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Abstract

Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular

level, images the distribution of biologically targeted radiotracers with high sensitivity. PET

imaging provides detailed quantitative information about many diseases and is often used to

evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer

localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in

PET images, image segmentation methods play a vital role; therefore, accurate image

segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and

follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as

well as the recent advances in image segmentation techniques. In order to make this manuscript

self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of

diagnostic PET image analysis, and the effects of these challenges on the segmentation results.
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1. Introduction

Structural imaging techniques such as computed tomography (CT) and magnetic resonance

imaging (MRI) are widely utilized in clinical practice to examine anatomical abnormalities

caused by disease. The three dimensional (3D) images produced by these techniques usually

give detailed structural information about one’s anatomy that can be used for diagnostic and

therapeutic purposes [1]. However, structural imaging is not well suited for pathology

detection applications where cellular activity is more significant than anatomical features

[2]. The need for functional characterization leads researchers to develop PET scanners,

which provide molecular information on the biology of many diseases. When combined with

CT or MRI, utilizing both functional (PET) and structural information leads to a higher

sensitivity and specificity than is achievable using either modality alone. Although the
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sensitivity of PET scans is usually much higher than conventional structural images,

anatomical information from another modality (CT or MRI) is still needed to properly

interpret and localize the radioctracer uptake and the PET images are somewhat limited due

to low resolution. Hence, there is a frequent need for assessing functional images together

with structural images in order to localize functional abnormalities and distinguish them

from normal uptake of PET radiotracers, which tend to normally accumulate in the brain,

heart, liver, kidneys, etc. [3, 4, 5]. PET-CT imaging and more recently MRI-PET have been

used to combine complementary diagnostic information from different imaging modalities

into a single imaging device, removing the need for registration [6]. Using these scanning

techniques, disease can be labeled and identified such that an earlier diagnosis with more

accurate staging for patients may potentially be delivered [7].

Some of the statistics for the use of PET imaging in the U.S. is summarized in Figure 1 (a).

Over 1, 700, 000 clinical PET and PET-CT studies were reported nation-wide for 2011 only.

Compared to single PET imaging, the use of PET-CT is relatively higher and continuing to

increase. PET imaging is mostly used for (i) diagnosis, (ii) staging, (iii) treatment planning,

and (iv) therapy follow-up, in different fields of medicine such as (1) oncology, (2)

cardiology, and (3) neurology (Figure 1 (b)). PET is widely used in staging and follow-up

therapy in oncology applications (Figure 1 (c)). For instance, radiation therapy, as a

common cancer treatment in oncology, aims to target the boundary and volume of abnormal

tissue and irradiates the targeted area with a high dosage of radiation, intending to eliminate

all cancerous cells. In practice, the determination of this boundary (i.e., delineation) should

be kept as small as possible to minimize damage to healthy tissue, but the boundary must

ensure the inclusion of the entire extent of the diseased tissue [2]. PET is also used in

cardiac applications such as quantifying blood flow to the heart muscle and quantifying the

effects of a myocardial infarction [8]. More recently, PET has been used for imaging

inflammation and infection in the lungs [9] with 18F – FDG because this glucose analog

localizes to activated and proliferated inflammatory cells. The new norm in clinical practice

is acquiring PET-CT images instead of a single PET scan to take advantage of the functional

and structural information jointly.

In pre-clinical and clinical applications, physicians and researchers use PET imaging to

determine functional characterization of the tissues. Owing to this, clinical trials are now

placing a greater reliance on imaging to provide objective measures in before, during, and

after treatment processes. The functional morphology (the area, volume, geometry, texture,

etc.) as well as activity measures–such as standardized uptake value (SUV) of the tissues–are

of particular interest in these processes. Accurately determining quantitative measures

enables physicians to assess changes in lesion biology during and after treatment; hence, it

allows physicians to better evaluate tumor perfusion, permeability, blood volume, and

response to therapy. Among these measures, functional volume (i.e., the volume of high

uptake regions) has been proven useful for the definition of target volumes [11]. Therefore,

an accurate image segmentation method, other than the conventional region of interest (ROI)

analysis, is often needed for diagnostic or prognostic assessment. This functional

characterization has a higher potential for proper assessment due to recent advances in PET

imaging. Indeed, this higher potential has renewed interest in developing much more
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accurate (even globally optimal) segmentation methods to turn hybrid imaging systems into

diagnostic tools [11]. Specifically, after the adoption of multi-modal imaging systems (i.e.,

PET-CT, MRI-PET), optimal approaches for precise segmentation and quantification of

metabolic activities were crucial.

