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Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary
realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such
problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio
optimization problem.This is especially true for swarm intelligence algorithmswhich represent the newer branch of nature-inspired
algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio
problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV
portfoliomodelwith entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however,
it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations,
we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified
firefly algorithmproved to be better than other state-of-the-art algorithms,while introduction of entropy diversity constraint further
improved results.

1. Introduction

Sincemost real-life problems can bemodeled as optimization
tasks, many methods and techniques that could tackle such
problemswere developed.Thus, the optimization becameone
of the most applicable fields in mathematics and computer
science.

The difficulty of an optimization problem depends on the
mathematical relationships between the objective function,
potential constraints, and decision variables. Hard optimiza-
tion problems can be combinatorial (discrete) or continuous
(global optimization), while continuous problems can be
further be classified as constrained or unconstrained (bound
constrained).

The optimization problem becomes even harder when
some variables are real-valued, while others can take only
integer values. Such mixed continuous/discrete problems
usually require problem-specific search techniques in order
to generate optimal, or near optimal solution.

One representative example of such hard optimization
problems is portfolio optimization, a well-known issue in
economics and finance. Many methods and heuristics were
developed to optimize various models and formulations of
the portfolio problem [1]. Various portfolio optimization
problemmodels may ormay not include different constraints
in their formulations. Also, to enhance the diversity of portfo-
lio, some approaches include entropy in its formulations [2].

Unconstrained (bound constrained) optimization is for-
mulated as 𝐷-dimensional minimization or maximization
problem:

min (or max) 𝑓 (𝑥) , 𝑥 = (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝐷
) ∈ 𝑆, (1)

where 𝑥 represents a real vector with𝐷 ≥ 1 components and
𝑆 ∈ 𝑅
𝐷 is hyper-rectangular search space with 𝐷 dimensions

constrained by lower and upper bounds:

𝑙𝑏
𝑖
≤ 𝑥
𝑖
≤ 𝑢𝑏
𝑖
, 𝑖 ∈ [1, 𝐷] . (2)
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In (2), 𝑙𝑏
𝑖
and 𝑢𝑏

𝑖
are lower and upper bounds for the 𝑖th

problem component, respectively.
The nonlinear constrained optimization problem in the

continuous space can be formulated in the same way as in (1),
but in this case 𝑥 ∈ 𝐹 ⊆ 𝑆, where 𝑆 is 𝐷-dimensional hyper-
rectangular space as defined in (2) while 𝐹 ⊆ 𝑆 represents
the feasible region defined by the set of𝑚 linear or nonlinear
constraints:

𝑔
𝑗
(𝑥) ≤ 0, for 𝑗 ∈ [1, 𝑞] ,

ℎ
𝑗
(𝑥) = 0, for 𝑗 ∈ [𝑞 + 1,𝑚] ,

(3)

where 𝑞 is the number of inequality constraints, and𝑚 − 𝑞 is
the number of equality constraints.

Fundamental versions of algorithms and metaheuristics
for constrained numerical optimization problems do not
includemethods for dealing with constraints.Therefore, con-
straint handling techniques are usually added to these algo-
rithms to improve and redirect the search process towards the
feasible region of the search space. Equality constraints make
optimization even harder by shrinking the feasible search
space which becomes very small compared to the entire
search space. To tackle such problem, equality constraints are
replaced with the inequality constraints [3]:

|ℎ (𝑥)| − 𝜐 ≤ 0, (4)

where 𝜐 > 0 is some small violation tolerance, usually
dynamically adjusted.

Since hard optimization problems are unsolvable in a rea-
sonable amount of time, the exact methods which trace opti-
mal solution cannot be applied. For such problems, it is more
appropriate to employ nondeterministic metaheuristics.

Metaheuristics are iterative, population based, and
stochastic approaches that do not guarantee finding the
optimal solution, but they can obtain satisfying solution
within acceptable time [4]. In metaheuristics imple-
mentations, the processes of exploitation and exploration
conduct the search process. Exploitation directs search
around the current best solutions, while the exploration
randomly discovers new regions of a search domain.

During the last few decades, wewitnessed development of
nature-inspired sophisticated intelligent systems that can be
used as optimization tools for many complex and hard prob-
lems. Metaheuristics that incorporate and simulate natural
principles and rules are called nature-inspired metaheuris-
tics.

Nature-inspired metaheuristics [5] can roughly be
divided into two categories: evolutionary algorithms (EA)
and swarm intelligence. The most prominent representative
of EA is genetic algorithms (GA). GA can obtain good results
for many kinds of optimization problems [6].

Social behavior of swarms of ants, bees, worms, birds,
and fish was an inspiring source for the emerge of swarm
intelligence [7]. Although swarm system consists of rela-
tively unsophisticated individuals, they exhibit coordinated
behavior that directs swarm towards the desired goal with no
central component that manages the system as a whole.

Ant colony optimization (ACO) was founded on ant’s
ability to deploy a substance called pheromone for marking

the discovered path between the food source and ant’s nests.
It is one of the oldest members of swarm intelligence family
[8] but it is constantly being improved and applied to different
problems [9–11].

Artificial bee colony (ABC) algorithmmimics the behav-
ior of honey bee swarm. In this paradigm, three types of arti-
ficial bees perform search. Each type of bees has its particular
role in the search process. ABC was originally proposed by
Karaboga for problems of continuous optimization [12]. This
algorithm proves to be robust and capable of solving high
dimensionality problems [13–15].

Cuckoo search (CS) is an iterative approach that models
search process by employing Levy flights (series of straight
flight paths with sudden 90 degrees turn). It was first
proposed by Yang and Deb [16] and proved to be a robust
optimization technique [17], obtaining satisfying results in
real-life optimizations like image thresholding [18].

Also, swarm intelligence metaheuristics whichmimic the
human search process were developed. Seeker optimization
algorithm (SOA) is established on human memory, reason-
ing, past experience, and social interactions. It has been
proven that the SOA is a robust technique for solving global
numerical and real-life optimization problems [19] and is
continuously being improved [20].

As a result of the literature survey, it can be concluded that
for portfolio optimization problem there are some genetic
algorithm (GA) implementations. However, there are only
few swarm intelligence algorithms adapted for this problem.
There are papers which refer to solving portfolio prob-
lem with nondominating sorting genetic algorithm (NSGA)
which was first proposed by Srinivas and Deb [21]. Newer
version NSGA-II improves the convergence and the spread
of solutions in the population [22]. Lin et al. presented
NSGA-II based algorithm with integer encoding for solving
MV portfolio model with minimum transaction lots (MTL),
fixed transaction costs (TC), and linear constraints on capital
investments.The optimization of MV portfolio problem with
cardinality andholdingweights constraints byGA is shown in
[23]. Soleimani et al. [24] presented GA with RAR crossover
operator for solving MV portfolio problem where cardinality
constraints, MTL, and constraints on sector capitalization are
taken into account.

As mentioned, only few swarm intelligence metaheuris-
tics exist for portfolio optimization. Deng and Lin presented
ant colony optimization (ACO) for solving the cardinality
constraints Markowitz MV portfolio model [25]. Haqiqi and
Kazemi [26] employed the same algorithm to MV portfolio
model. We emphasize on one ACO implementation based
on the average entropy for real estate portfolio optimization
[27]. This is one of the rare papers that incorporates entropy
in portfolio model. Cura investigated PSO approach to
cardinality constrained MV portfolio optimization [1]. The
test data set contains weekly prices from March 1992 to
September 1997 from the following five indexes: Hang Seng
in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P
100 in USA, and Nikkei in Japan. The results of this study
are compared with those from genetic algorithm, simulated
annealing, and tabu search approaches and showed that
PSO has potential in portfolio optimization. Zhu et al. [28]
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presented PSO algorithm for nonlinear constrained portfolio
optimization with multiobjective functions. The model is
tested on various restricted and unrestricted risky investment
portfolios and a comparative study with GA is showed. PSO
demonstrated high computational efficiency in constructing
optimal risky portfolios and can be compared with other
state-of-the-art algorithms.

ABC algorithm formixed quadratic and integer program-
ming problem of cardinality constrainedMVportfoliomodel
was presented by Wang et al. [29]. Some modifications of
classical ABC algorithm for constrained optimization prob-
lems were adopted. The approach was tested on a standard
benchmark data set and proved to be a robust portfolio
optimizer.

