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The successful treatment of bacterial infections is the product of
a collaboration between antibiotics and the host’s immune defenses.
Nevertheless, in the design of antibiotic treatment regimens, few
studies have explored the combined action of antibiotics and the
immune response to clearing infections. Here, we use mathemat-
ical models to examine the collective contribution of antibiotics
and the immune response to the treatment of acute, self-limiting
bacterial infections. Our models incorporate the pharmacokinetics
and pharmacodynamics of the antibiotics, the innate and adaptive
immune responses, and the population and evolutionary dynamics
of the target bacteria. We consider two extremes for the antibi-
otic-immune relationship: one in which the efficacy of the immune
response in clearing infections is directly proportional to the den-
sity of the pathogen; the other in which its action is largely in-
dependent of this density. We explore the effect of antibiotic
dose, dosing frequency, and term of treatment on the time before
clearance of the infection and the likelihood of antibiotic-resistant
bacteria emerging and ascending. Our results suggest that, under
most conditions, high dose, full-term therapy is more effective
than more moderate dosing in promoting the clearance of the
infection and decreasing the likelihood of emergence of antibiotic
resistance. Our results also indicate that the clinical and evolutionary
benefits of increasing antibiotic dose are not indefinite. We discuss
the current status of data in support of and in opposition to the
predictions of this study, consider those elements that require addi-
tional testing, and suggest how they can be tested.
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he goals of antibiotic treatment of bacterial infections are

straightforward and interrelated: to maximize the likelihood
and rate of cure, to minimize the toxic and other deleterious side
effects of treatment, and to minimize the likelihood of resistance
emerging during the course of therapy. How does one choose the
most effective antibiotic(s) for a given infection and determine
its optimum dose, frequency, and term of administration to achieve
these goals?

One answer has been to combine in vitro studies of the phar-
macodynamics (PD) of the antibiotics and bacteria and the in vivo
pharmacokinetics (PK) of the antibiotics in treated patients or
model organisms (1, 2). Central to this “rational” (as opposed to
purely empirical) approach to antibiotic treatment are PK/PD
indices. Although there have been efforts to develop more com-
prehensive measures of the relationship between the concentration
of antibiotics and rate of bacterial growth (e.g., see refs. 3-5), in
practice the lowest antibiotic concentration required to prevent the
in vitro growth of the bacteria [the minimum inhibitory con-
centration (MIC)] is the sole pharmacodynamic parameter used
for these indices (6). Depending on the drug, one of three PK
parameters that quantify drug availability is combined with the
MIC to generate these PK/PD indices: (i) the ratio of the peak
antibiotic concentration achieved in vivo to the MIC, Cyax/MIC,
(i) the ratio of the area under the concentration-time curve to
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the MIC, AUC/MIC, and (iii) the amount of time the antibiotic
concentration exceeds the MIC, T > MIC. The therapeutic ef-
ficacies of different classes and regimens of antibiotics are assessed
by determining the relative values of one of these indices.
These evaluations are conducted in vitro, for example with
hollow-fiber systems, or with experimental animals, typically
neutropenic mice (7).

Although host variation in PK is sometimes considered in
these analyses (2), by using the MIC as the single PD parameter,
PK/PD indices have the virtues of reductionism and standardi-
zation; there are precisely prescribed ways by which MICs are
estimated (8-10). While there is evidence that some antibiotic
use protocols based on these indices are correlated with treat-
ment success (11-14), it is not at all clear whether these proto-
cols are optimal (15, 16). Treatment fails and resistance emerges
even when PK/PD-based protocols are adhered to (12, 17). Are
there antibiotic treatment regimens that would lead to lower
rates of failure and reduced likelihood of resistance emerging
than those based on simple PK/PD indices with MICs as the
unique PD parameter?

Mathematical and computer simulation models are promising
in their ability to provide a framework for the development and
evaluation of optimal antibiotic treatment protocols. They have
been successfully used to design and evaluate antibiotic use reg-
imens for hospitals and to examine the relationship between
antibiotic use and the epidemiology of resistance in open com-
munities (e.g., refs. 18-21). Mathematical models have also been
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used to explore and evaluate protocols for the treatment of in-
dividual patients with single and pairs of antibiotics (22-26).