For the literature search, we used Pubmed™, IEEEXplore™, Google Scholar™, and

ScienceDirect™and listed all the relevant articles from 1983 to March 2013. Our search also

included the methods specifically developed for MRI and CT for comparison (Figure 2).

The number of publications for PET image segmentation is further separated by publication

type (conference, journal, and total) in Figure 2 (a). As a reflection of the improvements in

multi-modality imaging technology (PET-CT and MRI-PET), there was a dramatic increase

in the number of publications in 2008 and 2011. For a comparison, Figure 2 (b) shows how

the number of publications in PET image segmentation methods compare to the number of

CT and MRI based segmentation methods in the literature. Notably, the number of PET

image segmentation publications has always been lower than both CT and MRI and was

significantly lower before 2007. Figure 2 (c) gives the breakdown on the number of

publications for segmentation techniques for PET images from 1984 to 2013. We also noted

that only 2% of the articles were review papers and almost half of the total articles are

journal papers (42% journal publications and 54% conference publications). For the last 6

years, Figure 2 (d) shows a snapshot of publication types from 2007 to 2013, during which

the dramatic increase of PET image segmentation publications was observed. It appears that

the growing interest in PET and hybrid imaging will further accelerate the methods for

segmentation and quantification of lesions.

In this work, we systematically review state-of-the-art image segmentation methods for PET

scans of body images, as well as the recent advances in PET image segmentation techniques.

In order to have a complete review on the topic, the necessary knowledge of the physical

principles of PET imaging are also given, along with the source of the challenges for

segmentation inherent to PET images in Section 2. The state-of-the-art segmentation

methods for PET images, their comparison, and recently developed advanced PET image

segmentation methods are extensively analyzed in later sections, and the methods are

divided into the following groups for clarity: manual segmentation and ground truth

reconstruction (Section 3), thresholding-based (Section 4), stochastic and learning-based

(Section 5), region-based (Section 6), boundary-based (Section 7), and multi-modality

methods (Section 8). These categories are shown in Figure 3. Due to the large number of

segmentation methods, we have categorized the state-of-the-art methods into intuitive

groups for easier comprehension and better contrasting of the methods. Finally, discussions

are made in Section 9, followed by conclusions in Section 10.

2. Background on PET Imaging and Segmentation

Radiotracers

The basic concept of PET is to label a radio-pharmaceutical compound with a biologically

active ligand to form a radiotracer and inject it intravenously into a patient. The PET scanner

then measures the distribution and concentration of the radiotracer accumulation throughout

the patient’s body as a function of time [12]. To do this, PET utilizes positron emitting
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radioisotopes as molecular probes so the biochemical process can be measured through

imaging in vivo [13]. There have been many radiotracers developed and among them F DG

(18F combined with deoxyglucose) is considered the radiotracer of choice in most studies

[14]. Metabolically active lesions have up regulation of glucose metabolism. For example,

the rapid cell division in cancer cases and the immune response in infectious diseases

require high levels of glucose. Therefore, labeling glucose with 18F renders these lesions

detectable using PET imaging because the FDG accumulates in these areas [14].

Meanwhile, a large number of new compounds are also becoming prospects for PET

imaging which have some advantages over FDG such as tracers that do not accumulate in

the heart/kidney. However, FDG still remains the most commonly used radiotracer in the

clinical routine for body imaging [15]. At the time of this writing, there is no reported study

in the literature mimicking the differences of segmentation accuracy caused by using

different radiotracers in PET imaging. Therefore, in this manuscript, an evaluation of image

segmentation methods are assumed to be independent of the choice of radiotracer.

Quantitative Evaluation of Radiotracer Uptake in PET Images

A quantitative assessment of changes in FDG uptake in PET images is required for accurate

diagnosis and assessment of treatment response, whereas a qualitative assessment of PET

images is usually sufficient for the detection of lesions [16]. Qualitative assessments using

PET images are often conducted visually by expert radiologists and nuclear medicine

physicians [17], while various semi-quantitative and quantitative methods such as SUV,

tumor-to-background ratio (TBR), nonlinear regression techniques, total lesion evaluation

(TLE), and the Patlak-derived methods are currently undergoing extensive exploration [3].

