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Examples of transgenerational transmission of environmentally
induced epigenetic traits remain rare and disputed. Abiotic stress
can release the transcription of epigenetically suppressed trans-
posons and, noticeably, this activation is only transient. Therefore,
it is likely that mechanisms countering the mitotic and meiotic in-
heritance of stress-triggered chromatin changes must exist but are
undefined. To reveal these mechanisms, we screened for Arabidopsis
mutants impaired in the resetting of stress-induced loss of epigenetic
silencing and found that two chromatin regulators,Decrease in DNA
methylation1 (DDM1) andMorpheus’Molecule1 (MOM1), act redun-
dantly to restore prestress state and thus erase “epigenetic stress
memory”. In ddm1 mutants, stress hyperactivates heterochromatic
transcription and transcription persists longer than in the wild type.
However, this newlyacquiredstate is not transmitted to theprogeny.
Strikingly, although stress-induced transcription in mom1 mutants
is as rapidly silenced as inwild type, inddm1mom1doublemutants,
transcriptional signatures of stress are able to persist and are found
in the progeny of plants stressed as small seedlings. Our results
reveal an important, previously unidentified function of DDM1
and MOM1 in rapid resetting of stress induced epigenetic states,
and therefore also in preventing their mitotic propagation and
transgenerational inheritance.

chromatin regulation | DNA methylation

Although environmentally induced traits and their transgene-
rational transmission in plants have been described re-

peatedly, trait stability and the involvement of epigenetic
mechanisms in their generation remain controversial (1–3). In
contrast, it has been well documented that environmental
challenges such as elevated temperature can transcriptionally
activate chromosomal loci normally silenced by repressive
chromatin (4–7). However, this release of epigenetic silencing,
unaccompanied by changes in DNA methylation or histone
modifications, is only transient (4, 5). Such noncanonical re-
lease of transcriptional gene silencing (TGS) is similar to al-
terations in epigenetic regulation observed in the mom1 mutant,
where release of TGS occurs without major changes in epi-
genetic marks (8–13). Although, molecular mechanisms used
by MOM1 in TGS regulation are not well understood, genetic
studies have linked MOM1 activity to small interfering RNAs
(14) and RNA processing (15). In addition, structure/function
studies have suggested that a conserved domain of MOM1 forms a
homodimer, which is possibly required as a binding platform
for additional silencing factors (13, 16).
The rapid resilencing of heterochromatic transcription in-

duced by heat stress seems to involve changes in nucleosome
occupancy and resilencing is delayed in mutants with impaired
chromatin assembly (5). These observations suggest that sup-
pressive chromatin has certain plasticity in response to stress, but
also a robust buffering system that resets its prestress state. This
counters the persistence of stress-induced epigenetic alterations
during subsequent development and thus their transmission to
the progeny.

Results and Discussion
To identify factors involved in the erasure of “epigenetic stress
memory,” we performed a genetic screen using Arabidopsis line
LUC25 carrying a transcriptionally silenced transgene encoding
firefly luciferase (LUC) (14), which as an endogenous chromo-
somal TGS target loci can be transiently activated after heat
stress. First, we introduced themom1mutation into LUC25 (mom1
LUC25). Themom1mutation partially releases silencing ofLUC25,
producing weak luciferase signals in roots but not aerial parts, where
the LUC transgene remains silenced. Importantly, the LUC trans-
gene in mom1 LUC25 is strongly activated by heat stress, similar to
LUC25 (Fig. S1A). We presumed that the introduction of themom1
mutation would enhance stress-induced luciferase signals, increas-
ing clarity and thus the efficiency of the mutant screen. Moreover,
although themom1mutation does not directly influence the kinetics
of stress-induced TGS release, MOM1 is involved in buffering
epigenetic states of chromatin (11). We hypothesized, therefore,
that any deficiency in such buffering would facilitate phenotypic
detection of additional epigenetic regulators involved in the
rapid restoration of TGS after stress and, thus, in the erasure of
epigenetic stress memory.
M2 seedlings of mutagenized mom1 LUC25 were germinated

