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In the current literature, the life cycle, technoeconomic, and resource
assessments of microalgae-based biofuel production systems have
relied on growth models extrapolated from laboratory-scale data,
leading to a large uncertainty in results. This type of simplistic
growth modeling overestimates productivity potential and fails to
incorporate biological effects, geographical location, or cultivation
architecture. This study uses a large-scale, validated, outdoor photo-
bioreactor microalgae growth model based on 21 reactor- and
species-specific inputs to model the growth of Nannochloropsis. This
model accurately accounts for biological effects such as nutrient up-
take, respiration, and temperature and uses hourly historical meteo-
rological data to determine the current global productivity potential.
Global maps of the current near-term microalgae lipid and biomass
productivity were generated based on the results of annual simula-
tions at 4,388 global locations. Maximum annual average lipid yields
between 24 and 27 m3·ha−1·y−1, corresponding to biomass yields of
13 to 15 g·m−2·d−1, are possible in Australia, Brazil, Colombia, Egypt,
Ethiopia, India, Kenya, and Saudi Arabia. The microalgae lipid pro-
ductivity results of this study were integrated with geography-spe-
cific fuel consumption and land availability data to perform
a scalability assessment. Results highlight the promising potential
of microalgae-based biofuels compared with traditional terrestrial
feedstocks. When water, nutrients, and CO2 are not limiting, many
regions can potentially meet significant fractions of their transporta-
tion fuel requirements through microalgae production, without land
resource restriction. Discussion focuses on sensitivity of monthly var-
iability in lipid production compared with annual average yields,
effects of temperature on productivity, and a comparison of results
with previous published modeling assumptions.

algae | global model | geographic information system |
life cycle assessment | dynamic map

Recent volatility in oil prices, attributed to increased demand
and limited resources, has led to the development of un-

conventional petroleum reserves, such as oil sands, and increased
exploration of alternative and renewable fuel sources. Scalability
limitations associated with traditional terrestrial biofuel feed-
stocks have renewed interest in next-generation feedstocks, such
as microalgae. Microalgae offer many potential advantages over
traditional terrestrial oil crops, including higher lipid productiv-
ities, a lack of competition for arable land, year-round cultivation,
integration with saline and low-quality water sources, and a viable
drop-in equivalent fuel product (1–5). These scalable advantages
make microalgae a promising feedstock for biofuel production and
a potential sustainable alternative to traditional petroleum fuels.
The current near-term productivity potential for microalgae at

large-scale currently is being estimated through the linear scaling
of laboratory-based growth and lipid data, which has led to a large
variance in reported values (4, 6). This type of scaling has been
integrated into various life cycle, technoeconomic, and resource
models of the microalgae-to-biofuels process, leading to unrealistic
assumptions about industrial function, and is a source of large
uncertainty (2). Current near-term algal lipid productivity values
reported in life cycle, technoeconomic, and resource modeling
literature range from 2.3 m3·ha−1·y−1 reported by Ramachandra
et al. (6) to 136.9 m3·ha−1·y−1 reported by Mata et al. (4), with a
variety of researchers reporting values between these two extremes
(1, 3–26). Large uncertainty in the reported productivity potentials
stems from the use of simplistic growth modeling through simple

solar conversion calculations or linear scaling of laboratory data;
both fail to incorporate biological function and geographic di-
versity. Propagation of errors in microalgae production modeling
at large-scale skew life cycle, economic, and scalability assess-
ments, because lipid yield typically represents the functional unit in
these assessments.
Decreasing uncertainty in the current productivity potential from

microalgae requires increased fidelity in growth modeling through
temporal and biological resolution combined with geographically
specific climatic and resource data (27). This study integrates
a microalgae growth model with hourly historical meteorological
data from various global locations for the assessment of the current
near-term lipid and biomass productivity potential of microalgae
cultivated in a traditional closed-system photobioreactor. The
microalgae growth and lipid content is simulated on an hourly time
scale over the course of 1 y at 4,388 global locations through the
use of 12–25 y (depending on site) of meteorological data. Results
from annual simulations were surface interpolated to produce
a dynamic global map of the current near-term microalgae lipid
productivity and are intended to represent the current large-scale
production potential based on a photobioreactor architecture.
Discussion focuses on the effects of temperature on productivity,
a geographically specific scalability assessment, monthly variability
in productivity, and a comparison of modeled results with current
near-term productivity potentials reported in microalgae biofuel
life cycle, technoeconomic, and scalability literature.