One of the first implementations for portfolio optimiza-
tion problem by the firefly algorithms was developed by
Tuba et al. [30, 31]. Framework for solving this problem
was devised. Metaheuristic was tested on standard five-asset
data set. FA proved to be robust and effective technique for
portfolio problem. Among other metaheuristics for portfolio
problem, one approach based on neural networks (NN)
should be distinguished [32].

In this paper, we propose a modified firefly algorithm
(FA) for cardinality constrained mean-variance (CCMV)
portfolio optimization with entropy constraint. FA was first
introduced by Yang for unconstrained optimization [33].
Later, it was adapted [34] for solving various numerical and
practical optimization problems [35–37].

We modified pure FA algorithm to adjust it for con-
strained problems and to improve its performance. We
intensified exploration during early phase and eliminated it
during late iterationswhen the proper part of the search space
has been reached. Details will be given in Section 4.

The implementation of metaheuristics for the CCMV
portfolio model with entropy constraint was not found in the
literature survey. Thus, we conducted three experiments.

(i) First, we compared original FA with our modified
mFA applied to portfolio optimization problem. We
wanted to see what is the real improvement of our
approach.

(ii) Then, we compared results of our algorithm for the
CCMV portfolio model with and without entropy
constraint. In this test, we analyzed the influence of
entropy constraint to portfolio diversification.

(iii) Finally, in the third test, we made comparative anal-
ysis between our modified mFA and other state-of-
the-art metaheuristics. We compared our proposed
algorithm to Cura’s PSO [1] and also to GA, TS, and
SA, indirectly from [23].

The rest of the paper is organized as follows. Section 2
presents mathematical formulations of variety portfolio opti-
mization models. The presentation of the original FA is
given in Section 3. Our proposed modified FA approach
for the CCMV portfolio problem with entropy constraint
is discussed in Section 4. Section 5 first shows algorithm
parameter settings that are used in experiments. Then, we
present three experiments which we conducted along with

the comparative analyses with other metaheuristics. Finally,
Section 6 gives conclusions and recommendations for future
research.

2. Portfolio Optimization Problem Definitions

Portfolio optimization, as one of the most important issues
in modern financial management, tackles the problem of
distribution of financial resources across a number of assets
to maximize return and control the risk.

When making financial decisions, investors follow the
principle of diversification by investing their capital into
different types of assets. By investment in portfolios, rather
than in single assets, the risk is mitigated by diversification
of the investments, without negative impact on expected
returns.

The essential form of portfolio optimization is formulated
as bicriterion optimization problem where the reward, which
is measured by the mean of return, should be maximized,
while the risk, measured by the variance of return, should be
minimized [38]. This problem deals with the selection of the
portfolio of securities that minimizes the risk subject to the
constraints, while guaranteeing a given level of returns [39].

By literature researchmanymethods for solving portfolio
problem can be found. Markowitz’s standard mean-variance
(MV) model choses one important objective function that
is subject to optimization, while the remaining objective
functions are being threated as constraints [40].The key point
in the MV formulation is to employ the expected returns
of a portfolio as the investment return and the variance of
returns of the portfolio as the investment risk [41]. Its basic
assumptions are that the investors are rational with either
multivariate normally distributed asset returns or in the case
of arbitrary returns, a quadratic utility function [42]. This
approach is widely adapted and plays an important role in the
modern portfolio theory.

Markowitz’s MV model considers the selection of risky
portfolio as objective function, and the mean return of
an asset as one of the constraints [43]. This model can
mathematically be defined as

min𝜎2
𝑅𝑝
= 𝜎
2

𝑝
=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜔
𝑖
𝜔
𝑗
Cov (𝑅

𝑖
𝑅
𝑗
) (5)

subject to

𝑅
𝑝
= 𝐸 (𝑅

𝑝
) =

𝑁

∑

𝑖=1

𝜔
𝑖
𝑅
𝑖
≥ 𝑅, (6)

𝑁

∑

𝑖=1

𝜔
𝑖
= 1, 𝜔

𝑖
≥ 0, ∀𝑖 ∈ {1, 2, . . . , 𝑁} , (7)

where 𝑁 is the total number of available assets, 𝑅
𝑖
is the

mean return on asset 𝑖, and Cov(𝑅
𝑖
𝑅
𝑗
) is covariance of

returns of assets 𝑖 and 𝑗, respectively. Constraint defined in
(7) guarantees that the whole disposable capital is invested.
Weight variable 𝜔

𝑖
has a role of control parameter that
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determines the proportion of the capital that is placed in asset
𝑖. Weight variable has a real value in the range [0, 1].

In the presented MV formulation, the objective is to
minimize the portfolio risk 𝜎2

𝑝
, for a given value of portfolio

expected return 𝑅
𝑝
.

Efficient frontier model, which is often called single-
objective function model, constructs only one evaluation
function that models portfolio optimization problem. In this
model, the desired mean return 𝑅 is varying for the purpose
of finding different objective function values. Risk aversion
indicator 𝜆 ∈ [0, 1] controls this process [28].

Efficient frontier definition is

min𝜆[

[

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜔
𝑖
𝜔
𝑗
Cov (𝑅

𝑖
𝑅
𝑗
)]

]

− (1 − 𝜆) [

𝑁

∑

𝑖=1

𝜔
𝑖
𝑅
𝑖
] (8)

subject to

𝑁

∑

𝑖=1

𝜔
𝑖
= 1

𝜔
𝑖
≥ 0, ∀𝑖 ∈ {1, 2, . . . , 𝑁} .

(9)

In the presented formulation 𝜆 is critical parameter. It
controls the relative importance of themean return to the risk
for the investor. When the value of 𝜆 is set to 0, mean return
of portfolio is being maximized without considering the risk.
Alternatively, when 𝜆 has a value of 1, risk of the portfolio
is minimized regardless of the mean return. Thus, when the
value of 𝜆 increases, the relative importance of the risk to the
mean return for the investor rises, and vice versa.

Each 𝜆 value generates different objective function value
which is composed of themean return and the variance (risk).
By tracing the mean return and variance intersections for
different 𝜆, a continuous curve can be drawn which is called
an efficient frontier in the Markowitz’s modern portfolio
theory.

Another model worth mentioning is Sharpe ratio (SR)
which uses the information from mean and variance of an
asset [44]. In this model, the measure of mean return is
adjusted with the risk and can be described by

SR =

𝑅
𝑝
− 𝑅
𝑓

StdDev (𝑝)
, (10)

where 𝑝 denotes portfolio, 𝑅
𝑝
is the mean return of the

portfolio 𝑝, and 𝑅
𝑓
is a test available rate of return on a risk-

free asset. StdDev(𝑝) is a measure of the risk in portfolio
(standard deviation of𝑅

𝑝
). By adjusting the portfolio weights

𝑤
𝑖
, portfolio’s Sharpe ratio can be maximized.
However, all three models: the MV, efficient frontier, and

Sharpe ratio were constructed under strict and simplified
assumptions that do not consider real-world parameters
and limitations and as such are not always suitable for real
applications. For these reason extendedMVmodel is devised.

Extended MV formulation takes into account additional
constraints such as budget, cardinality, transaction lots, and
sector capitalization. These constraints model real-world

legal and economic environment where the financial invest-
ments are being done [45]. Budget constraint controls the
minimum andmaximum total budget proportion that can be
invested in particular asset. Cardinality constraint controls
whether a particular asset will be included in the portfolio.
The minimum transaction lots constraint ensures that each
security can only be purchased in a certain number of
units. Sector capitalization constraint directs the investments
towards the assets that belong to the sectors where higher
value of market capitalization can be accomplished. The
review of this constraint is given in [24].