Among these metrics, SUV is the most widely used quantification index for PET imaging

because it gives a physiologically relevant measurement of cellular metabolism [13, 16].

SUV standardizes the intensities of the PET images, and it is simply defined as the tissue

concentration of a tracer measured by the PET image intensity at any point of time, followed

by a normalization with the injected dose, the patient’s size, and a decay factor which

depends on the particular radiotracer type used during the imaging [18, 13]. The explicit

formulation of the SUV computation is

(1)

where χ is either body weight (χ = BW (in g or kg)) or lean body mass (χ = LBM), depending

on the type of SUV being computed [19]. D is the amount of injected dose (Bq) and C(t) is

the total radioactivity concentration in a given tissue at time t, and it can be directly

computed from a ROI. Exploration of SUV and its alternative measures are outside the scope

of this review; however, readers are encouraged to refer to a comprehensive review on this

subject [20].

What affects SUV measurements?

There are physiological, physical, and procedural factors affecting the SUV computation.

Table 1 briefly explains factors affecting SUV calculation, their effects, and methods

proposed to balance these effects. Physiological factors include body composition (fat,
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weight), blood glucose concentration, and kidney function. Among these, SUV is quite

sensitive to body weight, especially for obese patients. High blood glucose concentration

can also be problematic with diabetic patients when measuring SUV. Therefore, many

techniques were developed to reduce uncertainties in the SUV measurements.

Physical factors consist of the partial volume effect (PVE), reconstruction and smoothing of

the images, and respiratory motion (or organ/lesion motion) artifacts. PVE and respiratory

motion artifacts lead to an underestimation of SUV for smaller lesions. Various methods

have been developed for correcting PVEs; some of these are reported in Table 1. The

literature has shown that repeated SUV measurements of the same patient may differ by up

to 30% simply from measuring and analyzing variables that influence SUV computation [18,

36].

It is worth noting that the computation of SUVmax can be improved by removing statistical

outliers by defining SUVmax differently [37, 38]; however, redefining SUV based on post-

processing steps such as a parabolic fit around the maximum intensity may only correct the

SUV marginally. So, instead of fitting the data to a predefined curve, averaging the most

intense (“hottest”) voxels, which have the highest concentration of photons, together with

SUVmax reduces the influence of a noisy outlier [36, 39, 40, 41, 42]. In [39], the repeatability

of SUVmax, SUVmean and several ways of averaging the hottest voxels together were

investigated and showed a reduced variability by a factor of 2.7 when the top 10 hottest

voxels were averaged together to form an alternative way of computing SUVmax.

In addition to these factors, an ROI is needed for SUV computation, and the methodologies

used for defining the ROI around a lesion can significantly affect the SUV based metrics.

Therefore, in order to extract morphological and functional information from PET images,

the ROI needs to be identified “precisely”. In other words, a precise segmentation is needed

because even small errors in segmentation can distort the calculation of the SUV

measurements by altering the region’s margins. Furthermore, inter- and intra-operator

variability can be considerably high in defining these ROIs, affecting quantitation and

possibly diagnostic decisions.

Challenges in Segmentation of PET Images

Without loss of generality, image segmentation can be thought of as two related tasks:

recognition and delineation [43]. Recognition is the process of determining “where” the

object is and to distinguish it from other object-like entities in the image, and delineation is

the act of defining the spatial extent of the object region in the image [44]. In the recognition

process, high uptake regions are observed and identified by clinicians. These rough areas of

where the objects are located in the image are considered as ROIs, though this process can

be automated as well [45]. In delineation, the second step of segmentation, the aim is precise

separation of uptake regions from the background and non-significant uptakes [43, 46, 47].

Some of the intrinsic and extrinsic factors that significantly affect PET image segmentation

are as follows:

i. resolution related issues,

ii. large variability in the shape, texture, and location of pathologies,
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iii. noise.