However, existing models of antibiotic treatment neglect
a number of inconvenient but potentially important realities of
bacterial infections. For instance, they commonly ignore within-
host heterogeneities in access to antibiotics and differences in
antibiotic susceptibility of bacteria in separate spatial com-
partments or physiological states. In addition, they consider
inherited resistance as a discrete state, rather than as the
continuum of susceptibility to the drugs that it is. Further-
more, although it is well known that the clearance of bacterial
infections can be attributed to the combined action of immune
defenses and antibiotics, there has been very limited explo-
ration of how the interaction between antibiotics and the im-
mune response affect the course of therapy. With few exceptions
(e.g., refs. 22 and 27-29), mathematical models of antibiotic
treatment of patients do not consider the contribution of the
host’s immune defenses. Moreover, the models of antibiotic
treatment of which we are aware that do consider these defenses
typically assume that the intensity of the immune response
depends on the density of the infecting population of bacteria
(for an exception, see ref. 28). In theory, such interaction be-
tween antibiotics and the immune response could be antagonistic
rather than synergistic; by reducing the density of the bacterial
population, antibiotic cidal action could decrease the intensity of
the immune response that would be mobilized to eradicate the
infection. At another extreme, an alternative relationship between
the immune system and antibiotics could also exist where immune
responses could be independent of the density of the infecting
bacteria, in which case the bactericidal immune activity would
not be blunted by the action of antibiotics.

In this report, we use a mathematical model and computer sim-
ulations to explore the course of antibiotic-treated bacterial infec-
tions in immune-competent hosts. We restrict our consideration to
the most common use of antibiotics in open communities, to reduce
the morbidity and term of normally self-limiting acute infections
(30). This application of these drugs is certainly a (and maybe the
most) significant selective force responsible for the ascent and main-
tenance of antibiotic resistance in human communities. It is also the
focus of pleas for and advice about the prudent use of antibiotics
(see, for example, www.tufts.edu/med/apua/consumers/fags.shtml).

The model combines the pharmacokinetics of periodic antibiotic
dosing with multiparameter functions for the pharmacodynamics of
the antibiotics and bacteria and innate and adaptive host immune
responses. It allows for the contribution of phenotypic resistance,
multiple states of inherent susceptibility of the bacteria to the
treating drugs and within-host variation in the efficacy of immune
responses. In analyzing the properties of this model, we explore the
efficacy of different antibiotic dosing, frequency of administration,
and term-of-use regimens on the rate of bacterial clearance (cure)

LEGEND
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i=2 - Intermediate
resistance
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Fig. 1. Schematic diagram showing the mathematical model of the pop-
ulation and evolutionary dynamics of bacteria with host immune responses
and antibiotic treatment.
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and emergence of antibiotic resistance. We consider how pathogen
density-dependent (PDD) and pathogen density-independent (PDI)
immune responses affect the efficacy of treatment regimens. The
results of our analysis make a number of predictions (hypothe-
ses) about the consequences of different antibiotic treatment reg-
imens, as well as different antibiotic-immune response interactions
on the course of bacterial infections.

Methods

The Model. The model we develop here is an extension of that used in ref. 31
that incorporates innate and adaptive host immune responses and the
emergence of resistance (Fig. 1). In the following, we outline the different
elements of this model.

The bacterial populations. In the absence of antibiotics, the maximum growth
rate of bacteria of population B; (¢iuax) is proportional to the concentration
of a limiting resource, R pg/mL, as follows:

R
Pimax (R) = Vimax (m> ,

where k is the concentration of the resource at which the population is
growing at one-half its maximum rate, and Vyax is the maximum resource-
independent growth rate (32). There are three populations of bacteria
with densities and designations By, By, and Bs. These bacteria differ in
their MIC;, with the higher index number bacteria being less susceptible
to the antibiotic than the lower index populations (9, 33). In our simu-
lations, the intermediate (B,) and high-level (Bs) resistant populations
have MIGs, respectively, 2- and 10-fold greater than that of the most sus-
ceptible population (B). The bacteria can also exhibit different maxi-
mum rates of growth, Viyax, due to fitness costs of resistance in the B,
and Bs populations. Bacteria of more susceptible states can generate
those of lower susceptibility by mutation: By — B, at a rate uq per cell per
generation and B, — Bs at a rate p, per cell per generation. For conve-
nience and also because the effect is negligible, we do not consider re-
verse mutation. The cells of each of these bacterial populations can be in
one of two states: (i) rapidly replicating and phenotypically susceptible
to the antibiotics, or (ii) slowly replicating and phenotypically refractory
to the antibiotics. The latter subpopulations, BP,, BP,, and BPs, represent
a refuge from the antibiotics as would be expected for persisters (34) as
well as cells in biofilms and other subhabitats where the efficacy of the
antibiotics is reduced (35). These refuge populations divide at a low rate,
wpi(R), as follows:

R
wpi(R) = Vpi (m> where V, << Vuyax.