When all the above-mentioned constraints are being
applied to the basic portfolio problem formulation, the
problem becomes a combinatorial optimization problem
whose feasible region is not continuous. Thus, the extended
MV model belongs to the group of quadratic mixed-integer
programming models. Its formulation is

min𝜎2
𝑅𝑝
= 𝜎
2

𝑝
=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜔
𝑖
𝜔
𝑗
Cov (𝑅

𝑖
𝑅
𝑗
) , (11)

where

𝜔
𝑖
=

𝑥
𝑖
𝑐
𝑖
𝑧
𝑖

∑
𝑁

𝑗=1
𝑥
𝑗
𝑐
𝑗
𝑧
𝑗

, 𝑖 = 1, . . . , 𝑁, (12)

𝑁

∑

𝑖=1

𝑧
𝑖
= 𝑀 ≤ 𝑁, 𝑀,𝑁 ∈ N,

𝑧
𝑖
∈ {0, 1} , 𝑖 = 1, . . . , 𝑁

(13)

subject to

𝑁

∑

𝑖=1

𝑥
𝑖
𝑐
𝑖
𝑧
𝑖
𝑅
𝑖
≥ 𝐵𝑅 (14)

𝑁

∑

𝑖=1

𝑥
𝑖
𝑐
𝑖
𝑧
𝑖
≤ 𝐵 (15)

0 ≤ 𝐵low𝑖 ≤ 𝑥
𝑖
𝑐
𝑖
≤ 𝐵up

𝑖
≤ 𝐵, 𝑖 = 1, . . . , 𝑁 (16)

∑

𝑖𝑠

𝑊
𝑖𝑠
≥ ∑

𝑖
𝑠

𝑊
𝑖
𝑠

∀𝑦
𝑠
𝑦
𝑠
 ̸= 0, 𝑖

𝑠
, 𝑖
𝑠
 ∈ {1, 2, . . . , 𝑁}

𝑠, 𝑠

∈ {1, 2, . . . , 𝑆} , 𝑠 < 𝑠


,

(17)

where

𝑦
𝑠
=

{{

{{

{

1 if ∑

𝑖𝑠

𝑧
𝑖
> 0

0 if ∑

𝑖𝑠

𝑧
𝑖
= 0,

(18)

In (11)–(18) 𝑀 represents the number of selected assets
among possible𝑁 assets. 𝐵 is the total disposable budget, and
𝐵low𝑖 and𝐵up

𝑖
are lower andupper limits of the budget that can

be invested in asset 𝑖, respectively. 𝑆 represents the number of
sectors in the market where the investment is being placed,
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𝑐
𝑖
is the size of transaction lot for asset 𝑖, and 𝑥

𝑖
denotes the

number of such lots (of asset 𝑖) that is purchased.
Decision variable 𝑧

𝑖
is used to apply cardinality con-

straint: 𝑧
𝑖
is equal to 1 if an asset 𝑖 is present in the

portfolio, otherwise its value is 0. Equation (17)models sector
capitalization constraint. Despite the fact that a certain sector
has high capitalization, security from this sector that has
low return and/or high risk must be excluded from the final
portfolio’s structure. To make such exclusion, variable 𝑦

𝑠
is

defined and it has a value of 1 if the corresponding sector has
at least one selected asset, and 0 otherwise. In (17) 𝑖

𝑠
is a set

of assets which can be found in sector 𝑠. Sectors are sorted in
descending order by their capitalization value.

Entropy was introduced by Jaynes [46] for wide appli-
cation in optimization, crystallography in the beginning,
networks [47], and so forth, but it also becomes an important
tool in portfolio optimization and asset pricing. Entropy is
widely recognized measure of portfolio diversification [2].
In multiobjective portfolio optimization models, the entropy
can be used as an objective function. Here, we will address
entropy as diversity constraint in portfolio models, because
we employed it in portfolio model that is used for testing of
our modified FA approach.

The entropy constraint defines lower bound𝐿
𝐸
of entropy

𝐸(𝑃) of portfolio 𝑃 according to the following equation [48]:

𝐸 (𝑃) = −

𝑁

∑

𝑖=1

𝑥
𝑖
ln𝑥
𝑖
≥ 𝐿
𝐸
, (19)

where𝑁 is the number of assets in portfolio𝑃 and𝑥
𝑖
is weight

variable of the security 𝑖.
In one extreme, when the weigh variable of only one

asset in portfolio 𝑃 is 1, and for the rest of the assets is 0,
𝐸(𝑃) reaches its minimum at −1 ∗ ln 1 = 0 [49]. This is
the least diverse scenario. Contrarily, in the most diverse
condition that, for∀𝑖, 𝑥

𝑖
= 1/𝑁,𝐸(𝑃) obtains itsmaximum in

−𝑁(1/𝑁 ln 1/𝑁) = ln𝑁. According to this, 𝐿
𝐸
is in the range

[0, ln𝑁]. Greater value of entropy denotes better portfolio’s
diversity, and 𝐿

𝐸
is used to make sure that the diversity of 𝑃

is not too low.
Entropy constraint equation (19) can be transformed into

the upper-bound constraint [49]:

𝐹 (𝑃) = 𝑒
−𝐸(𝑃)

= 𝑒
∑
𝑁

𝑖=1
𝑥𝑖 ln𝑥𝑖 ≤ 𝑈

𝐸
. (20)

As shown previously, 0 ≤ 𝐸(𝑃) ≤ ln𝑁, which implicates
that 0 ≥ −𝐸(𝑃) ≥ − ln𝑁. Then, the condition 𝑒

0
= 1 ≥

𝑒
−𝐸(𝑃)

= 𝐹(𝑃) ≥ 𝑒
− ln𝑁

= 1/𝑁 holds. Thus, the range of
upper-bound constraint 𝑈

𝐸
is [1/𝑁, 1].

In this paper, for testing purposes, we used model which
employs some of the constraints that can be found in the
extended MV formulation. In the experimental study, we
implemented modified FA for optimizing cardinality con-
strained mean-variance model (CCMV) which is derived
from the standard Markowitz’s and the efficiency frontier
models.

We were inspired by Usta’s and Kantar’s multiobjec-
tive approach based on a mean-variance-skewness-entropy
portfolio selection model (MVSEM) that employs Shannon’s

entropy measure to the mean-variance-skewness portfolio
model (MVSM) to generate a well-diversified portfolio [50,
51]. Thus, we added entropy measure to the CCMV portfolio
formulation to generate well-diversified portfolio.

Formulation of theCCMVmodel with entropy constraint
is

min𝜆[

[

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑥
𝑖
𝑥
𝑗
𝜎
𝑖,𝑗
]

]

− (1 − 𝜆) [

𝑁

∑

𝑖=1

𝑥
𝑖
𝜇
𝑖
] (21)

subject to

𝑁

∑

𝑖=1

𝑥
𝑖
= 1, (22)

𝑁

∑

𝑖=1

𝑧
𝑖
= 𝐾, (23)

𝜀
𝑖
𝑧
𝑖
≤ 𝑥
𝑖
≤ 𝛿
𝑖
𝑧
𝑖
, 𝑧 ∈ {0, 1} , 𝑖 = 1, 2, 3, . . . , 𝑁, (24)

−

𝑁

∑

𝑖=1

𝑧
𝑖
𝑥
𝑖
ln𝑥
𝑖
≥ 𝐿
𝐸
. (25)

As already mentioned in this section,𝑁 is the number of
potential securities that will be included in portfolio, 𝜆 is risk
aversion parameter, 𝑥

𝑖
and 𝑥

𝑗
are weight variables of assets 𝑖

and 𝑗, respectively, 𝛿
𝑖,𝑗
is their covariance, and 𝜇

𝑖
is 𝑖th asset’s

return.𝐾 is the desired number of assets that will be included
in the portfolio. Decision variable 𝑧

𝑖
controls whether the

asset 𝑖 will be included in portfolio. If its value is 1, asset 𝑖
is included, and if the value is 0, asset 𝑖 is excluded from the
portfolio. 𝜀 and 𝛿 are lower and upper bounds of the asset that
is included in portfolio and they make sure that the asset’s
proportion in the portfolio is within the predefined range.

We applied entropy constraint equation (25) with lower
bounds, as in (19), to ensure that the diversity of portfolio is
not too low. 𝐿

𝐸
is lower bound of the entropy in the range

[0, ln𝐾]. In (25), 𝑧
𝑖
ensures that only assets that are included

in portfolio are taken into account.
From the CCMV formulation with entropy constraint it

can be seen that this problem belongs to the group of mixed
quadratic and integer programming problems. It employs
both real and integer variables with equity and inequity
constraints.