Results and Discussion
The results from this study are divided into four sections: (i)
baseline global lipid productivity and variability, (ii) tempera-
ture sensitivity to lipid productivity, (iii) global scalability, and (iv)
comparison of results with literature-based modeling assumptions.

Significance

Research into microalgae as a feedstock for biofuels continues
to increase because of the inherent potential advantages it
holds over traditional terrestrial feedstocks. However, the true
near-term large-scale productivity of microalgae remains un-
certain. This study integrates a large-scale, outdoor growth
model with historical meteorological data from 4,388 global
locations to estimate the current near-term lipid and biomass
productivity potential from microalgae cultivated in a photo-
bioreactor architecture. Results show that previous life cycle,
technoeconomic, and resource assessments dramatically over-
estimated lipid yields. A scalability assessment that leverages
geographic information systems data to evaluate the current
productivity potential from microalgae with global fuel con-
sumption and land availability shows that microalgae can have
a positive impact on the transportation energy portfolios of
various countries.
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Global Productivity Potential and Variability. Hourly biomass and
lipid productivity results from simulation locations were aver-
aged for an annual geographically resolved result. Results from
the 4,388 simulation locations were surface interpolated to
produce a dynamic map illustrating the current near-term lipid
productivity potential from microalgae across the globe (Fig. 1).
The closed photobioreactor system modeled represents a prom-
ising production system compared with that of an open raceway
pond, based on increased stability and improved volumetric
productivity from extended surface area and a short light path.
Results from this closed system will be greater than those of an
open system (1, 22, 28). As expected, locations in the northern
and southern parts of the globe, where the light intensity and
temperature are lower, result in decreased lipid productivity
compared with regions more centrally located. Although loca-
tions around the equator typically are considered optimum cul-
tivation locations because of their annual temperature stability,
results show these locations do not necessarily produce the
largest lipid yields; this is the result of other climatic phenomena
that affect biological growth. A detailed comparison of four
countries, India, China, Brazil, and Australia, is presented in
Fig. 2. Manaus, Brazil, is closer to the equator than Alice
Springs, Australia, but experiences more rain and cloud cover,
and as a result, Manaus produces a lower lipid and biomass
yield, 18.9 m3·ha−1·y−1 and 10.2 g·m−2·d−1, respectively, compared
with the lipid and biomass yield in Alice Springs, 24.2 m3·ha−1·y−1

and 13.1 g·m−2·d−1, respectively. India and China are neighboring
countries, but India has better average lipid yields, primarily be-
cause of temperature differences. In general, the temperature in
India is closer than that of China to the optimal growth tem-
perature and demonstrates the growth model’s ability to accu-
rately capture temperature effects.
Results also illustrate a nonlinear relationship between biomass

growth and lipid productivity. A biomass yield of 6,720 kg·ha−1·y−1

is found in both Ostrov Vrangelja, Russia, and Lomnicky Stit,
Slovakia, with corresponding lipid productivities of 3.37 m3·ha−1·y−1

and 3.26 m3·ha−1·y−1, respectively. The 3.3% difference in lipid
production is not intended to be statistically significant but is used
to illustrate the biological model’s ability to capture nontrivial bi-
ological effects, including nitrogen quota, inoculation lipid con-
tent, light availability, and temperature. The lipid percentage of
the biomass is not fixed and varies based on biological factors. A
dynamic global map of the current predicted biomass productivity
is presented in SI Appendix.
Highest and lowest monthly yields from 11 locations across the

globe are presented in Table 1. The variability changes from lo-
cation to location, primarily because of climatic diversity. Loca-
tions with low variability and large annual lipid yields represent
areas where cultivation typically does not shut down because of
cold conditions and operates year round. For example, Lear-
month, Australia, has a higher average monthly lipid yield but