We assume that bacteria change from susceptible to phenotypically re-
fractory states at rate fsp per cell per hour and return to the susceptible state
at a rate fps per cell per hour, fsp < fps.

Pharmacodynamics and pharmacokinetics. Central to the PD of this model is a Hill
function in which the net rate of growth or death of a bacterial population,
wi, is a function of the concentration of the antibiotic, A pg/mL, and the
limiting resource, R ug/mL (36), as follows:

(dmaax(R) = i (R) (i)
( A )” Pinan (R) )

MGy~ ¢iMAX(R)

wi(AR) = dimax(R) —

where ¢inmax(R) is the maximum resource-limited growth rate of the bac-
teria; ¢ivun (R) is the minimum resource-limited growth rate of the bacteria,
and ¢jun(R) = Vimin (R/(k+R)), where Vyy is the resource-independent mini-
mum bacterial growth rate (maximum antibiotic kill rate); «, the Hill coefficient is
a shape parameter that describes the sensitivity of the bacterial growth rate to
changes in antibiotic concentration; and MIC; is the minimum inhibitory con-
centration of the antibiotic.

For the pharmacokinetics, we assume that in the absence of input the
concentration of the antibiotic declines exponentially at rate d per hour, and
is also lost due to flow from the site of infection at rate w as follows:
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Resources. Resources continually infuse into the site of the infection out of a
resource reservoir C at a rate w pg/mL per day and are consumed by
the bacteria at a rate proportional to their maximum growth rate and
a conversion efficiency parameter, e pg per cell (37). The latter is the amount
of resource required to produce a single new cell. The rate of change in the
resource concentration is therefore given by the following:

%Z w(C-R)-e < > Byi(AR+ Y BPN’P/(R)> .
=

i=1

The immune response. Our model incorporates two components of mammalian
immune defenses, a rapid innate response and a more slowly developing
adaptive response.

The innate immune response. Our model of the innate immune response is
similar to that in ref. 38. Activated effector cells are recruited into the site
of the infection at a rate proportional to the density of cells in an inactive
reservoir and a rate parameter 5 per hour. The total density of cells in the
reservoir is Pyax, and P represents the density of activated effector cells,
with the latter becoming inactive at a rate y per hour. We consider two
different forms of this immune response:

i) a PDD form in which the rate of recruitment is proportional to the total
density of the infecting bacterial population, N = B; + B, + B3 + BP; + BP, +
BP; via a Monod-like hyperbolic function as follows:

ap

where op >0 is a saturation constant used to reflect the relationship
between the rate of recruitment of the innate immune cells and the
density of bacteria in the site of the infection, and

ii) a PDI form, where the rate of recruitment of activated innate immune
cells does not depend on bacterial density:

dP
Ezrl(PMAX_P)_yP-

The adaptive (specific) immune response.

i) The PDD form: The adaptive immune response proceeds via a clonal ex-
pansion of effector cells, /, that are specific for the collective of antigens
borne on the infecting bacteria. We assume that the intensity of this
response changes at a rate determined by the maximum rate at which
the / population increases, a per hour, and the density of the target
population of bacteria. The constant ¢, is the density of bacteria at
which the adaptive immune response increases at one-half its maxi-
mum rate (39):

o
dt_a N+ ’

ii) The PDI form: The adaptive immune response is independent of path-
ogen density and continues to increase until it reaches a maximum
saturation level:

di /
Z=all1-=),
dt= ( 5,)
where §, is the maximum density attainable by adaptive immune cells.

Because we are modeling short-term infections, we assume that there
is no waning of the adaptive immune response over the course of the
infection.

Bacterial population dynamics under immune action. \We assume the sensitivity
to growth inhibition (killing) by the innate and adaptive immune response is
the same for all replicating populations of bacteria and proportional to the
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product of their densities, P or /, and the mass action constants k, or k; (per
immune cell per hour), respectively. We also assume that the three pheno-
typically refractory populations of bacteria are killed at a lower rate than the
more rapidly replicating subpopulations. The mass action constants for the
innate and adaptive immune responses for these refuge populations are, re-
spectively, j, and j, where j, < k, and j; < k;.

With the above definitions and assumptions, the rates of change in the
densities of the bacterial populations are given by the following:

O Vi(AR)B, ~KoBiP~KiBil+ r5BP; ~ B,
dBP; ; -
g =ri(R)BP: — jpBP;P — jiBPil — fpsBP; + fspB;.