3. Presentation of the Original FA

Firefly algorithm (FA) was originally proposed by Yang in
2008 [33], with later improvements [52]. It was applied to
continuous [53], discrete [54], and mixed [55] optimization
problems. The emergence of this metaheuristic was inspired
by the social and flashing behavior of fireflies.

Fireflies inhabit moderate and tropical climate environ-
ments all around the word. Their flashing behavior has many
different roles. Synchronized flashing by males is unique in
the animal world and involves a capacity for visually coordi-
nated, rhythmically coincident, and interindividual behavior.
Also, flashing is used to alleviate communication for mating
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and to frighten the predators.These flashing properties can be
incorporated into swarm intelligence metaheuristic in such a
way that they are associatedwith the objective functionwhich
is subject to optimization.

With respect to the facts that the real firefly system is
sophisticated and that the metaheuristics are approximations
of real systems, three idealized rules are applied with the goal
to enable algorithm’s implementation [33]: (1) all fireflies are
unisex, so the attractions between fireflies do not depend on
their sex; (2) attractiveness of a firefly is directly proportional
to their brightness, and the less brighter firefly will move
towards the brighter one. Brightness increases as the distance
between fireflies decreases; (3) the brightness of a firefly is
determined by the value of objective function. For minimiza-
tion problems, brightness increases as the objective function
value decreases. There are also other forms of brightness
which can be defined similar to fitness function in genetic
algorithms (GA) [6].

In the implementation of FA, one of the most important
issues that should be considered is the formulation of attrac-
tiveness. For the sake of simplicity, a good approximation
is that the attractiveness of a firefly is determined by its
brightness which depends on the encoded objective function.

In the case of maximization problems, the brightness of
a firefly at a particular location 𝑥 can be chosen as 𝐼(𝑥) ∼

𝑓(𝑥), where 𝐼(𝑥) is the attractiveness and 𝑓(𝑥) is the value of
objective function at this location. Otherwise, if the goal is to
minimize function, the following expression can be used:

𝐼 (𝑥) =

{

{

{

1

𝑓 (𝑥)
, if 𝑓 (𝑥) > 0

1 +
𝑓 (𝑥)

 , otherwise.
(26)

The variations of light intensity and attractiveness are
monotonically decreasing functions because as the light
intensity and the attractiveness decrease, the distance from
the source increases, and vice versa. This can be formulated
as [56]

𝐼 (𝑟) =
𝐼
0

1 + 𝛾𝑟2
, (27)

where 𝐼(𝑟) is the light intensity, 𝑟 is distance, and 𝐼
0
is the light

intensity at the source. Besides that, the air also absorbs part
of the light, and the light becomes weaker. Air absorption is
modeled by the light absorption coefficient 𝛾.

In most FA implementations that can be found in the
literature survey, the combined effect of both the inverse
square law and absorption can be approximated using the
following Gaussian form:

𝐼 (𝑟) = 𝐼
0
𝑒
−𝛾𝑟
2

. (28)

Attractiveness 𝛽 of a firefly is relative because it depends
on the distance between the firefly and the beholder. Thus,
it varies with the distance 𝑟

𝑖,𝑗
between fireflies 𝑖 and 𝑗. The

attractiveness is direct proportional to fireflies light intensity
(brightness), as shown in the following:

𝛽 (𝑟) = 𝛽
0
𝑒
−𝛾𝑟
2

, (29)

where 𝛽
0
is the attractiveness at 𝑟 = 0. Equation (29) deter-

mines a characteristic distance Γ = 1/√𝛾 over which the
attractiveness changes significantly from 𝛽

0
to 𝛽
0
𝑒
−1.

But, in practical applications, the above expression is
usually replaced with

𝛽 (𝑟) =
𝛽
0

1 + 𝛾𝑟2
. (30)

Main reason for this replacement is that the calculation of
exponential function in (29) demands much more computa-
tional power than simple division in (30).

The movement of a firefly 𝑖 (its new position in iteration
𝑡 + 1) towards the brighter, and thus more attractive firefly 𝑗
is calculated using

𝑥
𝑖
(𝑡 + 1) = 𝑥

𝑖
(𝑡) + 𝛽

0
𝑟
−𝛾𝑟
2

𝑖,𝑗 (𝑥
𝑗
− 𝑥
𝑖
) + 𝛼 (𝜅 − 0.5) , (31)

where 𝛽
0
is attractiveness at 𝑟 = 0, 𝛼 is randomization

parameter, 𝜅 is random number drawn from uniform or
Gaussian distribution, and 𝑟

𝑖,𝑗
is distance between fireflies 𝑖

and 𝑗. The positions of fireflies are updated sequentially by
comparing and updating each pair of them at every iteration.

The distance between fireflies 𝑖 and 𝑗 is calculated using
Cartesian distance form [56]:

𝑟
𝑖,𝑗
=

𝑥
𝑖
− 𝑥
𝑗


= √

𝐷

∑

𝑘=1

(𝑥
𝑖,𝑘
− 𝑥
𝑗,𝑘
), (32)

where 𝐷 is the number of problem parameters. For most
problems, 𝛽

0
= 0 and 𝛼 ∈ [0, 1] are adequate settings.

The parameter 𝛾 has crucial impact on the convergence
speed of the algorithm. This parameter shows the variation
of attractiveness and in theory it has a value of [0, +∞), but
in practice it is determined by the characteristic distance Γ of
the system that is being optimized. In most implementations
𝛾 parameter varies between 0.01 and 100.

There are two special cases of the FA, and they are both
associated with the value of 𝛾 as follows [33]:

(i) if 𝛾 = 0, then 𝛽 = 𝛽
0
. That means that the air around

firefly is completely clear. In this case, 𝛽 is always
the largest it could possibly be, and fireflies advance
towards other fireflies with the largest possible steps.
The exploration-exploitation is out of balance because
the exploitation is maximal, while the exploration is
minimal;

(ii) if 𝛾 = ∞, then 𝛽 = 0. In this case, there is a thick fog
around fireflies and they could not see each other.The
movement is performed in a random steps, and explo-
ration is more intensive with practically no exploi-
tation at all.

The pseudocode for the original FA is given as Algo-
rithm 1.

In the presented pseudocode, 𝑆𝑁 is total number of
fireflies in the population, 𝐼𝑁 is total number of algorithm’s
iterations, and 𝑡 is the current iteration.



The Scientific World Journal 7

Generate initial population of fireflies 𝑥
𝑖
, (𝑖 = 1, 2, 3, 𝑆𝑁)

Light intensity 𝐼
𝑖
at point 𝑥

𝑖
is defined by 𝑓(𝑥)

Define light absorption coefficient 𝛾
Define number of iterations IN
while 𝑡 < 𝐼𝑁 do

for 𝑖 = 1 to SN do
for 𝑗 = 1 to 𝑖 do

if 𝐼
𝑗
< 𝐼
𝑖
then

Move firefly 𝑗 towards firefly 𝑖 in 𝑑 dimension
Attractiveness varies with distance 𝑟 via exp[−𝛾𝑟]
Evaluate new solution, replace the worst with
better solution and update light intensity

end if
end for

end for
Rank all fireflies and find the current best

end while

Algorithm 1: Original firefly algorithm.

4. Proposed mFA for the CCMV Portfolio
Problem with Entropy Constraint

As mentioned in Section 1, we propose a modified firefly
algorithm for cardinality constrained mean-variance portfo-
lio optimization with entropy constraint.

By analyzing FA we noticed that, as most other swarm
intelligence algorithms, the pure version of the algorithm,
developed for unconstrained problems, exhibits some defi-
ciencies when applied to constrained problems. In the early
cycles of algorithm’s execution established balance between
exploitation and exploration is not completely appropriate
for this class of problems. During early phase exploration
is not intensive enough. However, during late cycles when
FA was able to discover the right part of the search space,
the exploration is no longer needed. To control whether
the exploration will be triggered or not, we introduced
exploration breakpoint 𝐸𝐵𝑃 control parameter.

In this section, we show implementation details of our
modified FA algorithm which we named mFA.