for 5 d and individuals showing enhanced luciferase signals before
stress treatment were removed, because these plants release TGS
constitutively. The remaining seedlings were subjected to heat stress
and plants showing significantly stronger and/or longer-lasting
luciferase signals were selected and grown to maturity (Fig. S1B).
We examined their M3 progeny to determine whether selected
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phenotypes were heritable. Interestingly, several plants selected
in the M2 produced progeny uniformly showing high luciferase
signals prior to heat stress in the M3. Because such “constitutive”
phenotypes had been discarded in the previous M2 generation,
we concluded that their appearance in the M3 reflects trans-
generational transmission of heat stress-induced TGS release
that occurred in the previous plant generation (Fig. 1A). In other
words, we may have recovered mutant plants severely impaired
in the erasure of epigenetic stress memory. Focusing on four
independent lines with these characteristics, we identified
causal mutations by a combination of genetic mapping and whole
genome sequencing. Two independent mutations resided in a
gene encoding nucleosome remodeler DDM1 (17-20) (Fig. 1B).
The DDM1 protein, conserved between plants and mam-
mals, is required for maintenance of DNA methylation, thus
TGS (21, 22). It has been suggested that DDM1 alters ac-
cessibility of H1-containing heterochromatin to DNA meth-
yltransferases (23).
Recovery of ddm1 mutants in our screen was both surprising

and disturbing. Surprising, because ddm1 mutants are known to

release epigenetic silencing independently of stress and, there-
fore, should have been eliminated from the screen in the M2.
Disturbing, because ddm1 mutants have a transgenerationally
progressive effect on the loss of DNA methylation and silencing
release (18, 19). Thus, luciferase activity observed in the M3 could
simply reflect this ddm1 property rather than transgenerational
memory of heat stress. To address these reservations, we first an-
alyzed DNA methylation of the LUC promoter. Cytosine methyl-
ation patterns were only slightly altered, however, surprisingly high
levels of methylation remained in the M3 of both mutant lines (Fig.
1 C and D), which is unusual for ddm1 mutants strictly associated
with hypomethylation-mediated TGS release (17, 20, 24, 25).
This result supported the possibility that the heat stress-acti-
vated state of the LUC transgene, which is independent of
DNA methylation (4, 5), can in fact be maintained and trans-
mitted to the next generation in the ddm1 background, and
therefore, would define a previously unrecognized and poten-
tially crucial activity of DDM1 in reversing TGS after it has been
destabilized by environmental changes/stress.
The only way to test this hypothesis was by the recreation and

analysis of the ddm1 mutant line with a naïve and, thus, still-
silenced LUC transgene (Fig. 2A). To obtain such a line, we
crossed the commonly used allele of ddm1 (ddm1-2) (18) into
LUC25 and subjected the F2-segregating progeny to tempera-
ture stress. Importantly, under control growth conditions, lucif-
erase signals remained at the LUC25 level and no differences
between segregating F2 individuals were recorded (Fig. 2B). This
suggested that the LUC transgene remained silent in the first
generation of ddm1mutants and explains the initially unexpected
presence of ddm1 among plants subjected to heat stress during
the mutant screen. Notably, heat stress applied to segregating F2
seedlings revealed individuals with very strong luciferase signals
(Fig. 2B) in proportion close to expected segregation ratio for
plants homozygous ddm1 mutation containing LUC plants
(18.75%). The genotyping of the segregating population at DDM1
and LUC loci confirmed that, all of these plants were found to be
homozygous for the ddm1-2 mutation and contained LUC trans-
gene in homozygous or hemizygous state, which had no influence
on the intensity of LUC signals. Furthermore, we performed an
analogous genetic experiment introducing the ddm1-2 allele into
another line (L5) (26) carrying a silent transgenic locus for the
glucuronidase marker gene (GUS). As with the LUC transgene,
we observed heat-stress-dependent hyperactivation of GUS
expression in ddm1-2 mutants (Fig. S2). These results demon-
strated that DDM1 down-regulates stress-induced heterochro-
matic transcription. Moreover, this novel DDM1 activity appears
to be independent of changes in DNA methylation, with which so
far DDM1 was very tightly associated.
However, we found that in ddm1-2 mutants the stress-hyper-

activated LUC transgene was resilenced within a few days (Fig.
2B) and there was no difference in LUC signals in the progeny
(F3 generation) between stressed and nonstressed ddm1-2 LUC25
plants (Fig. 2D).
Considering the genetic screen was performed in the mom1