These factors increase the difficulty of segmentation in multiple ways. For example, the low

resolution and high smoothing decreases the contrast between objects in the image, and

boundaries between nearby objects often become unclear. Several additional factors can be

counted under resolution related issues. For instance, patients are sometimes unable to hold

their breath during an entire scan, and motion artifacts may occur. These artifacts from

breathing blur the images severely [48]. Second, the large variability in shape or texture of

the pathologies makes the segmentation problem even more challenging due to difficulty in

generalizing the available PET segmentation methods for those cases. Last, noise in PET

images is inherently high, leading to further difficulties in image segmentation methods that

tune parameters based on the value of the SUVmax as well as methods that use the intensity

of an initial “seed” location. As demonstrated in [49], noise affects the segmentation of PET

images and is regarded as the most significant contributing factor for not having a

reproducible SUV measurement.However, some standards and guidelines have been enacted

to ensure more reproducible analyses between scans and centers [50, 51].

Given the difficulties defined above and the unique challenges pertaining to PET images,

there have been considerable improvements in PET image segmentation methods. These

improvements are primarily due to the need of accurate and robust quantification tools that

have the capability of analyzing multi-modal images in real time. An explosive growth in

the use of PET-CT and more recently MRI-PET in clinics facilitates this need.

3. Manual Segmentation: Ground Truth Construction and Segmentation

Evaluation

Ground Truth Construction

An overview of the categories that PET image segmentation methods are classified into is

given in Figure 3. Before introducing the various PET image segmentation methods as

summarized in Figure 3, it is useful and necessary to know the standard ways of evaluating

the accuracy of segmentation for proper comparison. In order to evaluate an image

segmentation algorithm, the true boundary of the object of interest should be identified.

Unfortunately, there is no ground truth available if histopathologic samples are not

available. This is the main challenge for all medical image delineation algorithms. Instead,

surrogate truths (or reference standards) are used for measuring the quality of a

segmentation algorithm. Using phantom images is one way to create a surrogate truth for

measuring the performance of an algorithm. Phantoms have the benefit of knowing the exact

dimensions of the object in the image. Additionally, a digital phantom, i.e. a synthetic

image, can be constructed where the true boundary is known and imaging characteristics of

a specific PET scanner can then be added [52]. However, the human anatomy is far too

complex to be accurately represented via phantoms; hence, the use of phantoms is limited in

terms of identifying the extent and true performance of the segmentation algorithms.

Another way, the most common one, is to use manually segmented structures and compare

those structures with algorithm-generated segmentations in terms of overlap or boundary

differences [53]. This strategy is currently the state-of-the-art segmentation method for the
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evaluation and development of medical image segmentation problems. Although it is

important to incorporate as many manual segmentations as possible into the evaluation

framework in order to reduce sampling error occurred due to the inherent high variations

and inter-observer differences, it is often necessary to statically combine all these

segmentations together to form a single ground truth for evaluation. The widely used

Simultaneous Truth and Performance Level Estimation (STAPLE) method deals with this

problem [54]. STAPLE estimates the ground truth segmentation by weighing each expert

observer segmentation depending on an estimated performance level while also

incorporating a prior model for the spatial distribution of objects being segmented [54].

Segmentation Evaluation

After creating a surrogate truth, there are three main categories of approaches for this task:

quantifying volumetric differences, using estimators derived from the confusion matrix,

shape based similarity measures, and regression based statistical methods. The volumetric

difference is usually determined by simply computing the absolute percent difference in

total volume between two segmentations. Since it is such an intuitive and simple metric, the

percent volume difference is commonly used in the clinical literature, but this metric alone

does not convey enough information to determine the similarity between two segmentations.

For instance, it is highly possible for a segmentation method to produce the same volume as

the volume of the ground truth, but the segmentation may still be unsatisfactory (i.e.,

segmentation leaks into non-object territory with some amount of volume, but still the same

volume of ground truth can be obtained). Indeed, more quantitative metrics must be used

along side for proper evaluation.

There are several estimators that are derived from the confusion matrix that are commonly

used for segmentation evaluation. First, the dice similarity coefficient (DSC) is one of the

most widely used quantitative metrics to evaluate segmentation accuracy, and this index

allows for the false positives and false negatives to be combined into a single value for easy

comparison [55, 56]. DSC simply measures spatial overlap (in percentage) between a

segmented lesion and the surrogate truth where higher DSC values indicate the goodness of

an image segmentation. Given that the segmented volume is denoted by V1 and the surrogate

truth is shown by V2, the DSC is computed as follows:

(2)

where the overlap of two volumes (V1 ⋂ V2) indicates the True Positive Volume Fraction

(TPVF) (also called sensitivity). The amount of false positive volume segmentation is

measured in the False Positive Volume Fraction (FPVF) such that 100-FPVF is the

specificity [47, 57].