a large variability compared with Cali, Columbia. The economic
impacts associated with variability suggest that Cali, Columbia,
would be a superior location even though it has a slightly lower
monthly average lipid productivity compared with Learmonth,
Australia (14); this is because higher variability requires increased
infrastructure, which negatively affects biorefinery economics.
Global variability maps are presented in SI Appendix.
Locations found in the northern and southern hemispheres,

such as Poltavka, Bagaskar, Punta Arenas, and Rio Gallegos,
demonstrate a large variability and low average monthly lipid
yields because of large swings in climate as a result of geographic
location, with colder climates resulting in a winter shut-down.
Alternatively, Yuma, Arizona, United States, is a desert location
that does not shut down in the winter but reaches temperatures that
far exceed the optimum temperature in the summer, resulting in
a lower lipid yield. Kisumu, Kenya, whose average annual tem-
perature is closer to optimum conditions, achieves a higher lipid
yield. These examples illustrate that deviation from optimum
temperature in either direction has a negative impact on the bio-
mass and lipid productivity of the system.

Temperature Sensitivity. A temperature sensitivity analysis dem-
onstrates the importance of considering the effect of tempera-
ture on productivity. Pilot plant facilities currently are using
waste heat or raw energy to maintain culture temperature in cold
months to sustain production (9). Large-scale implementation of
this technique is limited as the result of resource availability and
the economics associated with raw energy. Waste heat and raw
energy for maintaining temperature will be limited to inoculum
and small-scale pilot plant facilities.
Results for simulations in which ideal temperature is main-

tained are presented in Fig. 3. Compared with the nonideal
temperature results presented in the baseline scenario (Fig. 1),
the current lipid productivity across the globe is dramatically
higher for the ideal scenario, illustrating the nontrivial effect that
maintaining optimum temperature has on microalgae growth
and lipid productivity. The locations situated in the most

Fig. 1. World map of the current near-term lipid productivity potential from
microalgae based on a validated biological growth model representative of
Nannochloropsis cultivated in a photobioreactor. Results are based on the
simulation of 4,388 geographical locations.

Fig. 2. Current lipid productivity maps for India, China, Brazil, and Australia.
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northern and southern parts of the globe are affected dramati-
cally when comparing ideal temperature results with real tem-
perature lipid productivity. Bryce Canyon, Utah, for example,
has an ideal and nonideal lipid yield of 22 m3·ha−1·y−1 (biomass
yield of 11.9 g·m−2·d−1) and 10.7 m3·ha−1·y−1 (biomass yield of
5.8 g·m−2·d−1), corresponding to a 106% increase for main-
taining optimum temperature. The dramatic increase pre-
dominantly is a result of extending the growing season from
214 d to 365 d. The 365 d/y assumes no facility shutdown and
no culture crashes, which may be expected in the system
modeled (9). Integrating waste heat from industrial processing
plants makes it feasible for locations to achieve improved lipid
productivity, but heat resource availability ultimately will limit
the scalability.

Scalability Assessment. A scalability assessment was performed to
determine the feasibility of a microalgae growth, lipid extraction,
and conversion-based microalgae-to-biofuels process to meet
various energy demands of global nations. The current near-term
lipid productivity results from this study are combined with land
availability data for a geographic realized assessment. Water,
nitrogen and phosphorous nutrients, and CO2 were assumed to
be readily available. The oil consumption for various regions (29)
was combined with nonarable land statistics based on the Global
Land Cover 2000 (GLC2000) dataset (30) and the productivity
results from this study. Results were used to evaluate the hypo-
thetical potential impact that microalgal-derived biofuels might
make with respect to a given region’s oil consumption. ArcGIS
was used to reduce the land cover from the GLC2000 database
to obtain nonarable and agricultural land statistics for each
country around the world (30). The scalability assessment, which
focuses on biodiesel production, includes a 90% efficiency for
the extraction of lipids from the biomass, a 90% efficiency for the
conversion of oil to fuel, and a 0.8 packing factor, which accounts

for facility infrastructure (25) to more accurately represent the
microalgae-to-biofuel process at industrial scale. The assessment
demonstrates the hypothetical potential microalgae has for
supplementing energy and reducing demand for traditional fossil
oil, as well as the lipid yield advantage microalgae hold over
traditional terrestrial crops, such as soybeans (Table 2).
Results from Table 2 show it is feasible for Brazil, Canada, the