LUC25 background, we repeated the genetic reconstruction ex-
periment including themom1mutation. ddm1-2 was crossed with
mom1 LUC25 and stress-induced LUC activation in the segre-
gating F2 populations was examined as before, as well as its in-
heritance in the F3 (Fig. S3). LUC phenotyping and subsequent
genotyping of F2 plants showed that the mom1 mutation alone
did not affect stress-induced expression of LUC, confirming the
previous observations with the mom1 LUC25 line. Although, the
stress-induced LUC activation levels in the ddm1-2 mom1 dou-
ble mutants were similar to those in the ddm1-2 single mutants
(Fig. S4A), however, the LUC signals remained high only in ddm1-2
mom1 double mutants (Fig. 2C). Furthermore, in the next (F3)
generation, progeny from stressed ddm1-2 mom1 LUC25 plants
showed significantly higher LUC signals than nonstressed ddm1-2
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Fig. 1. Identification and characterization of mutants showing transgen-
erational transmission of the heat-stress release of TGS. (A) Bioluminescence
images of the progeny (M3 and M4) of two mutant candidates (9.2.1 and
62.2.1) and of the controls (LUC25, and mom1 LUC25), all grown under
control conditions at 21 °C. The two mutant lines are M3 progeny of heat
stressed M2 parents recovered from the mutant screen. The green and red
signals are luciferase luminescence and auto-fluorescence of chlorophyll,
respectively. (B) Two new mutant alleles of the DDM1 gene (9.2.1 and 62.2.1)
were identified in the screen. The ddm1-2 allele was used for the experi-
ments presented in Fig. 2. (C) DNA methylation distribution at the ubiqutin3
promoter of the LUC transgene in 9.2.1 (M3), 62.2.1 (M3), and LUC 25 (WT).
Colored and open circles represent methylated and unmethylated cytosines
respectively, with red representing CG sites, blue CHG and green CHH (H can
be A, T, or C). (D) Percentage of cytosine methylation in the ubiqutin3
promoter. Black bars, 9.2.1; gray bars, 62.2.1; white bars, LUC25.
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Fig. 2. Inheritance of stress-induced transcriptional activation of LUC. (A) Crossing scheme for the recreation of the ddm1-2 mutant line with the naïve
LUC transgene. P0: ddm1-2was crossed with WT LUC25, F1: heterozygous for ddm1 and carrying the hemizygous naïve LUC transgene, F2: ddm1 homozygous
mutants are segregated in the progeny. F2 seedlings were separated into two subpopulations, one of which was subjected to heat stress. Bioluminescence
images were captured (B), and each plant was genotyped at the DDM1 and LUC loci. (B) Bioluminescence images of segregating progeny of a hybrid between
ddm1-2 and LUC25 (A). The F2 seedlings were expected to include 18.75% of individuals homozygous for the ddm1-2 mutation and carrying the LUC
transgene, these were predicted to display enhanced luminescence. Rows of LUC25 and mom1 LUC25 plants are shown as a control. Note, LUC signals in
mom1 after heat stress are restricted to roots. (C) Bioluminescence images of segregating progeny of a cross between ddm1-2 mom1 LUC25 (for details, see
Fig. S3). The F2 progeny is expected to include 4.69% of individuals homozygous for both ddm1-2 and mom1 and carrying the LUC transgene. White
arrowheads point toward ddm1-2 mom1 double mutant plants, as revealed by the genotyping of the population at DDM1 and MOM1 loci. Quantification of
LUC signals is displayed in Fig. S4. (D) Bioluminescence images of ddm1 LUC25 and ddm1 mom1 LUC25 F3 progenies (as depicted in A) of F2 heat stressed
parents at the seedlings stage (+stress) or nonstressed controls (−stress). Two independent F3 populations (upper or lower row) derived from two ddm1
LUC25 or ddm1 mom1 LUC25 F2 plants (B and C).
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mom1 LUC25 controls (Fig. 2D and Fig. S4B), indicating that the
stress-induced active state of the LUC transgene initiated at the
small seedling stage could persist throughout plant development
and be transgenerationally transmitted, however only in ddm1
mom1 double mutants.
To further investigate stability and possible transgenerational