For evaluating the segmentation of complex shaped lesions, boundary-based measures

should be used in addition to region based metrics to quantify the shape dissimilarity

between the delineated lesion and the ground truth [45, 57]. Geometric metrics such as the

Hausdorff distance (HD) measure how far two boundaries are from each other [58]. Thus, an

accuracte segmentation result would achieve a high DSC value (high regional overlap) and a
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low HD value (high shape similarity). The DSC and HD are commonly reported together in

the literature for a more thorough evaluation.

Regression based statistical methods (i.e., Spearman and/or Pearson correlation coefficients)

and the simple mean volume difference or relative volume ratio for the evaluation of

segmentation methods are much more common than DSC based evaluations in clinical

literature. However, readers should be aware that without having the TPVF (Sensitivity) and

100-FPVF (Specificity) pair or the DSC value, comparing statistics on the absolute volume

difference does not provide complete information on segmentation accuracy. In addition to

sensitivity and specificity, receiver operating characteristic (ROC) curves may be used to

evaluate the performance of a delineation method by combining sensitivity and specificity of

the PET segmentation algorithms for a given uncertainty level [59, 60].

In summary, a precise evaluation for a segmentation algorithm should be based on

sensitivity and specificity measures (or DSC) and not solely on the absolute volume based

statistical evaluations. Unless otherwise specified, we assume that all research papers listed

in this review completed sensitivity and specificity comparisons for the proposed

segmentation methods, even though some of those studies reported only volume based

evaluations. It is also worth noting that DSC or sensitivity/specificity measures are region-

based evaluation criteria. For a brief review on segmentation evaluation metrics, readers are

encouraged to refer to [47, 55].

Difficulties in Manual Segmentation

Manually drawing a boundary around an object on the image is perhaps the most intuitive

and easily implemented way of obtaining ROIs for a given image which makes it the most

common method of obtaining surrogate truths, as described previously. However, it suffers

from many drawbacks. Manual segmentation is highly subjective and intra- and inter-

operator agreement rates are often presented in the literature to indicate the reliability of the

obtained surrogate truths and the level of difficulty of the segmentation problem [61, 62, 63,

64, 65, 66].

The major drawbacks of manual segmentation are that it is time consuming, labor intensive,

and operator-dependent. The high intra- and inter-operator variability of the resulting

delineations make the delineation process less precise and unlikely reproducible. In a recent

study [72], which involved 18 physicians from 4 different departments, the agreement,

defined as a volume overlap of ≥ 70%, was found only in 21.8% of radiation oncologists and

30.4% of haematologic oncologists. It appears that a partial explanation for this high intra-

observer variability for manual segmentation may be attributed to the size of the lesion

because smaller lesions (i.e., < 4cm3) suffer much greater from the partial volume effect

[73]. This causes the boundaries of objects to be blurred and unclear, making manual

segmentation problematic. Table 2 exemplifies this high variation over a few studies

reported in the literature. For seven studies, either the inter- and intra-observer variance is

reported or the reliability coefficient is reported. The reliability coefficient is very similar to

observer agreement rates, and it quantifies the consistency among multiple measurements on

a scale from 0 to 1 [74]. Higher reliability means lower inter- and intra-variability. However,

it should be noted that reliability does not imply validity. The reliability coefficient can be
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defined as the proportion of the total variance of interest that represents the true information

being sought. More information about reliability coefficient can be found in [75]. Even

among these recent highly cited studies, there is no consensus on how variable manual

segmentation is as well as the experience level of the experts conducting the manual

delineation.

4. Thresholding-based Methods

Thresholding is a simple, intuitive, and popular image segmentation technique that converts

a gray-level image into a binary image by defining all voxels greater than some value to be

foreground and all other voxels are considered as background [76]. The thresholding-based

PET image segmentation methods utilize the probability of intensities, usually by using the

histogram of the image. An intuitive view on this process is that the objects of interest in the

PET image, usually referred to as the highest uptake region, are much smaller than the

background areas. A smaller area equates to a smaller probability of appearing on the image.

Additionally, since the intensity of PET images has some physical meaning, the intensities

are somewhat unique for the different tissue types and grouping specific ranges of the

intensities for different objects is usually enough for a good segmentation. How to group

these intensities together is the challenge, and thresholding is one approach to solve

grouping problems.