Computer Simulations. We use a semistochastic algorithm to solve the above
array of coupled differential equations. The changes in the densities of the
bacteria, immune cells, and concentrations of the resource and antibiotic are
deterministic. The corresponding differential equations are solved by the
Euler method with a finite step size At. The generation and loss of pheno-
typically resistant refuge bacteria and mutation to antibiotic resistance are
stochastic. We incorporate these stochastic elements into the model via
a Monte Carlo protocol, used for its relative simplicity. To illustrate this al-
gorithm, we consider that used for the generation of refuge bacteria. At
each finite time interval At, the probability that a single refuge cell BP; will
be produced from the B; population is fspB;At, where At is chosen so that
this product is less than 1. If a random number x (0 < x < 1) is less than or
equal to fspB1At, a single B, is removed from that population and enters the
refuge BP, population. Mutations that change the resistance state of the
bacteria are generated using a similar protocol, at rates proportional to
bacterial growth rates and the product of the number of individuals of the
ancestral state and the mutation rate, pq or u,. In addition, because sto-
chastic extinction processes are important at lower population densities (40,
41), we assume that when the density of a bacterial population is less than
5 cells per mL, there is a 50% chance of extinction of that population with
each iteration of the simulation. In Table S1, we list the variables and
parameters of the model and the ranges and/or standard values of the
parameters used in our simulations. Whenever possible, we use parameter
values in the ranges of those estimated experimentally for Staphylococcus
aureus and Escherichia coli (16, 36, 42, 43). For more justifications of the
parameter values used, see the footnotes to Table S1.

We initiate the simulations with a single bacterium of state By, a single
phagocyte P = 1 and a single adaptive immune cell / = 1. We choose pa-
rameter values to address the reality that the infecting bacterial population
increases exponentially and reaches substantial densities before the host
response begins to control it. Because we are exploring the dynamics of
a self-limited infection, the combined innate and adaptive immune re-
sponses will, in the absence of antibiotics, clear the infection over a clin-
ically realistic term (44, 45). The simulation used for this model was pro-
grammed in Berkeley Madonna. Copies of the program are available at
www.eclf.net/programs.

Results

Dynamics of the Self-Limiting Infection With and Without Antibiotic
Treatment. In Fig. 2, we illustrate the dynamics of the self-limiting
infection with and without antibiotic treatment. In the absence of
antibiotics, for both PDD (Fig. 24) and PDI (Fig. 2B) immune
responses, the susceptible bacteria grow to densities that are high
enough to produce a substantial density of refuge bacteria (BP;).
Intermediate-resistance bacteria (B;) are generated but do not
ascend due to resource restriction. Because the infection is self-
limited, all bacteria are cleared well before the end of the 20th
day (see Fig. S1 for the dynamics of the infection in the absence
of an immune response). In our simulations, antibiotic treatment
commences after the bacteria reach their peak, resource-limited
density (presumably when symptoms are manifest). The addition
of a small dose of antibiotics at this time reduces the amount of
time before the infection is cleared (Fig. 2 C and D). As a con-
sequence of the antibiotics reducing the density of the infection,
resources are freed and bacteria with intermediate resistance
to the antibiotic, B, ascend. However, these too are eventually
cleared by the immune response. This consequence of antibiotic
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Fig. 2. Bacterial population dynamics of a self-limited infection with im-
mune action and antibiotic treatment. Changes in the densities of the bac-
teria (B4, antibiotic-susceptible, undergoing active growth; B,, intermediate-
resistant, undergoing active growth; BP,, refuge bacteria), resources (R), and
immune cells (P, innate immune cells; I, adaptive immune cells) under the fol-
lowing conditions: (A) pathogen density-dependent (PDD) innate and adaptive
immune action, (B) pathogen density-independent (PDI) innate and adaptive
immune action, (C) PDD innate and adaptive immune action with antibiotic
treatment (dose, 2 pg/mL), and (D) PDI innate and adaptive immune action
with antibiotic treatment (dose, 2 pg/mL). The parameter values used for the
simulations are listed in Table S1.

therapy obtains with both PDD and PDI immune responses,
respectively (Fig. 2 C and D). The rate of clearance, however, is
somewhat greater for the PDI response.