inheritance in ddm1 mom1 double mutants of stress-triggered
TGS release, we examined transcriptional changes at endogenous
chromosomal loci. For this, we first performed RNA-seq analyses
on four independent populations of the progeny of stressed and
control-treated ddm1-2 mom1 double mutant plants. This ge-
nome-wide approach should uncover chromosomal loci stably
activated following the stress subjected to the parental plants. The
MDS plot analysis of the RNA-seq data revealed well-clustered
biological repetitions for each individual line (Fig. 3A), indicating

the robustness of the RNA-seq data. Noticeably, the largest dif-
ference between biological repetitions was seen for ddm1 mom1
double mutant seedlings derived from ancestors not subjected to
stress. This may simply reflect an intrinsic property of ddm1 mom1
double mutants, which exhibit variation in heterochromatin si-
lencing among individual plants (27). Most importantly, the sam-
ples were clearly clustered according to whether seedlings of
the previous generation were stressed or not (Fig. 3A).
Therefore, the genome-wide transcriptional profiles supported
and extended our previous conclusion based on transgenic loci
that temperature stress-activated transcription occurs genome
wide, and that newly acquired transcriptional signatures can be
transgenerationally inherited in ddm1 mom1 double mutants.
Of the loci affected in the progeny of stressed ddm1-2 mom1,

compared with the progeny of control-treated ddm1-2 mom1, 340
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Fig. 3. Genome-wide analysis of transcriptional changes in the progeny of heat-stressedddm1mom1. (A)Multidimensional scaling (MDS) plot (R/Bioconductor)
showing the overall similarity of RNA expression patterns between samples using RNA-seq data of two biological repetitions. These were performed with two
independent populations (circled) of ddm1mom1 progeny plants obtained from stressed or nonstressed parents at the seedling stage (mom1 transcriptomewas
used as an additional control). (B) Pie charts showing the difference in functional distribution of up- and down-regulated loci between heat-stressed or non-
stressed double mutants. (C) Relative levels of mRNA of selected targets as determined by quantitative RT-PCR. Values were normalized to 18s ribosomal RNA.
One sample of stressed ddm1 mom1 was set to 1. White and gray bars indicate the progeny of control plants and heat-stressed plants, respectively. Pooled F3
plants (∼20 individuals), progeny of two independent F2 plants for each category were used for these analyses. Gene annotations of each target: AT1G43880 -
ATLANTYS1 (TE), AT2G05564 - VANDAL2 (TE), AT5G29560 - caleosin-related family protein, AT5G34790 - VANDAL20 (TE), AT2G12345 - ATHILA3 (TE),
AT5G48850 - ATSDI1, SULFUR DEFICIENCY-INDUCED 1. Error bars indicate SD of results from three repeated experiments. *P < 0.01, Student t test.
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loci were up-regulated more than twofold (P < 0.01) and 484
down-regulated less than twofold (P < 0.01) (Fig. 3B). Approxi-
mately 60% of the up-regulated transcripts and 20% of the down-
regulated transcripts are derived from transposable elements
(TEs) (Fig. 3B). These results are consistent with our previous
demonstration that heterochromatic regions enriched in TEs are
predominantly transcriptionally activated by temperature stress,
and that euchromatic regions are either activated or repressed by
this treatment (4). Such a transcriptional signature of the genome-
wide stress-induced alteration of transcription appears to be in-
herited by the progeny of ddm1 mom1 double mutant plants.
Due to economic constraints, we refrained from genome-wide