Due to the nature of PET images (i.e., low resolution with high contrast), thresholding-based

methods are suitable because the local or global intensity histogram usually provides a

sufficient level of information for separating the foreground (object of interest) from the

background. However, there is some uncertainty that cannot be avoided when using

thresholding-based methods. Because of the large variability of pathologies, low resolution,

inherent noise, and high uncertainties in fuzzy object boundaries, there is no general

consensus on the selection of a thresholding level (especially automatic threshold selection).

Therefore, an optimal threshold determination remains a challenging task. Despite all these

difficulties, thresholding-based methods are still under development for improving the

segmentation mechanism towards the optimal boundary extraction. Hence, it is common to

see these methods both in pre-clinical and clinical studies. Here, we will review state-of-the-

art thresholding-based segmentation methods for PET images and their comparisons using

clinical data. Thresholding techniques can be further divided into several groups: Fixed

Thresholding, Adaptive Thresholding, and Iterative Thresholding Method. Also, we describe

the challenges and drawbacks specifically pertaining to thresholding segmentation as well as

the effects of the partial volume effect and the effects of different reconstruction algorithms.

4.1. Fixed thresholding

In fixed thresholding, as its name implies, all pixels above an intensity level are assigned to

a group, and everything else is considered to be background. This level may be given as an

input by an expert, learned in a training set of images of the same type, or derived by

analytic expression using realistic phantoms. The object boundary in any PET image is

going to contain some amount of fuzziness due to the PVE, resolution related issues, and

motion artifacts [76]. Thus, many thresholding methods incorporate some amount of class
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uncertainty, entropy criteria, between-class variance, and many other types of criterion in

order to account for this fuzzy object nature [76]. In many clinical studies, a value such as a

SUV of 2.5 is set as a pre-defined threshold level to differentiate malignant lesions from

benign [48]. Similarly, SUVmax can also be used to separate object information from the

background by using a specific percentage of SUVmax, which has the advantage of being

normalized between patients. The most common thresholding value chosen in the clinical

setting is 40 – 43% of the SUVmax, but this may not always work well and may need to be

adjusted considerably for different PET images, depending on the image properties, scanner

type, reconstruction, image noise, etc. For example, several studies evaluated the commonly

accepted thresholding value of 40 – 43% for segmenting lesions and found that this value

was suitable in a broad sense. The authors suggested other thresholding values to obtain the

correct boundaries such as 45% [77] and 78% [78, 79]. Another drawback of this fixed

thresholding approach is the tendency to overestimate the lesion boundaries, particularly for

small lesions. Therefore, an adaptation of thresholding with further information or user

guidance is often necessary in order to provide a clinically sound delineation. Table 3 shows

some of the notable studies in the literature that used a fixed thresholding method for

segmenting lesions from various body regions. It lists the thresholding value chosen,

anatomical area (or disease type), sample size, and the accuracy reported in the study. As

can be seen from Table 3, since there is no consensus on a fixed thresholding method for

segmenting PET images, variable results were reported even for similar lesion types.

4.2. Adaptive thresholding

Many fixed thresholding-based segmentation methods use digital or physical phantoms to

construct and quantify the relationship between the true lesion volume and the estimated

lesion volume, with respect to various image quality metrics to “adapt” the thresholding

value for a particular image of interest. The source-to-background ratio (SBR or S/B), mean

background intensity, estimated mean lesion intensity, and full width half maximum

(FWHM) of the scanner can be used as potential image quality metrics for this purpose.

In addition to adapting the thresholding value based on image quality metrics, it is also

possible to adapt the thresholding value based on the motion artifacts of the PET image. As

described previously, it lowers the contrast and mean intensity difference between the object

and the background. For instance, some phantom based studies characterized the

thresholding level of oscillating spheres instead to static spheres in order to mimic breathing

and cardiac motions in [93]. Although adapting the threshold level to accommodate

breathing and cardiac motion may have important applications for segmenting lung cancers

or inflammation in the lungs when respiratory gating is unavailable, the method presented in

[93] suffers from serious shortcomings such as the requirement of a prior estimation of

lesion volume from structural imaging [38]. When a prior estimation of the lesion volume

does not exist (possibly due to a lack of a corresponding CT or MRI image), success rates of

the delineations are restricted to lesions larger than 4 cm3. For small lesions, even with prior

anatomical knowledge, the success rate is under the desired clinical accuracy.

