a

stimulation depth of −7.5mm below dura and the peak response was observed at −8.5mm,

similar to the present findings. In contrast to the present study, the previous work did not

detect CA release at more dorsal stimulation sites (Garris et al., 1993, Garris and Wightman,

1994), but this discrepancy is likely due to the enhanced sensitivity of the FSCV parameters

currently in use (Robinson and Wightman, 2007).

It is known that dopamine has higher affinity to NET than norepinephrine does (Raiteri et

al., 1977), and in the PFC both NET on norepinephrine terminals (Carboni et al., 1990,

Yamamoto and Novotney, 1998) and COMT (Kaenmaki et al., 2010) play important roles in

dopamine decay from the extracellular fluid. Thus, administration of DAT or NET blockers
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would not selectively alter DA and NE concentrations, respectively, in the PFC. Instead, to

pharmacologically confirm the dopaminergic nature of VTA-evoked CA release in the

mPFC, we systemically administered either a D2 or α2-adrenergic receptor antagonist, as D2

autoreceptors regulate dopamine release (Gonon and Buda, 1985, Wu et al., 2002), while

α2-adrenergic autoreceptors regulate norepinephrine release (Devoto et al., 2004). We

hypothesized that if VTA stimulation evoked primarily dopamine release in the mPFC, then

the release should be altered by administration of D2 but not α2-adrenergic receptor

antagonists. Supporting this hypothesis, idazoxan did not significantly alter VTA-evoked

CA release or clearance in the mPFC, although the same dose increased norepinephrine

release and clearance in the bed nucleus of the stria terminalis (Herr et al., 2012). In

contrast, raclopride reliably reduced [CA]max, consistent with the sensitivity of VTA-evoked

CA release to dopamine autoreceptor regulation, although the conclusions made here are

moderated by the fact that the effects of raclopride were not significantly different from

idazoxan. The time course of systemic activity of the two antagonists should be considered

in this study. Based on literature, both drugs are effective within the time frame of the

current study after intraperitoneal injections. Thus, previous studies demonstrated that

2mg/kg raclopride increases dopamine concentrations as measured by microdialysis within

40min after injection (See et al., 1991) and within 30min as measured with FSCV (Park et

al., 2010). In our study we used raclopride at a higher dose (3mg/kg) and observed its effect

within 20min after injection. Similarly, FSCV studies demonstrated that 5mg/kg idazoxan

increased norepinephrine release in the bed nucleus of the stria terminalis in 20min after

injection (Herr et al., 2012, Park et al., 2012).

The effect of raclopride on [CA]max in the mPFC was opposite to what the present study and

others have observed on dopamine release in the CPu (Wu et al., 2002, Park et al., 2010).

Striatal dopamine release is regulated by autoreceptor feedback, including impulse

modulation via activation of D2 receptors on dopamine soma and synthesis modulation via

activation of receptors on dopamine terminals. However, autoreceptor regulation of

dopamine release in mesocortical neurons is less characterized. In the mouse VTA, Lammel

and colleagues found a lack of somatodendritic D2 autoreceptors on the PFC-projecting

neurons, as well as projection-specific differences in tyrosine hydroxylase, dopamine

transporter and vesicular monoamine transporter 2 expression (Lammel et al., 2008).

However, rat mesocortical neurons evidently express somatic D2 autoreceptors, as Margolis

and colleagues determined that the D2 agonist quinpirole induced hyperpolarization of VTA

neurons projecting to the PFC (Margolis et al., 2008). The difference in autoreceptor

regulation of VTA-evoked CA/dopamine release between striatum and mPFC might be due

to differential expression of autoreceptors on the soma versus the terminals, a possibility that

can be tested by using FSCV with local infusion of D2 receptor ligands.