4.1. Initialization Phase and Fitness Calculation. At the initial-
ization step, FA generates random population of 𝑆𝑁 fireflies
(artificial agents) using

𝑥
𝑖,𝑗
= 𝑙𝑏
𝑗
+ rand (0, 1) ∗ (𝑢𝑏

𝑗
− 𝑙𝑏
𝑗
) , (33)

where 𝑥
𝑖,𝑗

is the weight of the 𝑗th portfolio’s asset of the 𝑖th
agent, rand(0, 1) is random number uniformly distributed
between 0 and 1, and 𝑢𝑏

𝑗
and 𝑙𝑏

𝑗
are upper and lower weight

bounds of the 𝑗th asset, respectively.
If the initially generated value for the 𝑗th parameter of

the 𝑖th firefly does not fit in the scope [𝑙𝑏
𝑗
, 𝑢𝑏
𝑗
], it is being

modified using the following expression:

if (𝑥
𝑖,𝑗
) > 𝑢𝑏

𝑗
, then 𝑥

𝑖,𝑗
= 𝑢𝑏
𝑗

if (𝑥
𝑖,𝑗
) < 𝑙𝑏
𝑗
, then 𝑥

𝑖,𝑗
= 𝑙𝑏
𝑗
.

(34)

Moreover, in the initialization phase, decision variables
𝑧
𝑖,𝑗
(𝑖 = 1, . . . , 𝑆𝑁, 𝑗 = 1, . . . , 𝑁) are also initialized for

each firefly agent 𝑖. 𝑁 is the number of potential assets in
portfolio. According to this, each firefly is modeled using
2∗𝑁 dimensions. 𝑧

𝑖
is a binary vector, with values 1, when an

asset is included in portfolio, and 0, when it is excluded from
it.

Decision variables are generated randomly by applying

𝑧
𝑖,𝑗
= {

1, if 𝜙 < 0.5

0 if 𝜙 ≥ 0.5,
(35)

where 𝜙 is random real number between 0 and 1.
To guarantee the feasibility of solutions, we used similar

arrangement algorithm as proposed in [1]. The arrangement
algorithm is applied first time in the initialization phase.

In the arrangement algorithm, 𝑖 is the current solution
that consists of 𝑄 the distinct set of 𝐾∗

𝑖
assets in the 𝑖th

solution, 𝑧
𝑖,𝑗

is the decision variable of asset 𝑗, and 𝑥
𝑖,𝑗

is
the weight proportion for asset 𝑗. Arrangement algorithm
pseudocode is shown as Algorithm 2.

For the constraint ∑𝑁
𝑖=1

𝑥
𝑖
= 1 we set 𝜓 = ∑

𝑗∈𝑄
𝑥
𝑖,𝑗

and put 𝑥
𝑖,𝑗

= 𝑥
𝑖,𝑗
/𝜓 for all assets that satisfy 𝑗 ∈ 𝑄.

The same approach for satisfying this constraint was used
in [1]. To make sure that each asset’s proportion is within
predefined lower and upper bounds, 𝜀 and 𝛿, respectively, we
used 𝑖𝑓 𝑥

𝑖,𝑗
> 𝛿
𝑖,𝑗

then 𝑥
𝑖,𝑗

= 𝛿𝑖, 𝑗 and 𝑖𝑓 𝑥
𝑖,𝑗

< 𝜀
𝑖,𝑗

then
𝑥
𝑖,𝑗
= 𝜀
𝑖,𝑗
.

We did not apply 𝑐-value based approach for adding
and removing assets from the portfolio as in [1]. According
to our experiments, using 𝑐-value does not improve FA
performance. It only increases computational complexity.

In modified FA, the fitness is employed to model the
attractiveness of the fireflies. Attractiveness is directly propor-
tional to the fitness.

After generating 𝑆𝑁 number of agents, fitness value is cal-
culated for each firefly in the population. Fitness (brightness)
is calculated as in the original FA implementation (26).
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while 𝐾∗
𝑖
< 𝐾 do

select random asset 𝑗 such that 𝑗 ∉ 𝑄
𝑧
𝑖,𝑗
= 1, 𝑄 = 𝑄 ∪ [𝑗], 𝐾

∗

𝑖
= 𝐾
∗

𝑖
+ 1

end while
while 𝐾∗

𝑖
> 𝐾 do

select random asset 𝑗 such that 𝑗 ∈ 𝑄
𝑧
𝑖,𝑗
= 1, 𝑄 = 𝑄 − [𝑗], 𝐾

∗

𝑖
= 𝐾
∗

𝑖
− 1

end while
while true do
𝜃 = ∑

𝑗∈𝑄

𝑥
𝑖,𝑗
, 𝑥
𝑖,𝑗
=

𝑥
𝑖,𝑗

𝜓
, 𝜂 = ∑

𝑗∈𝑄

max (0, 𝑥
𝑖,𝑗
− 𝛿
𝑖
) , 𝜙 = ∑

𝑗∈𝑄

max (0, 𝜂
𝑗
− 𝑥
𝑖,𝑗
)

if 𝜂 = 0 and 𝜙 = 0 then
exit algorithm

end if
for 𝑗 = 1 to𝑁 do

if 𝑧
𝑖,𝑗
= 1 then

if 𝑥
𝑖,𝑗
> 𝛿
𝑗
then

𝑥
𝑖,𝑗
= 𝛿
𝑗

end if
if 𝑥
𝑖,𝑗
< 𝜀
𝑗
then

𝑥
𝑖,𝑗
= 𝜀
𝑗

end if
end if

end for
end while

Algorithm 2: Arrangement algorithm.

In the initialization phase, for each firefly in the popu-
lation, constraint violation CV is being calculated. CV is a
measure of how much the agents violate constraints in the
problem definition:

CV
𝑖
= ∑

𝑔𝑗(𝑥𝑖)>0

𝑔
𝑗
(𝑥
𝑖
) +

𝑚

∑

𝑗=𝑞+1

ℎ
𝑗
(𝑥
𝑖
) . (36)

CV calculation is necessary, because it is later used for
performing selection based on Deb’s method [57, 58].

4.2. Firefly Movement. The movement of a firefly 𝑖 towards
the firefly that has a higher fitness 𝑗 is calculated as in the
original FA implementation [56]:

𝑥
𝑖
(𝑡 + 1) = 𝑥

𝑖
(𝑡) + 𝛽

0
𝑟
−𝛾𝑟
2

𝑖,𝑗 (𝑥
𝑗
− 𝑥
𝑖
) + 𝛼 (𝜅 − 0.5) , (37)

where 𝑥
𝑖
(𝑡 + 1) is new solution generated in iteration (𝑡 + 1),

𝛽
0
is attractiveness at 𝑟 = 0, 𝛼 is randomization parameter,

𝜅 is random number drawn from uniform or Gaussian
distribution, and 𝑟

𝑖,𝑗
is distance between fireflies 𝑖 and 𝑗.

Also, when moving a firefly, new decision variables are
calculated:

𝑧
𝑡+1

𝑖,𝑘
= round( 1

1 + 𝑒
−𝑧
𝑡

𝑖,𝑘
+𝜙𝑖,𝑗(𝑧

𝑡

𝑖,𝑘
−𝑧
𝑡

𝑗,𝑘
)
− 0.06) , (38)

where 𝑧𝑡+1
𝑖,𝑘

is decision variable for the 𝑘th asset of the new
solution, 𝑧

𝑖,𝑘
is a decision variable of the 𝑘th parameter of the

old solution, and 𝑧
𝑗,𝑘

is decision variable of 𝑘th parameter of
the brighter firefly 𝑗.

It should be noticed that the decision variables in the
employed bee phase are generated differently than in the
initialization phase equation (35).

After the new 𝑖th solution is generated in exploitation
process using (37) and (38) the winner between new 𝑥

𝑖
(𝑡 + 1)

and old 𝑥
𝑖
(𝑡) solution is retained using the selection process

based on Deb’s rules.

4.3. Exploration. As mentioned before, we noticed insuffi-
cient exploration power in the original FA implementation,
particularly in early iterations of algorithm’s execution. In
this phase of algorithm’s execution, exploitation-exploration
balance is not well established for this type of problems.
This balance was also discussed in [14]. Thus, we adopted
mechanism similar to scout bee with 𝑙𝑖𝑚𝑖𝑡 parameter from
the ABC metaheuristic.