Dose and Frequency of Administration. How do different doses and
frequencies of administration affect the time to clearance of the
bacteria and the rate of evolution of intermediate and high-level
resistance? As our measure of clearance, we consider the aver-
age number of days required for the density of the total bacterial
population to be less than 1 CFU/mL over 10 independent sim-
ulations. To explore the effects of treatment on the emergence of
resistance, we estimate the average number of Monte Carlo sim-
ulations in which the density of B, or B3 exceeds 1 before the
infection is cleared at day 20. With PDD immune dynamics, the
average time to clearance and the fraction of runs in which B,
bacteria emerge declines with increasing concentrations of the
antibiotic (dose) (Fig. 3 A4 and B). This decline, however, is not
monotonic. After a point, increasing the dose of the drug has little
or no effect on either of these measures of antibiotic efficacy. This
is a reflection of the saturable Hill function pharmacodynamics.

In Fig. 3 C and D, we illustrate the effect of the frequency of
administration on clearance and resistance. On first consider-
ation, it may seem surprising that dosing rates have little effect
on these measures of the efficacy of treatment. Why this is the
case can be seen in Fig. S2, where we follow the changes in
density of bacteria for situations where the same total concen-
tration of the drug is administered in a single daily dose, or
partitioned into eight separate doses. When the dose is high and
the frequency of administration low, between doses, the antibi-
otic concentration wanes to low levels due to decay and washout.
However, as a result of the high initial concentration, the density
of the bacterial population is markedly reduced before it starts to
recover (Fig. S24). Although the magnitude of antibiotic-medi-
ated killing at each dose is decreased by partitioning the total
amount of drug into more frequently administered doses, the
amplitude of the oscillations in concentration is damped and the
rate of antibiotic-mediated killing is more constant (Fig. S2B).
The net effect is that both the rate of clearance and intensity of
selection for resistance are relatively insensitive to changes in the
frequency of administration of the drug.
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Treatment Hiatuses. In Fig. 3 E and F, we consider the effects
of an “adaptive treatment” regimen, whereby drugs are only ad-
ministered when the density of bacteria exceeds a threshold level.
Our assumption is that this threshold represents the density below
which symptoms would be abrogated. In this way, we examine
a type of regimen in which administration of antibiotics depends
on the presence of symptoms in a patient. This type of regimen
would affect the frequency at which dosing occurs, the total time
over which treatment is undertaken (term) and, ultimately, the
total concentration of antibiotic that a patient would be exposed
to during the course of their therapy. We explore the potential
effects of this type of regimen by varying the thresholds at which
dosing occurs and examining the impact on the rates of bac-
terial clearance (Fig. 3E) and emergence of resistance (Fig. 3F).
Clearance occurs more rapidly at lower than at higher threshold
densities, and the rate of emergence of resistance is also lower in
the former. At the very low threshold densities (10" and 10%), the
hiatuses in treatment are relatively rare and the antibiotics are
effective in reducing the density of the bacterial population. At
high threshold densities (10° and above), hiatuses in dosing occur
frequently and antibiotic cidal activity is decreased. Because the
intensity of the immune response is directly proportional to the
density of the infecting bacteria, immune-mediated killing plays
a major role in clearance under these conditions. As the numbers
of bacteria are relatively large, mutants of intermediate resis-
tance are more likely to be generated at these high threshold
densities (Fig. 3F). Hence, high-level resistant bacteria are also
generated at threshold densities of 10° and above, although this
occurred infrequently, in less than 1% of simulations. At “in-
termediate” threshold densities (10> and 10*), we observe an in-
triguing result in which clearance does not occur in any of the
runs. This result is due to the interplay between the density of the
bacteria and the immune response. At these threshold densities,
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Fig. 3. The effects of different treatment regimens and pathogen density-
dependent (PDD) immune dynamics on the average time to clearance of the
infection (left column) and fraction of 100 simulations in which bacteria with
intermediate levels of resistance emerge (right column). Means and SEs for
10 independent simulations (left column) and means and SEs for 10 in-
dependent simulations each with 100 runs (right column). (A and B) Single
daily doses of different concentrations of the antibiotic; (C and D) 20 ug/mL
of the antibiotic administered at different frequencies ranging from one
dose of 20 pg/mL to eight doses of 2.5 ug/mL per day; (E and F) different
density thresholds for the cessation of antibiotic dosing in adaptive treat-
ment regimens, standard treatment of 10 pg/mL per day.
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the hiatuses in antibiotic dosing keep the average density of
bacteria during treatment at levels that only marginally stimulate
the adaptive immune response, and, as a result, clearance does
not occur (Fig. S3).