In conclusion, this study provides anatomical and pharmacological evidence that VTA-

evoked CA release in the mPFC is predominantly dopaminergic, validating an additional

tool to investigate mesocortical dopamine release and clearance in animal models of

development and disease. The data additionally revealed autoreceptor regulation of mPFC

dopamine release that differs from that in striatal regions and that likely contributes to

differential dopamine transmission across terminal regions. Future studies could characterize

norepinephrine release in the mPFC by targeting the DNB with more lateral stimulation sites
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and investigating the effects of similar anatomical and pharmacological manipulations on

DNB-evoked CA release.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AP anterior-posterior

CA catecholamine

[CA]max maximum concentration of catecholamine

CPu caudate putamen

DNB dorsal noradrenergic bundle

DV dorsal-ventral

FSCV fast scan cyclic voltammetry

Id current at stimulation depth

Id
max maximum current detected across stimulation depths

Imax maximum current

ML medial-lateral

mPFC medial prefrontal cortex

S:N signal-to-noise ratio

T1/2 time to clear half of [CA]max

VNB ventral noradrenergic bundle

VTA ventral tegmental area
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Figure 1.
CA transients in the mPFC of rats evoked by midbrain stimulation. (A) Representative

current-versus-time traces and corresponding cyclic voltammograms detected in an

individual rat. The current at the oxidation potential for CA is shown ±5s around the

electrical stimulation (rectangle). The cyclic voltammogram indicates current at the full

range of applied potentials measured at the peak of the CA release event. (B) The track of

the bipolar stimulating electrode (dotted lines indicate the two wires) through the midbrain,

axes in mm, adapted from (Paxinos and Watson, 1998). (C) Electrically-evoked CA release
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in the mPFC presented as function of midbrain stimulation site (n=5 rats). The evoked CA

signals (Id) were normalized in each rat by dividing by maximal response observed in the rat

(Id
max). * significantly different from −5.0 mm depth, p<0.05. Abbreviations: DNB, dorsal

noradrenergic bundle; SN, substantia nigra; VNB, ventral noradrenergic bundle; VTA,

ventral tegmental area.
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Figure 2.
VTA-evoked CA release in the mPFC before and after knife cut through the midbrain. (A)

Representative current-versus-time traces and corresponding cyclic voltammograms

detected in an individual rat. The current at the oxidation potential for CA is shown ±5s

around the electrical stimulation (rectangle). The cyclic voltammogram indicates current

measured at the full range of applied potentials at the peak of the CA release event. (B) The

track of the knife (dotted lines) through the midbrain, axes in mm, adapted from (Paxinos

and Watson, 1998). Abbreviations: DNB, dorsal noradrenergic bundle; MFB, medial

forebrain bundle. (C) Electrically-evoked CA release presented as function of knife depth

(n=4 rats). The VTA-evoked CA signals (Id) were normalized in each rat by dividing by the
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response observed in the rat when the knife was initially positioned (I−5mm). * significantly

different from −5.0 mm depth, p<0.05.
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Figure 3.
Release and clearance of CA in the mPFC evoked by stimulation of the DNB and VTA. (A)

Representative color plots of voltammetric signals detected in the mPFC of a single rat and

evoked by midbrain stimulation (red rectangle) at −7.4mm (DNB, top) and −8.6mm (VTA,

bottom) depth. The current at the oxidation potential of CA, converted to concentration, is

overlaid on the color plot as a white line. The vertical dotted lines indicate the [CA]max of

the electrically-evoked signals, and the horizontal dotted lines indicate the T½. (B) [CA]max

and T½ obtained in the mPFC and evoked by electrical stimulation at the indicated depth

(n=7 rats). * p<0.05 versus −8.6mm stimulation.
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Figure 4.
Effects of D2 and α2-adrenergic receptor antagonists on VTA-evoked CA signals observed

in the mPFC . (A) Color plots illustrate the electrically-evoked voltammetric signals

obtained from individual rats and recorded after initial injections of saline and 20 min after

subsequent injections of raclopride (RAC, top) and idazoxan (IDA, bottom). (B) [CA]-

versus-time traces averaged from 6 rats demonstrate effect of RAC and IDA in 20 and 40

min after the injections (mean±SEM). The peaks of CA signals were aligned across rats.
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Figure 5.
Effects of D2 and α2-adrenergic receptor antagonists on (A) CA release and (B) clearance in

the mPFC evoked by VTA stimulation. Left: [CA]max and T1/2 over time; baseline (BL) and

saline (SAL) time points are averaged from 4 samples each, followed by individual time

points after drug administration at time 0 (SAL, saline; IDA, idazoxan; RAC, raclopride).

Right: Data from the left panels are collapsed across time into 20-min epochs; n=6/group.
*comparisons significantly different, p<0.05.
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