United States, and China to replace 30% of their petroleum
oil consumption based on utilization of poor-quality land for
microalgae cultivation and processing. Japan, however, requires
over 100% of its nonarable land to replace 30% of its trans-
portation fuel consumption through microalgae. However, these
results are based on current modeled productivity values and do
not extrapolate for future improvement potential. A table rep-
resenting the amount of agricultural land needed to supplement
30% of oil consumption for other countries around the world,
based on the lipid yield of microalgae from this study compared
with soybeans, is presented in SI Appendix. Further investigation
of actual land suitable for microalgae cultivation, such as slope
restriction, is needed to provide a more accurate assessment.
Inclusion of resource restrictions, such as water, nutrients, and
CO2, will decrease microalgae potential further.

Literature Comparison. The large variation in current microalgae
productivity in the literature makes it difficult to perform accu-
rate life cycle, technoeconomic, and resource assessments, as
productivity represents the functional unit of these studies and
dramatically affects results. The life cycle, technoeconomic, and
resource assessments in the literature use a wide range of pro-
ductivity assumptions that are higher and lower than the pro-
ductivities presented in this study, resulting in a large spread of
end results regardless of processing pathway differences.
Modeling assumptions in terms of lipid yield for various life cycle,

technoeconomic, and resource assessments are compared with the
results of this study. Various growth systems are modeled in the
different assessments, including open raceway ponds and photo-
bioreactors. The results from this study represent a promising pro-
duction scenario based on cultivation in closed photobioreactors,
which have been demonstrated to be robust culture platforms (1, 9,
22, 28). To make a direct comparison of values presented in the lit-
erature with results from this study, conversions of literature data
were performed and are detailed in SI Appendix. The map of the
current near-term lipid productivity potential (Fig. 1) was rescaled to
encompass the range of lipid productivity results found in the liter-
ature (Fig. 4). Locations with the highest lipid productivities in this
study fall in the lower third of literature assumptions. These results
show that most of the productivity potentials reported in the litera-
ture and integrated into the life cycle, technoeconomic, and resource
assessments of microalgae-based biofuels make optimistic assump-
tions in terms of the current near-termproductivity potential. Results
from the optimistic lipid productivity assumptions favorably skew the
economic and environmental impact of microalgae-based biofuels.

Table 1. Average microalgae lipid yields in cubic meters per hectare−1 per meter−1

(corresponding biomass yields in grams per meter−2 per day−1) of various regions around the
world with respective high and low monthly lipid yields

Lipid and biomass yield

Location Maximum monthly Average monthly Lowest monthly

Kisumu, Kenya 2.47 (15.9) 2.28 (14.8) 2.07 (13.3)
Learmonth, Australia 2.61 (18.0) 2.16 (14.0) 1.49 (9.64)
Trivandrum, India 2.42 (15.6) 2.08 (13.4) 1.75 (11.3)
Cali, Columbia 2.27 (14.6) 2.04 (13.2) 1.91 (12.3)
Hawaii, United States 2.36 (15.3) 1.97 (12.8) 1.50 (9.95)
Yuma, AZ, United States 2.68 (17.3) 1.80 (11.7) 0.68 (5.16)
Poltavka, Russia 2.30 (14.8) 1.06 (6.84) 0.46 (3.23)
Bagaskar, Finland 2.19 (14.1) 0.77 (5.00) 0.55 (3.86)
Punta Arenas, Chile 1.77 (11.9) 0.77 (5.07) 0.51 (3.25)

Fig. 3. Map of the current lipid productivity for maintaining optimum
temperature throughout the year.
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The validatedmodel in this study demonstrates that lipid productivity
is a dynamic variable that cannot be assumed to be constant tem-
porally or geographically. Future assessments of the microalgae-to-
biofuels production process require site-specific assessments that
incorporate geographically realized biological growth modeling to
improve the validity and accuracy of results andmust incorporate the
availability of water, nutrients (such as nitrogen and phosphorus),
and CO2. Including these resource limitations will further reduce the
level of biofuel production potential.

Methods
The following sections present details on the thermal and biological growth
models representative of Nannochloropsis cultivated in a photobioreactor ar-
chitecture. Thermal and biological modeling was performed in MATLAB, with
results processed and land availability statistics generated using Esri ArcGIS (31).