In Fig. 4, we illustrate the corresponding simulation results
as those in Fig. 3, but for PDI immune dynamics. With the same
antibiotic concentrations, bacterial clearance occurs relatively
earlier for PDI than for the PDD immune dynamics. Moreover,
the effect of increasing antibiotic concentration is much less
pronounced; with PDI immune dynamics, lower antibiotic con-
centrations (2 and 4 pg/mL) clear the infection more rapidly and
are less likely to generate intermediate resistance than when the
immune response depends on the pathogen density (Fig. 4 4 and
B). For PDI immune dynamics, we generally observe a relatively
modest effect of varying dosing frequencies for the same reasons
as described for PDD dynamics (Fig. 4 C and D). The exception
to this is that, at the most frequent dosing rate, the likelihood of
the emergence of intermediate-resistant bacteria is about one-
half that at the other dosing rates (Fig. 4D). This result occurs
because, under PDI conditions, the most frequent dosing regi-
men leads to a lower maximum density of ancestral B; cells and
thereby appreciably decreases the likelihood of B, cells emerging.

For adaptive treatment regimens, clearance occurs at all
threshold densities, and time to clearance is directly proportional
to the threshold densities (Fig. 4F). At threshold densities of 10°
and lower, emergence of resistance occurs at equivalent rates
that are lower than for the corresponding thresholds under PDD
immune dynamics (Fig. 4F). High-level resistant bacteria are gen-
erated at thresholds of 10° and above, but as for PDD dynamics,
they occur infrequently, in less than 1% of simulations.

Preexisting Resistance. In Fig. 5, we consider the treatment dy-
namics of an infection for which there is already a minority
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Fig. 4. The effects of different treatment regimens and pathogen density-
independent (PDI) immune dynamics on the average time to clearance of
the bacteria (left column) and fraction of simulations in which bacteria with
intermediate levels of resistance emerge (right column). Means and SEs for
10 independent simulations (left column) and 10 independent simulations
each with 100 runs (right column). (A and B) Single daily doses of different
concentrations of the antibiotic; (C and D) 20 pg/mL of the antibiotic ad-
ministered at different frequencies ranging from one dose of 20 pg/mL to
eight doses of 2.5 ug/mL per day; (E and F) different density thresholds for
the cessation of antibiotic dosing in adaptive treatment regimens, standard
treatment of 10 pg/mL per day.

Ankomah and Levin

Threshold

Bacterial Density (cells per mL)

1.E+02
1.E+01
1.E400 +

0

Time (days)

Fig. 5. Bacterial population dynamics of a self-limited infection with pre-
existing high-level resistant bacteria and PDD immune dynamics. Changes in
the densities of the bacteria (NB; = B; + BP;, NB, = B, + BP,, NBs = B3 + BP3)
under the following conditions: (4) dose of 5 pg/mL; (B) dose of 20 pg/mL; (C)
dose of 20 pg/mL, adaptive treatment threshold of 10° bacteria per mL. The
parameter values used for the simulations are listed in Table S1.

population of resistant B; cells before the initiation of therapy.
When treated with a low antibiotic concentration, the density of
susceptible bacteria is rapidly reduced while the resistant mi-
nority population ascends to high densities. In this self-limiting
infection, however, these antibiotic resistant cells are eventually
cleared by the immune response (Fig. 54). In Fig. 5B, we illus-
trate how treating with higher antibiotic concentrations can
reduce the rate of ascent and the maximum density attained by
these resistant bacteria. This result occurs because of the reality
that resistance is a continuum of levels of susceptibility in which
even the least susceptible bacteria are not completely refractory
to the antibiotic. If there are hiatuses in dosing due to an adaptive
treatment regimen, even at the higher antibiotic concentrations
used in Fig. 5B, the resistant bacteria ascend more rapidly, reach
higher densities, and increase the time to clearance of the in-
fection (Fig. 5C). Similar dynamics obtain for both PDD immune
responses (Fig. 5) and PDI responses (Fig. S4), but clearance
occurs earlier with the PDI immune response.

Discussion

“Essentially, All Models Are Wrong, but Some Are Useful” (46). Ulti-
mately, the utility of mathematical and computer simulation
models depends on their ability to explain existing observations
and generate testable hypotheses for empirical studies. Some of
the predictions made in this study have been supported experi-
mentally in vitro, in laboratory animals and in treated patients,
others have yet to be evaluated, and some experimental and
clinical observations are inconsistent with what this model pre-
dicts. In the following, we discuss the major predictions of this
study, the evidence in their support and opposition, the limita-
tion of this evidence, and the implications of this theoretical study
for the optimal design of antibiotic treatment regimens.