We introduced parameter abandonment threshold (𝐴𝑇)
that represents the allowed predetermined number of unsuc-
cessful tries to improve particular solution. When a potential
solution (firefly) is stagnating (not being improved) for 𝐴𝑇
iterations, it is replaced by a new, randomone using (33), (34),
and (35). Hence, fireflies that exploited exhausted solutions
are transformed into scouts that perform the exploration
process. The value of 𝐴𝑇 is empirically determined and will
be shown in the experimental section.

Also, during late iterations, with the assumption that
the right part of the search space has been found, the
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Generate initial population of fireflies 𝑥
𝑖
and 𝑧

𝑖
(𝑖 = 1, 2, 3, . . . , 𝑆𝑁) by using (33) and (35)

Apply arrangement algorithm
Light intensity 𝐼

𝑖
at point 𝑥

𝑖
is defined by 𝑓(𝑥)

Define light absorption coefficient 𝛾
Define number of iterations IN
Calculate fitness and CV for all fireflies using (26) and (36)
Set initial values for 𝛼
Set 𝑡 value to 0
while 𝑡 < IN do

for 𝑖 = 1 to SN do
for 𝑗 = 1 to 𝑖 do

if 𝐼
𝑖
< 𝐼
𝑗
then

Move firefly 𝑖 towards firefly 𝑗 in 𝑑 dimension using (37) and (38)
Attractiveness varies with distance 𝑟 via exp[−𝛾𝑟]
Evaluate new solution, replace worse with better solution
using Deb’s method and update light intensity
if solution 𝑖 is not improved and 𝑡

𝑖
< 𝐸𝐵𝑃 then

𝑈𝐼𝐶
𝑖
increment by 1

else
𝑈𝐼𝐶
𝑖
set to 0

end if
end if

end for
end for
if 𝑡 < 𝐸𝐵𝑃 then

replace all agents whose UIC > 𝐴𝑇 with random agents using (33)
end if
Apply arrangement algorithm
Rank all fireflies and find the current best
Recalculate values for 𝛼 using (39)

end while

Algorithm 3: Modified firefly algorithm.

intensive exploration is not needed anymore. In that case, the
exploration is not being triggered. For this purpose, we intro-
duce new control parameter, exploration breakpoint (𝐸𝐵𝑃)
which controls whether the exploration will be triggered.The
discussion of this parameter is also given in experimental
section.

Also, we should note that the parameter 𝛼 for FA search
process is being gradually decreased from its initial value
according to

𝛼 (𝑡) = (1 − (1 − ((
10
−4

9
)

1/𝐼𝑁

))) ∗ 𝛼 (𝑡 − 1) , (39)

where 𝑡 is the current iteration and 𝐼𝑁 is the maximum num-
ber of iterations.

Pseudocode of mFA is given as Algorithm 3. Some
implementation’s details are omitted for the sake of simplicity.

In the pseudocode, 𝑆𝑁 is total number of fireflies in the
population, 𝐼𝑁 is total number of algorithm’s iterations, and
𝑡 is the current iteration. As explained, 𝐴𝑇 is the maximum
number of unsuccessful attempts to improve particular solu-
tion after which it will be considered exhausted and replaced
by a new, random solution.

5. Algorithm Settings and
Experimental Results

In this section, we first present parameter settings which were
adjusted for testing purposes of our proposed mFA. Then,
we show experimental results, discussion, and comparative
analysis with other state-of-the-art algorithms.

5.1. Parameter Settings. To test the performance and robust-
ness of our modified FA, we set algorithm parameters similar
to [1]. Number of firefly agents in the population 𝑆𝑁 is
calculated by employing the following expression:

𝑆𝑁 = 20√𝑁, (40)

where𝑁 is the number of potential assets in portfolio.
The value of maximum number of iterations 𝐼𝑁 in one

algorithm’s run is set according to

𝐼𝑁 =
1000 ∗ 𝑁

𝑆𝑁
. (41)

As mentioned in Section 4, to improve the exploration
power of the original FA, we introduced parameter 𝐴𝑇 with
corresponding counters 𝑈𝐼𝐶

𝑖
(𝑖 = 1, 2, . . . , 𝑆𝑁) that count

howmany times a particular firefly agent unsuccessfully tried
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𝜆 = 0

while 𝜆 ≤ 1 do
𝑆𝑁 = 20√𝑁

Set portfolio problem parameters𝐾, 𝜀 and 𝛿
InitializationPhase()
ArrangementAlgorithm()
FitnessCalculation()
Set UIC to 0 and calculate AT value according to (42)
Set initial values for 𝜐 and 𝛼
𝐼𝑁 =

1000𝑁

𝑆𝑁

for 𝑡 = 1 to IN do
Firefly movement
Apply Selection between old and new solution using Deb rules
Exploration phase (if necessary)
ArrangementAlgorithm()
Rank all fireflies and find the current best
Recalculate values for 𝜐 and 𝛼
𝑡 + +

end for
𝜆 = 𝜆 + Δ𝜆

end while

Algorithm 4: Modified firefly with parameters.

improvement. When the value of 𝑈𝐼𝐶
𝑖
reaches predeter-

mined abandonment threshold 𝐴𝑇, corresponding agent is
being replaced by a random agent. 𝐴𝑇 is determined by the
values of 𝑆𝑁 and 𝐼𝑁, like in [14]:

𝐴𝑇 =
𝐼𝑁

𝑆𝑁
=
(1000 ∗ 𝑁) /𝑆𝑁

20√𝑁

. (42)

Exploration breakpoint 𝐸𝐵𝑃 controls whether or not the
exploration will be triggered. According to our experimental
tests, modified FA generates worse results if the exploration
is triggered during late iterations. In most of the runs, the
algorithm is able to find a proper part of the search space
during early cycles, and exploration during late cycles is not
useful. To the contrary, it just relaxes the exploitation. 𝐸𝐵𝑃 is
empirically set to 𝐼𝑁/2.

FA search process parameter 𝛼 is set to start at 0.5, but it
is being gradually decreased from its initial value according
to (39).

The promising approaches for handling equality con-
straints include dynamic, self-adaptive tolerance adjustment
[59]. When this tolerance is included, the exploration is
enhanced by exploring a larger space.

In modified FA implementation, besides the adoption
of arrangement algorithm we used (4) and violation limit
𝜐 for handling constraints. Good experimental results are
obtained by starting with a relatively large 𝜐 value, which
is gradually decreasing through the algorithm’s iterations.
It is very important to chose the right value for 𝜐. If the
chosen value is too small, the algorithmmay not find feasible
solutions, and otherwise the results may be far from the
feasible region [14].

We used the following dynamic settings for the 𝜐:

] (𝑡 + 1) =
] (𝑡)
𝑑𝑒𝑐

, (43)

where 𝑡 is the current generation and 𝑑𝑒𝑐 is a value slightly
larger than 1. For handling equality constraints, we set initial
value for 𝜐 to 1.0, 𝑑𝑒𝑐 to 1.001 and the threshold for 𝜐 to 0.0001
like in [3].

For generating heuristics efficient frontier, we used 𝜉 = 51

different𝜆 values.Thus, we setΔ𝜆 to 0.02 because𝜆 in the first
algorithm’s run is 0 and in the last is 1.

We also set number of assets that will be included in
portfolio 𝐾 to 10, lower asset’s weight 𝜀 to 0.01, and upper
asset’s weight 𝛿 to 1.

Since the entropy lower bound depends on the number of
assets that will be included in portfolio, we set 𝐿

𝐸
in the range

of [0, ln 10].
We present again short modified FA pseudocode as Algo-

rithm 4, but this time with the emphasis on the parameter
settings.

For making better distinction between parameters, we
divided algorithm parameters into four groups: modified FA
global control parameters, FA search parameters, portfolio
parameters, and constraint-handling parameters.

Parameters are summarized in Table 1.

5.2. Experimental Results and Comparative Analysis. In this
subsection, we show the results obtained when search-
ing the general efficient frontier that provides the solu-
tion for the problem formulated in (21)–(25). The test
data were downloaded from http://people.brunel.ac.uk/
∼mastjjb/jeb/orlib/portinfo.html.
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Table 1: Parameters.