Photobioreactor Thermal and Biological Growth Models. The modeled pho-
tobioreactor system is submerged in a shallow pool of water, which serves
as the structural and passive thermal support of the system. The photo-
bioreactor system consists of equally spaced reactors, 0.05 m thick, 0.3 m tall,
and 17.4 m long, constructed of 0.12-mm polyethylene (detailed pictures and
schematics are presented in SI Appendix). The biological growth model,
representative of Nannochloropsis, requires 21 inputs, with light and tem-
perature serving as the primary inputs (2). A thermal model of the shallow
pool is used to represent the temperature of the system accurately. The
temperature of the shallow pool (assumed to be equivalent to the photo-
bioreactor temperature, with calculations presented in SI Appendix) and
corresponding meteorological conditions serve as the primary inputs to the
growth model that predicts biomass and lipid content. Validation of the
model was performed through the collection of 9 wk of biological growth
and meteorological data at the Solix test bed facility in Fort Collins, Colorado. All
model assumptions, validation, and details for the thermal and biological
growth models are presented in Quinn et al. (27).

The time-resolved biological growth model incorporates 21 reactor- and
species-specific inputs to accurately model the biomass and lipid productivity
of Nannochloropsis based on real-world climatic and thermal conditions
(27). Nannochloropsis is a promising strain for biofuel production because of
its characteristically high lipid content (9, 21, 32). The model captures growth
through carbon uptake, assuming a 50% carbon content (2, 33), and
includes photosynthetic rate (Pc), respiration rate (rRc), and biosynthetic
energy required for nitrogen uptake ðΨÞ to calculate the growth rate (μ):

μ=Pc − rRc −Ψ: [1]

The temperature dependency of photosynthesis is modeled through the
corresponding effect on ribulose-biphosphate carboxylase (RuBisCO) activity and
is an efficiency factor that affects Pc. The enzyme activity as a function of
temperature is modeled based on a bell-shaped curve, with the optimal tem-
perature at the peak corresponding to the maximum temperature efficiency
ðφTÞ (34). Deviating from the ideal temperature in either direction corresponds
to a decrease in temperature efficiency, with the temperature efficiency factor
being a dimensionless number between 0 and 1, as presented in Eq. 2:

φT =
2 ·e

�
Ea

R · Topt
Ea
R ·T

�

1+ e

�
Ea

R · Topt
Ea
R ·T

�2 : [2]

From Eq. 2, the optimum temperature (23 °C for the modeled species) is
captured in Topt, R is the ideal gas constant, Ea is the activation energy of
carboxylation RuBisCO, and T is the culture temperature calculated in the
thermal model. The thermal model of the growth system accounts for heat
loss and gain from conduction, convection, evaporation, and solar incidence
(a detailed picture is presented in SI Appendix). The model incorporates the
climatic variables of atmospheric pressure, cloud cover, wind speed, wind
direction, dry-bulb temperature, dew-point temperature, and solar radia-
tion to predict the temperature of the shallow basin. The thermal model is
used to calculate the culture temperature and input to the biological growth
model. The effect of the temperature efficiency factor on growth is illus-
trated in SI Appendix. For global modeling, the temperature efficiency is
dynamic and calculated on an hourly basis at each simulation location.
Cultivation is assumed to shut down and stays dormant when the basin
temperature falls below freezing, with cultivation resuming upon thaw.

A lipid model was created and incorporated into the biological growth
model to accurately predict the microalgae lipid production based on nitro-
gen, temperature, and light intensity effects. Thismodel is based on a nitrogen
trigger, with cell function switching from protein to lipid synthesis while
maintaining a mass balance among the lipid, carbohydrate, and protein:

mB =mL +mC +mP; [3]

where mB is the mass of the biomass and mL, mC, and mP are the mass of the
lipid, carbohydrate, and protein, respectively.