Table 4 lists some of the state-of-the-art adaptive thresholding equations in the literature,

which were validated using various phantoms. The studies in Table 4 are organized based on
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the same year of publication, with the earliest year at the top and the most recent year at the

bottom. Studies in same year are in no particular order. Notably, the analytic expressions

grow increasingly complex as the years advance with earlier studies only considering the

estimated lesion volume while later studies also take into consideration the resolution of the

scanner and various image quality metrics. The volume difference between the segmentation

found using the analytic expression and the ground truth is reported. This volume difference

is divided between the volume difference when the method is applied to phantom images or

patient images for a better comparison, if reported in the study.

Overall, the major limitation in analytic expression based thresholding methods is that it is

difficult to reproduce the same/similar segmentation results in different scanners or different

patients [38]. This is because analytic expressions require precise tuning for a specific

scanner, the reconstruction type, and even the patient size. Another drawback is that these

expressions normally fail for lesions with a complex shape, due to an invalid analytic model

for those cases (e.g. the partial volume would affect complex-shaped lesions differently then

the spherical-shaped lesions). Also, it is very important to note that because of the

limitations of representing anatomical structures and metabolic activities realistically, the

construction and calibration of analytic expressions introduce uncertainty to the task of

finding an optimal thresholding level; therefore, none of the studies listed in Table 4 are

general enough to be used in clinical applications, particularly in radiotherapy planning and

surgery.

4.3. Iterative thresholding method (ITM)

Commonly used adaptive thresholding methods in PET segmentation require a priori

estimation of the lesion volume from anatomic images such as CT or analytic expression

based on phantom geometry; however the iterative threshold method (ITM), proposed by

Jentzen et al [37] estimates the PET volumes without anatomic prior knowledge. The ITM

iteratively converges to the optimum threshold to be applied to the PET image. The method

is based on calibrated threshold-volume curves at varying S/B ratio acquired by phantom

measurements using spheres of known volumes. The measured S/B ratios of the lesions are

then estimated from PET images, and their volumes are iteratively calculated using the

calibrated S/B-threshold-volume curves [97, 103]. The resulting PET volumes are then

compared with the known sphere volume and CT volumes of tumors that served as gold

standards.

This process is illustrated in Figure 5. The ITM begins by obtaining several curves that are

observed at typical S/B ratios from the PET images. The calibrated S/B-threshold-volume

curve that best fits the measured S/B ratio is then used. For the selected S/B-threshold-

volume curve, there is a fixed-threshold value T1 (fixed-threshold region) for large volumes

that is applied to the PET image and an initial estimation of the volume (V1) is made using

the ellipsoid model. The volume V1 is used further to determine the second threshold value

T2. If the value T2 is significantly larger than T1, then the threshold value T2 is applied again

to the gray scale of the PET image and a second volume V2 can be calculated. If the

threshold values T2 and T3 are not significantly different, the iteration stops at step 3 with an

estimated volume V3, the iteration ends at step n with an estimated volume Vn if the
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threshold value Tn does not deviate significantly from Tn+1. An example delineation process

is given in Figure 6 where optimal threshold was found in 4 iterations.

Unlike most adaptive thresholding methods, ITM does not require any prior information of

the volume of interest. It only requires (a) the S/B ratio of the lesion easily taken from the

PET image and (b) the S/B-threshold-volume curve to be determined once for the specific

camera, reconstruction algorithm, and the radiotracer. However, it is important to note here

that S/B-threshold-volume curve depends on the type of reconstruction algorithm used,

especially for the small structures. Also the S/B-threshold-volume curve strongly depends

on the spatial resolution of the imaging device. The ITM is further limited by the spatial

resolution, implicit activity distribution, edge detection, and volume model of the lesion. For

lesions with an effective diameter close to the spatial resolution of the scanner, the ITM

method cannot be applied due to the PVE. Also, the ITM estimates the volume reliably only

if the imaged activity distribution is homogeneous. The asymmetric activity distribution

results in an underestimated volume. Additionally, the measurement of the S/B-threshold-

volume curves assumed spherical lesions, and the clinical PET and CT volume calculations

were performed using an ellipsoid model. Therefore, these suppositions are only an

approximation of the irregularly shaped tumors. As a consequence, the clinical volume

estimation may be less than accurate.