Our analysis of the properties of our model predicts that the
term of acute, self-limiting infections (and presumably the magni-
tude of morbidity) will be inversely proportional to the dose of
the antibiotic used for treatment. This prediction has been cor-
roborated in a number of in vitro studies (47-49), in animal
model experiments (50-52), and in patients (11, 12, 53-55). Our
results also suggest that if at the onset of treatment all of the
target bacteria are susceptible to the antibiotic, the likelihood of
de novo resistance evolving will decline with the dose of the drug.
There is support for this prediction from in vitro experiments
(47, 49, 56-59), animal models (60, 61), and human studies (62—
64). By rapidly reducing the density of the infecting bacteria,
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higher doses of antibiotics supplement the action of immune
defenses and bring the numbers of bacteria down to levels where
resistant mutants are not likely to be generated. Moreover, the
generation of clinically significant levels of resistance can be
a multistep process, as for fluoroquinolone resistance in S. aureus
and E. coli (65). Our model suggests that if first-step or in-
termediate-resistance mutants are already present at the onset
of or evolve during treatment, the likelihood of high-level clinical
resistance emerging also declines with antibiotic dose. This pre-
diction is supported by in vitro (48, 59, 66, 67) and animal model
experiments (52, 68). Although not responsible for mortality,
there are three compelling reasons to control the ascent of re-
sistance in acute self-limiting infections: to minimize (i) the term
of morbidity, (ii) the reservoir of resistant commensal and po-
tentially invasive bacteria in the treated host, and (iii) the extent of
transmission of resistant bacteria into the community.

Although it is convenient to consider susceptibility and re-
sistance as qualitatively distinct states, in reality the susceptibility
of bacteria to antibiotics is a quantitative rather than a qualita-
tive phenomenon (9, 33). Our analysis indicates that as long as
the dose is high enough, even if there are preexisting populations
with reduced susceptibility, antibiotics can retard their rate of
ascent and densities and thereby the likelihood that these “re-
sistant cells” will be transmitted. For Streptococcus pneumoniae
infections, for instance, there is both in vitro and in vivo evidence
to show that, by using higher doses, p-lactam antibiotics can be
used to treat some infections containing populations of bacteria
that are officially “nonsusceptible” to the drug (69-71). Of course,
because of toxicity and other side effects, there are limits to the
concentrations at which most antibiotics can be used. Nevertheless,
the doses at which some antibiotics are used could be increased to
enhance their efficacy with little or no toxic side effects (72-74).

Although our analysis supports the use of higher doses of anti-
biotics for treatment, it also suggests that there are diminishing
returns to increasing antibiotic doses. In addition to the potential
deleterious side effects, after a point the gain in antibiotic-mediated
killing and the capacity to limit the de novo evolution of re-
sistance declines as the concentration of drug increases. This can
be attributed to the saturation effect associated with Hill func-
tion pharmacodynamics. It is worth noting that a number of in
vitro studies (36, 75-78) and experiments using animal models
(79-82) have demonstrated that the pharmacodynamics of anti-
biotics are consistent with saturating functions like those used in
our model. There have also been studies that support the prop-
osition that, after a point, increasing doses of antibiotics have
diminishing effects on clinical outcome (83, 84). It would seem
particularly useful for the optimal use of existing antibiotics to
have more studies determining the doses of antibiotics beyond
which there is little or no effect on clinical outcome.

Our results also suggest that the relationship between the in-
tensity of the immune response and pathogen burden can affect
the net bactericidal effect generated by different doses of anti-
biotics. If the immune response develops at a rate that depends
on bacterial load, by reducing the density of bacteria, antibiotics
can decrease the stimulation of the immune response. This antag-
onism is particularly apparent at lower antibiotic doses, in which the
course of the infection is prolonged due to a combination of rela-
tively low antibiotic-mediated bactericidal activity and decreased
stimulation of the immune response. If the rate at which the im-
mune response develops is independent of pathogen burden, then
no such antagonistic interactions occur. As a result, the advantages
of increasing the dose of the drug are much less pronounced than
when efficacy of the immune response is dependent on the density
of the infection.

The two scenarios we have considered for the relationship
between the intensity of immune responses and pathogen load,
PDI and PDD, are heuristic extremes. There is experimental
evidence to indicate that there can be both PDD (6, 85, 86) and
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PDI (87-89) immune responses to bacterial infection. Our results
suggest that further experimental effort should be put into in-
vestigating the correlation between immune-mediated killing and
pathogen burden for various bacterial diseases. This information
may help modulate treatment doses, as the optimal dose might
be different depending on the type of immune dynamics in play.