Weather Data. Historical hourly meteorological weather data serve as a pri-
mary input to the thermal and biological growth model. EnergyPlus Weather
(EPW) data files from the Department of Energy and the American Society of
Heating, Refrigeration and Air Conditioning Engineers were obtained for
4,388 global locations (35, 36). It is important to note that the weather data
in some countries may be less accurate depending on the way the data were
collected. The EPW data files are derived from hourly weather data origi-
nally archived at the US National Climatic Data Center. The databases con-
tain weather observations of wind speed and direction, sky cover, visibility,
ceiling height, dry-bulb temperature, dew-point temperature, atmospheric
pressure, and liquid precipitation for 12–25 y, depending on location.

Table 2. Amount of nonarable land needed to supplement 30% of oil consumption for
different regions around the world based on replacement by microalgae

Location
Nonarable
land, ha

30% of transportation
fuel consumption, L·y−1

Microalgae biodiesel
production potential, L·y−1

Nonarable land
required, %

Brazil 2.06E+07 4.38E+10 2.79E+11 16
Canada 3.63E+08 3.63E+10 1.65E+12 2
China 2.22E+08 1.90E+11 1.79E+12 11
Japan 9.16E+04 7.62E+10 7.49E+08 10,000
United States 7.03E+07 2.86E+11 5.80E+11 49

Fig. 4. Oil yield assumptions found in life cycle, technoeconomic, and
scalability assessments compared with the results of this study presented as
a global map, Fig. 1 rescaled to capture the range of literature values. Be-
cause of the range of productivities reported in some studies, the low end of
the range is represented by the black line and the color bar represents the
high end reported. The black dashed line represents the world average
current near-term lipid productivity of 17 m3·ha−1·y−1 corresponding to
a biomass yield of 9.4 g·m−2·d−1 as determined in this study.
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Observed data were processed statistically to generate standard 1-y datasets
representative of historically observed weather data or EPW data files (36).
Hourly solar radiation is calculated through a model based on the sun–earth
geometry, observed cloud cover, relative humidity, and wind speed (36).
Total solar radiation is converted to photosynthetically active radiation for
biological modeling (37). The climatic variables from the EPW data files are
used as the primary inputs to the thermal and biological growth models.

Simulation Architecture. Harvest technique and reporting metrics. The biological
growthmodel was operatedwith a time-based harvest schedule. Cultures were
inoculated at a density of 1 g·L−1 at hour zero and harvested after 160 h or
a biomass density of 3 g·L−1, whichever occurred first. Each harvest retains
biomass that is used as inoculum for the next growth cycle. This harvest
technique is representative of the operation of the research and development
and pilot plant facility used for model validation (9). The current near-term
productivity potentials reported are based on a photosynthetic area of the
thermal pond basin where the photobioreactor system resides and do not
include the infrastructure required for large-scale cultivation. Additionally, the
reported potentials represent the biological lipid production and do not
include losses associated with lipid extraction and conversion to fuel. The
scalability assessment extends the analysis to include a lipid extraction and
conversion process. The assessment assumes a packing factor of 0.8 (25) to
account for facility infrastructure and a 90% efficiency for extraction and
a 90% efficiency for the conversion of oil to fuel (38) to represent the
microalgae to biofuel process more accurately. Water, nutrients (such as
nitrogen and phosphorus), and CO2 availability were not considered limit-
ing in the scalability assessment.
Temperature sensitivity. The effects of temperature on the current near-term
potential lipid productivity were examined further as part of this study.
Typical laboratory-based studies regulate temperature to optimum con-
ditions to maximize production or remove it as a variable (32, 39). However,
temperature control at large-scale represents an economically unfavorable
option based on the amount of raw energy required. Some pilot plant fa-
cilities are using waste heat from colocated industrial processing facilities
or raw energy to maintain optimum temperatures, but resource limits the
scalability (9, 40). A second set of simulations was performed in which the
temperature efficiency in the biological growth model was fixed to opti-
mum conditions ðφT = 1Þ. The corresponding biomass and lipid productivities
are compared with the nonideal case. Realistically, temperature will not be
controlled at large-scale based on resource and economic limitations. Large-
scale systems can use waste heat to support inoculation systems; thus, the
results from the optimum scenario may be applied in select modeling
applications or pilot-plant siting.
Productivity variability. Results from a harmonization effort among the Argonne
National Laboratory, National Renewable Energy Laboratory, and Pacific
Northwest National Laboratory (14) show that an increase in economic
costs, as well as global warming potential, is associatedwith microalgae biofuel
systems with high production variability. Previous assessments focused on
reporting the current annual average lipid productivity potential and failed to
investigate and report the minimum and maximum lipid productivities
throughout the year (27, 41). Most modeling efforts do not have the fidelity to
investigate variability, because a fixed growth rate and lipid percentage typi-
cally are assumed. Productivity in a biological system depends on resource
availability, specifically sunlight. Global positioning over the course of a year
will cause variability in this resource, affecting growth. This study presents
a variability assessment for each simulated location, with results for the highest
and lowest monthly lipid productivities based on a temporal resolution of
1 mo. Months with the highest lipid yield were compared with the average
annual monthly yield and lowest monthly yield. The lowest monthly yield was
found by considering only months that produced one full harvest coming out
of a water basin thaw.