analyses of plant populations constituting various experimental
controls. Instead, using the transcriptional profiling data de-
scribed above we selected several genomic loci displaying
heritable stress-induced alteration of transcription in ddm1 mom1
double mutants, and examined by quantitative RT-PCR per-
sistence of their transcriptional activation in WT and single
mom1 or ddm1 mutant plants relative to stress treatments in the
preceding generation. No significant differences in transcript
levels were found between the progenies of stressed and control
WT plants or single mutants, which is in contrast to ddm1 mom1
double mutants (Fig. 3C). This result supports our previous con-
clusion, derived from the properties of transgenic loci, that DDM1
and MOM1 both act redundantly in resetting chromatin status
destabilized by heat stress, which prevents transgenerational
propagation of transcriptional stress memory (Fig. 4).
A closer look at the results of the genome-wide transcrip-

tional analyses reveals that DDM1 and MOM1 are not the only
factors reverting the properties of chromatin affected by stress.
We found previously that ∼3,000 loci are activated under stress
conditions analogous to those used here (4) and, thus, only
a small fraction (340) remain transgenerationally active in the
ddm1 mom1 double mutants. This result suggests that the
prevention of transgenerational transmission of stress memory
extends far beyond the activities of DDM1 and MOM1 and, thus,
that the unequivocal demonstration of transgenerational trans-
mission of environmentally-induced epigenetic traits remains a
significant challenge.

Materials and Methods
Plant Materials. The LUC25 linewas described (14).mom1 LUC25was obtained
by crossing mom1-6 and LUC25. mom1-6 seeds were obtained from INRA-
Versailles, Genomic Resource Center (FLAG_340E12) and ddm1-2 seeds were
provided by E. Richards (Boyce Thompson Institute for Plant Research, Cornell
University, Ithaca, NY). LUC25 and mom1-6 are in the Wassilewskija (WS)
background and ddm1-2 in the Columbia (Col-0) background.

Mutagenesis and Screening. mom1 LUC25 seeds (20,000) were mutagenized
in 0.3% EMS for 15 h. After washing with water, seeds were germinated on
soil to give 78 M2 pools, each derived from ∼150 M1 plants. For each pool,
1,000 seeds were plated on 1/2 MS medium (0.8% agar, 1% sucrose) and
screened for mutants by spraying with a luciferin (Biosynth) solution (31.5 mg
per 100mL ofwater) and examining treated seedlings using anAequoria dark
box with a mounted ORCAII CCD camera (Hamamatsu). Luciferase lumines-
cence and chlorophyll auto-fluorescence image overlays were created using
the Wasabi software package (Hamamatsu). Isolated mutants were crossed
with WT in the Col-0 background to generate mapping populations.

DNA Methylation Analysis. Bisulphite sequencing was performed as described
(14). Sequencing data were analyzedwith Kismeth (http://katahdin.mssm.edu/
kismeth) (28). Primers used for bisulphite sequencing are listed in Table S1.

Histochemical GUS Staining. Staining was performed on cotyledons of 12-d-
old plants as described (13).

RAN-seq Analyses. Total RNA samples were isolated from 7-d-old seedlings
using TRI reagent (Sigma). The libraries were prepared using a TruSeq RNA
Sample Prep Kit (Illumina) and sequenced using HiSEq. 2500 (Illumina) with
single-end 50 base reads. The trimmed reads were mapped with the TopHat
v1.3.3 software to the TAIR10 annotations. The normalization and differ-
ential expression analysis were performed with R/Bioconductor package
edgeR v.2.6.12 (29).

Real-Time Quantitative PCR Analysis. Total RNA was isolated from 7-d-
old seedlings using TRI reagent (Sigma). After RQ1 DNase treatment
(Promega), cDNA was synthesized with the SuperScript VILO cDNA syn-
thesis kit (Life Technologies). Real-time quantitative PCR analyses were
performed using Power SYBR Green PCRMaster Mix (Life Technologies) in
ABI7900FT (Life Technologies). PCR conditions were 95 °C for 10 min
followed by 40 cycles of 95 °C for 15 s and 60 °C for 60 s. Primers are
listed in Table S1.
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