What about the frequency at which antibiotics are adminis-
tered? The results of our analyses of situations in which the same
total dose of an antibiotic is administered at different frequen-
cies suggest that if the total concentration of the drug is suffi-
ciently great, the frequency of administration would have little
effect on the rate of clearance. This result supports using anti-
biotics at higher doses administered at lower frequencies, a practice
that improves the logistics of treatment and the likelihood of ad-
herence. Implicit in this interpretation is that adverse side effects
are not dependent on the dose or frequency of administration. For
at least some antibiotics, like the cyclic peptide daptomycin, the
toxic side effects are lower when the drug is administered at high
doses than when that dose is fractionated and administered more
frequently (90).

What about the term, the length, of therapy? Is there justifi-
cation for the common physician admonishment to “finish the
course of treatment”? It has been suggested that using lower
doses for short amounts of time would be an effective way to
reduce the rate of ascent of resistance and thereby constitute a
prudent use of antimicrobials (91). The assumption is that by re-
ducing the density, rather than rapidly clearing the bacteria, such
“light-touch therapy” would augment the contribution of immune
responses while reducing the intensity of selection for resistance. To
explore this light-touch approach, we used an adaptive treatment
model of antibiotic treatment in which drugs are only administered
when the density of bacteria is above some minimum threshold. We
assume that the thresholds correlate with bacterial densities that
elicit symptoms in a patient. Because of the hiatuses in treatment,
the total amount of drugs used and the amount of time a patient is
under therapy are less than they would be for a treatment regimen
with a predefined term. The results of our analysis suggest that
relative to a “heavier touch” treatment regimen, this form of light-
touch therapy can extend the time before clearance and promote
the evolution of antibiotic resistance.

Our model points to questions that should be addressed to
evaluate moderate treatment regimens based on the manifestation
of symptoms: (i) What are the densities of bacteria at which patients
can cease taking antibiotics without affecting the rates of microbi-
ological cure? (i) What is the relationship between these bacteri-
ological loads and patient symptoms? To obtain answers to these
questions, it will be critical to monitor the densities of infecting
populations of bacteria and determine the relationship between
these densities and the symptoms of the infection during the course
of treatment. When this information is available, the term of therapy
may then be modulated by the manifestation of symptoms rather
than a preprescribed term. Of note, although we assume that
symptoms are a direct reflection of bacterial load, immunopathol-
ogy is another crucial component of patient morbidity (34). Moni-
toring the extent of immune responses and determining correlations
with immunopathology would also provide useful information for
the design of more moderate treatment regimens.

Taken at large, the results of this study are inconsistent with
the arguments by Read et al. (91) against the “orthodoxy” of
high-dose antimicrobial chemotherapy and experimental support
for their arguments (92). The basis of their argument and evi-
dence is “competitive suppression.” If, as seems reasonable, the
intensity of selection for resistance is proportional to the dose of
a drug, the rate of ascent of resistance would be directly pro-
portional to that dose as well (93). If resistance engenders a fit-
ness cost on the pathogen, at lower doses of the antimicrobial
the advantage gained by resistance may not exceed its cost; the
ascent of the resistant strains would then be “competitively
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suppressed” by the intrinsically more fit coinfecting suscep-
tible pathogens. How relevant is “competitive suppression” for
antibiotics and bacteria? Even when resistance initially engen-
ders a fitness cost, compensatory mutations may ameliorate
these costs (94-98). Moreover, the rate of clearance and
population dynamics of resistance in bacteria are not uniquely
determined by the concentration of the antibiotic at a point in
time. As in our model, this rate and the intensity of selection for
resistance depends on a complex interplay between the pharma-
cokinetics, pharmacodynamics, and the contribution of the
immune system.

“Frapper Fort et Frapper Vite” (Hit Hard and Hit Fast). This quo-
tation was Paul Ehrlich’s recommendation to maximize the rate
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at which microbes are cleared, i.e., chemotherapeutic drugs
should be used as early in the infection as possible and at high
doses (99). The results of this computer-assisted theoretical
study support this century-old recommendation. They also raise
a number of questions about the details of this “hit them hard”
protocol with respect to the microbiological, immunological, and
evolutionary components of the rational design of antibiotic
treatment regimens. These questions can and certainly have to be
answered empirically.
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