Geographical Information System. The results from the 4,388 simulations were
interpolated over the globe using a surface interpolation. Surface inter-
polation is a methodology used to develop values for unmeasured locations
by using measured or simulated values from known neighboring locations
(31). Many interpolation algorithms have been developed to account for

spatial and statistical differences of data; however, the central principal
of surface interpolation algorithms is the application of the weighted
sum of data values from nearby locations to produce an estimated value
for any given location within the maximum spatial constraints of the data.
Interpolation algorithms have been used to calculate surface values that
depict current and historic climate values (42, 43), to extract and estimate
land surface features (44), and to evaluate the impacts of noise from aircraft
and industry on the surrounding environment (45).

This research used the surface interpolation tools available in the Esri
ArcGIS 10.2 Geostatistical Analyst extension. ArcGIS also was used to reduce
the land cover from the GLC2000 database to obtain the nonarable land
statistics for each country around the world (30). The ordinary kriging
method was used to explore the data values for lipids and biomass because
of the spatial point sample data of this analysis (SI Appendix, Fig. S5). Or-
dinary kriging does not assume the mean of the data is constant over the
entire spatial domain, rather that the mean is constant in local spatial
neighborhoods (31). This helps compensate further for the impacts of clus-
tered groups by assigning points within a clustered group less overall weight
than isolated data points. This is an important consideration in this analysis,
because data points tend to be highly clustered in more densely populated
regions and lipid and biomass production tend to be higher in areas nearer
the equator and to decrease toward the polar regions. It should be noted
that there are some cases in which the general trend is affected by elevation
and climate; however, the consistency of the data allows for the use of or-
dinary kriging methods.

Model validation outputs, including predicted error, standardized error,
and normal QQ plots, were evaluated for each surface interpolationmodel to
verify suitable performance. Manual accuracy testing also was conducted by
withholding a random selection of 25%of the global data points, performing
an interpolation analysis, and then sampling and regressing the observed
data against the predicted interpolated surface values. The R2 between the
interpolated and observed data was 0.97, further sustaining the conclusion
that the surface interpolation methods were performed adequately.

Conclusion
Alternatives to fossil fuels, such as microalgae-based biofuels,
are being investigated because of their promising productivity
potential along with other sustainable advantages compared with
traditional terrestrial feedstocks. However, a large uncertainty
exists with regard to the current lipid productivity potential from
microalgae. This study uses a validated outdoor photobioreactor
biological growth model to determine the current near-term lipid
productivity potential of microalgae around the world by in-
tegrating hourly meteorological data at 4,388 sites. Results are
spatially interpolated to generate a global map. The effect of
temperature and variability on microalgae growth shows that
temperature plays a critical role in yield, and variability must be
considered in large-scale assessments. The lipid productivity
results from this study fall into the lower third of the life cycle,
technoeconomic, and resource assessments currently found in
the literature, with the highest global lipid yields based on results
from this study ranging between 24 and 27 m3·ha−1·y−1 (corre-
sponding biomass yields of 13–15 g·m−2·d−1). The results from this
work show that even with an optimistic photobioreactor production
system, most of the modeling work being used in assessments
overestimates productivity. A scalability analysis incorporating
geographical information system land classification statistics and
results from this study show that many regions can supplement
30% of their fuel consumption through microalgae by using non-
arable land. Future life cycle, technoeconomic, and scalability
assessments will require integration of geographically and tempo-
rally resolved biological growth modeling for increased fidelity.
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