Parameter Value
Modified FA global control parameters

Number of
fireflies-solutions (SN) Depends on𝑁

Number of iterations (IN) Depends on SN
Abandonment threshold
(AT) Depends on SN and IN

Exploration breakpoint
(EBP) Depends on IN

FA search parameters
Initial value for
randomization parameter 𝛼 0.5

Attractiveness at 𝑟 = 0, 𝛽
0

0.2

Absorption coefficient 𝛾 1.0
Portfolio parameters

Number of potential
securities (𝑁) Depends on the problem

Number of assets in
portfolio (𝐾) 10

Initial value of risk aversion
(𝜆) 0

Different 𝜆 values (𝜉) 51

Lower asset’s weight (𝜀) 0.01

Upper asset’s weight (𝛿) 1.0
Lower bound of entropy
(𝐿
𝐸
) [0, ln𝐾]

Constraint-handling parameters
Initial violation tolerance
(𝜐) 1.0

Decrement (dec) 1.002

Benchmark data refers to the weekly stock prices from
March 1992 to September 1997 for the indexes: theHongKong
Hang Seng with 31 assets, the German Dax 100 with 85 assets,
the British FTSE 100 with 89 assets, the US S&P 100 with 98
assets, and the Japanese Nikkei with 225 assets.

We adapted test data and stored it in Excel spreadsheets.
For all indexes, we used the following data: mean return,
standard deviation of return for each asset, and correlation
for each possible pair of assets. Also, for generating standard
efficiency frontier, we used mean return and variance of
return for each security.

Since 𝑆𝑁, 𝑀𝐶𝑁, and 𝐴𝑇 parameters depend on the
problem size 𝑁 (number of securities in the test), we show
exact values used for all indexes (tests) in Table 2. Formula
results are rounded to the closest integer values.

Lower bound for entropy for all benchmarks set is in the
range between 0 and ln 10, because 𝐾 is set to 10 for all test
cases.

We conducted tests on Intel CoreTM i7-4770K processor
@4GHz with 16GB of RAM memory, Windows 7 x64
Ultimate 64 operating system and Visual Studio 2012 with
NET 4.5 Framework.

Table 2: Benchmark specific parameters.

Parameter Value
Hang Seng index with 31 assets

Number of fireflies-solutions (SN) 111
Number of iterations (IN) 279
Abandonment threshold (AT) 3
Exploration breakpoint (EBP) 140

DAX 100 index with 85 assets
Number of fireflies-solutions (SN) 185
Number of iterations (IN) 459
Abandonment threshold (AT) 3
Exploration breakpoint (EBP) 230

FTSE 100 index with 89 assets
Number of fireflies-solutions (SN) 189
Number of iterations (IN) 479
Abandonment threshold (AT) 3
Exploration breakpoint (EBP) 240

S&P 100 index with 98 assets
Number of fireflies-solutions (SN) 198
Number of iterations (IN) 494
Abandonment threshold (AT) 3
Exploration breakpoint (EBP) 247

Nikkei index with 225 assets
Number of fireflies-solutions (SN) 300
Number of iterations (IN) 750
Abandonment threshold (AT) 3
Exploration breakpoint (EBP) 375

When sets of Pareto optimal portfolios obtained with
modified FA are taken, heuristic efficient frontier can be
traced. In this paper, we compare the standard efficient
frontiers for five real-world benchmark sets mentioned above
with the heuristic efficient frontier for the same data set. For
comparison of standard and heuristic efficiency frontier, we
use mean Euclidean distance, variance of return error, and
mean return error as in [1]. We also give the execution time
of modified FA for each benchmark on our computer system
platform.

For calculation purposes of mean Euclidean distance,
let the pair (V𝑠

𝑖
, 𝑟
𝑠

𝑖
) = (𝑖 = 1, 2, 3, . . . , 2000) denote the

variance andmean return of the point in the standard efficient
frontier, and the pair (Vℎ

𝑗
, 𝑟
ℎ

𝑗
) = (𝑗 = 1, 2, 3, . . . , 𝜉) represents

the variance and mean return of the point in the heuristic
efficient frontier. Then, the index 𝑖

𝑗
of the closest standard

efficiency frontier point to the heuristic efficiency frontier
point, denoted as (V𝑠

𝑖,𝑗
, 𝑟
𝑠

𝑖,𝑗
), is calculated using Euclidean

distance by

𝑖
𝑗
= arg min
𝑖=1,2,...,2000

(√(V𝑠
𝑖
− Vℎ
𝑗
)
2

+ (𝑟
𝑠

𝑖
− 𝑟
ℎ

𝑗
)
2

)

𝑗 = 1, 2, 3, . . . , 𝜉.

(44)
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Using (44), mean Euclidean distance is defined as

∑
𝜉

𝑗=1
√(V𝑠
𝑖,𝑗
− Vℎ
𝑗
)
2

+ (𝑟
𝑠

𝑖,𝑗
− 𝑟
ℎ

𝑗
)
2

𝜉
.

(45)

In addition to mean Euclidean distance, we used two
other measures to test modified FA, variance of return error
and mean return error.

Variance of return error is defined as

(

𝜉

∑

𝑗=1


V𝑠
𝑖,𝑗
− Vℎ
𝑗



Vℎ
𝑗

)
1

𝜉
. (46)

Mean return error is calculated as

(

𝜉

∑

𝑗=1


𝑟
𝑠

𝑖,𝑗
− 𝑟
ℎ

𝑗



𝑟
ℎ

𝑗

)
1

𝜉
. (47)

For testing purposes, we conducted three experiments.
In the first experiment, we compared mFA with the original
FA for CCMV problem with entropy constraint. Second
experiment refers to comparative analysis between mFA
for CCMV problem with and without entropy constraint.
Finally, in the third experiment, we perform comparative
analysis between our modified mFA and other state-of-the-
art metaheuristics. We compared our proposed algorithm to
Cura’s PSO [1] and also to GA, TS, and SA, indirectly from
[23].

We first wanted to analyze how our mFA compares to
the original FA when optimizing CCMV portfolio model
with entropy constraint. Thus, we also implemented orig-
inal FA for this purpose. We compared mean Euclidean
distance, variance of return error, and mean return error.
These performance indicators were described above. We also
calculated computational time for both algorithms.This time
is comparable since the same computer platformwas used for
testing both original FA and mFA.This comparison is shown
in Table 3. For better distinction between indicator values, we
marked better results in bold.

As can be seen fromTable 3,mFAobtains better results for
almost all benchmarks. Only for variance of return error and
mean return error indicators for𝐹𝑇𝑆𝐸100 index test, original
FA managed to achieve better values. For this benchmark,
exploration in early iterations is unnecessary because the
algorithm quickly converges to the right part of the search
space, and the firefly agents are being wasted on exploration.

All three indicators, mean Euclidean distance, variance
of return error, and mean return error, are significantly
better for mFA tests for 𝐻𝑎𝑛𝑔𝑆𝑒𝑛𝑔, DAX100, S&P100, and
𝑁𝑖𝑘𝑘𝑒𝑖 indexes. SincemFAutilizes exploration at early cycles,
computation time for all tests is worse (higher) than for the
original FA implementation.

In the second experiment, we compared our mFA for
CCMVproblemwith andwithout entropy constraint to show
how the entropy constraint influences the results. CCMV
formulation without entropy constraint is defined in (21)–
(24).

According to the results presented in Table 4, it is clear
that the entropy constraint slightly effects the portfolio’s
performance. In the CCMV optimization with entropy con-
straint, for 𝐻𝑎𝑛𝑔𝑆𝑒𝑛𝑔 and S&P tests, mean Euclidean dis-
tance is slightly better, so the portfolio is better diversified. For
other three tests, the results obtained for this indicator are the
same. Also, for 𝐻𝑎𝑛𝑔𝑆𝑒𝑛𝑔, DAX100, 𝐹𝑇𝑆𝐸100, and S&P100
indexes, optimization of the model with entropy gains better
variance of return error and mean return error values. Only
for𝑁𝑖𝑘𝑘𝑒𝑖 tests, those indicators have better value for CCMV
model optimization without entropy constraint. Since the
algorithm takes extra time to calculate the entropy constraint,
execution time for CCMV with entropy is higher for all tests
except 𝐻𝑎𝑛𝑔𝑆𝑒𝑛𝑔 because this benchmark incorporates less
securities than the other benchmarks.

The implementation of metaheuristics for CCMV port-
folio model with entropy constrained could not be found in
the literature. Thus, in the third experiment, we compared
our mFA approach with metaheuristics for CCMV portfolio
formulation which did not employ entropy. This model is
defined by (21)–(24). We note that this test is not objective
indicator of mFA’s effectiveness compared to the other algo-
rithms.

We compared mFA with tabu search (TS), genetic algo-
rithm (GA), simulated annealing (SA), from [23], and PSO
from [1] for the same set of benchmark data. As in the
first two experiments, for performance indicators, we used
mean Euclidean distance, variance of return error, and mean
return error. Parameter settings for our mFA are given in
Tables 1 and 2 and are comparable to parameters for other
four compared algorithms that can be found in [1, 23]. We
also give computational time for mFA, but those results are
incomparable with results for other metaheuristics because
we used different computer platform and portfolio model. In
experiments in [1], PentiumM 2.13GHz computer with 1 GB
RAM was used. In the results table, best obtained results of
all five heuristics are printed bold.

Other metaheuristic implementations for CCMV port-
folio problem, such as modified ABC [29] and hybrid ABC
(HABC) [41] that have similar performance, can be found in
the literature.

If we consider that the optimization of CCMV with
entropy constraint obtains only slightly better results than
optimization of CCMVmodel without entropy in Table 4, the
experimental results in Table 5 could be used for comparison
of the performance ofmFAwith othermetaheuristics in some
sense.

The experimental results presented in Table 5 prove that
none of the four algorithms which we used for comparisons
has distinct advantages but that on average, mFA is better
approach than other four metaheuristics.

mFA obtains better (smaller) mean Euclidean distance
for all five benchmark sets. In 𝐻𝑎𝑛𝑔𝑆𝑒𝑛𝑔 and 𝐹𝑇𝑆𝐸100

benchmarks, mFA is better than all four algorithms for all
three indicators, mean Euclidean distance, variance of return
error, and mean return error. For those benchmarks, mFA
was able to approximate the standard efficient frontier with
the smallest mean return and variance of return error, and
under the same risk values.
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Table 3: Experimental results of FA and mFA for CCMVmodel.

Index 𝑁 Performance indicators FA mFA

Hang Seng 31

Mean Euclidean distance 0.0006 0.0003
Variance of return error (%) 1.7092 1.2387

Mean return error (%) 0.7172 0.4715
Execution time 18 20

DAX 100 85

Mean Euclidean distance 0.0032 0.0009
Variance of return error (%) 7.3892 7.2569

Mean return error (%) 1.4052 1.3786
Execution time 67 71

FTSE 100 89

Mean Euclidean distance 0.0005 0.0004
Variance of return error (%) 2.6391 2.7085

Mean return error (%) 0.3025 0.3121
Execution time 81 94

S&P 100 98

Mean Euclidean distance 0.0011 0.0003
Variance of return error (%) 3.9829 3.6026

Mean return error (%) 1.0025 0.8993
Execution time 129 148

Nikkei 225

Mean Euclidean distance 0.0001 0.0000
Variance of return error (%) 1.7834 1.2015

Mean return error (%) 0.7283 0.4892
Execution time 335 367

Table 4: Experimental results of mFA for CCMVmodel with and without entropy constraint.

Index 𝑁 Performance indicators mFA for CCMV mFA for CCMV with entropy

Hang Seng 31

Mean Euclidean distance 0.0004 0.0003
Variance of return error (%) 1.2452 1.2387

Mean return error (%) 0.4897 0.4715
Execution time 20 20

DAX 100 85

Mean Euclidean distance 0.0009 0.0009
Variance of return error (%) 7.2708 7.2569

Mean return error (%) 1.3801 1.3786
Execution time 70 71

FTSE 100 89

Mean Euclidean distance 0.0004 0.0004
Variance of return error (%) 2.7236 2.7085

Mean return error (%) 0.3126 0.3121
Execution time 92 94

S&P 100 98

Mean Euclidean distance 0.0004 0.0003
Variance of return error (%) 3.6135 3.6026

Mean return error (%) 0.8997 0.8993
Execution time 146 148

Nikkei 225

Mean Euclidean distance 0.0000 0.0000
Variance of return error (%) 1.1927 1.2015

Mean return error (%) 0.464 0.4892
Execution time 360 367

Second best algorithm shown in Table 5 is GA which
obtains best mean return error and variance of return error
in DAX100 and S&P100 tests, respectively. TS shows best
performance for mean return error indicator in S&P100
benchmark, SA for mean return error in 𝑁𝑖𝑘𝑘𝑒𝑖 test, while

PSO proves to be most robust for variance of return error in
DAX100 index.

From the presented analysis it can be concluded that our
approach obtained results for CCMV portfolio optimization
problem that can be more valuable for the investors: mFA’s
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Table 5: Experimental results for five metaheuristics.

Index 𝑁 Performance indicators GA TS SA PSO mFA

Hang Seng 31

Mean Euclidean distance 0.0040 0.0040 0.0040 0.0049 0.0003
Variance of return error (%) 1.6441 1.6578 1.6628 2.2421 1.2387

Mean return error (%) 0.6072 0.6107 0.6238 0.7427 0.4715
Execution time 18 9 10 34 20

DAX 100 85

Mean Euclidean distance 0.0076 0.0082 0.0078 0.0090 0.0009
Variance of return error (%) 7.2180 9.0309 8.5485 6.8588 7.2569

Mean return error (%) 1.2791 1.9078 1.2817 1.5885 1.3786
Execution time 99 42 52 179 71

FTSE 100 89

Mean Euclidean distance 0.0020 0.0021 0.0021 0.0022 0.0004
Variance of return error (%) 2.8660 4.0123 3.8205 3.0596 2.7085

Mean return error (%) 0.3277 0.3298 0.3304 0.3640 0.3121
Execution time 106 42 55 190 94

S&P 100 98

Mean Euclidean distance 0.0041 0.0041 0.0041 0.0052 0.0003
Variance of return error (%) 3.4802 5.7139 5.4247 3.9136 3.6026

Mean return error (%) 1.2258 0.7125 0.8416 1.4040 0.8993
Execution time 126 51 66 214 148

Nikkei 225

Mean Euclidean distance 0.0093 0.0010 0.0010 0.0019 0.0000
Variance of return error (%) 1.2056 1.2431 1.2017 2.4274 1.2015

Mean return error (%) 5.3266 0.4207 0.4126 0.7997 0.4892
Execution time 742 234 286 919 367

results are more accurate and the generated investment
strategy is able to more efficiently diversify the risk of the
portfolio.

6. Conclusions

In this paper we presented modified firefly algorithm (mFA)
for cardinality constrained mean-variance portfolio opti-
mization problem with entropy constraint. We adopted from
the ABC algorithm 𝑙𝑖𝑚𝑖𝑡 parameter that controls and directs
the exploration process. Original firefly algorithm suffers
from low exploration power at early iterations of algo-
rithm’s execution for this type of problems. By introducing
exploration into this phase of execution, we overcome this
deficiency. However, during late cycles when the right part
of the search space was reached, the exploration is no longer
needed. To control whether the exploration will be triggered
or not, we introduced exploration breakpoint 𝐸𝐵𝑃 control
parameter.

Since swarm intelligence implementations for the CCMV
portfolio model with entropy constraint could not be found
in the literature, we conducted three experiments. In the
first experiment, to measure the enhancement gained by our
modifications, we compared our proposed mFA with the
original FA for CCMV model. Test results show that our
modifications completely rectified original FA deficiencies.
To show how the entropy constraint affects the CCMV port-
folio model, in the second experiment we compared results
of the mFA for CCMV models with and without entropy
constraints. Test results proved that inclusion of the entropy
constraint is justified since it ensures portfolio diversification
and, consequently, quality of results enhancement. Finally,

to test the performance and robustness of our algorithm,
we compared it with four other state-of-the-art algorithms
from [1] (and indirectly [23]). Our proposed algorithm
proved almost uniformly better compared to genetic algo-
rithm, tabu search, simulated annealing, and particle swarm
optimization. This all establishes modified firefly algorithm
as a usable tool for cardinality constrained mean-variance
portfolio optimization problem with entropy constraint.

Future research may include application of the proposed
mFA to other portfolio optimization models and formula-
tions with different constraints. Also, additional modifica-
tions of the FA algorithm can be investigated for possible
further improvement of results.
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