4.4. Optimal choice of thresholding, partial volume and reconstruction effects on
thresholding

From the conclusions reported in [103, 104, 105], the conditions to obtain an accurate (i.e.,

exact or very close) delineation of objects in PET images using thresholding are very strict.

Considering an object whose largest diameter is less than ten times the image resolution,

given as the FWHM of the point spread function (PSF), there exists a single threshold value

that allows the true contours of the object to be accurately recovered if and only if

1. the object is spherical,

2. the uptake is uniform inside and outside the object, and

3. the PSF is isotropic and constant over the whole field of view.

For all other conditions, where non-spherical uptake occur or uptake is non-uniform, the

choice of an optimal threshold selection is ill-posed problem; therefore, theoretical

justification is not always possible [106].

Thresholding methods do not perform well with tumors that are less than 2 - 3 times the

spatial resolution of the scanner [34, 35, 79, 80, 97, 99, 102, 107, 108]. This is because the

scanner’s PSF introduces the PVE. PVE comes from two sources: finite spatial resolution of

imaging system and the discrete nature of PET images. Since PET is of low spatial

resolution compared to CT or MRI, this factor is significant for PET imaging and most

methods aim at this problem. New techniques such as digital photon counting (Philips

Vereos PET/CT) is being explored to promote the resolution [109]. Furthermore, the

continuous distribution of radiotracer is sampled to discrete voxels of PET images.

Therefore, most voxels contains more than one tissue and the uptake value is the average of

the response from all tissues within the voxel. This rule applies to all digital imaging
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modalities regardless of their spatial resolution. PVE is a major source of bias for PET

quantification and several techniques have been proposed for PVE correction. During the

reconstruction phase, spatial resolution can be enhanced by incorporating PSF information;

anatomical information from CT or MRI can further be utilized as priors for better

reconstruction. Deconvolution can also be applied for the purpose of resolution

enhancement after reconstruction. To model the mutual influence between regions within

image domain, Recovery Coefficient (single region) and Geometric Transfer Matrix

(multiple regions) can be pre-calculated according to the approximate size and shape of the

target regions. Such corrections are simple but limited to mean value correction only and the

assumptions of homogeneity and shape. More sophisticated methods targeting voxel level

correction often make use of co-registered high resolution anatomical information from CT

or MRI to define the structures and boundaries between regions. The PVE factors can

subsequently be obtained by modeling the interaction between regions.

In practice, for smaller tumors, a 5% thresholding change can cause the measured volume to

change by a factor of two [79, 80, 102, 108]. It is explained in [99] that the near optimal

thresholding value for small volumes depends largely on the size or diameter, due to the

PVE being more influential while the optimal threshold value of larger objects has more

functional dependence on the SBR. This is why many analytic thresholding expressions are

piecewise linear and based on the estimated area or diameter of the lesion. Since SUVmax is

the least affected by the PVE [34, 89], there are many equations that use a percentage of the

SUVmax to determine a reasonable threshold level (see Table 3, relative thresholding). For an

in-depth review on PVE in PET imaging, a survey paper is referred [34].

Reconstruction methods also affect thresholding based segmentation algorithms. As a

whole, reconstruction methods used for PET images vary on the amount of smoothing done,

especially when attempting to compensate for the high noise of PET images. In addition,

greater smoothing increases the difficulty of thresholding because an image with significant

smoothing has a smaller absolute range of intensity values, such that a higher thresholding

value is required to compensate for the decrease in contrast [102, 108, 110]. In addition, this

in turn lowers the range of thresholding values that can be chosen to achieve an acceptable

segmentation which makes it more probable that a non-optimal thresholding value is chosen.

In [110], five different segmentation algorithms were compared with respect to various

reconstruction algorithms, and it was found that SUVmax and SUVmean-based fixed

thresholding segmentation methods resulted in much larger volumes when high smoothing

methods were used in the reconstruction process. Ideally, the method for threshold selection

would compensate for the effect of reconstruction smoothing, though currently this is not

considered. For detailed results on the effects of smoothing with reconstruction algorithms

and threshold levels, reader may find useful information in [38, 108].

Thresholding methods have proven to be simplest yet computationally the most efficient

segmentation method. Their sensitivity to noise and incapability to handle intensity

variations make them less than an ideal candidate for complex segmentation tasks in medical

image analysis. Furthermore, with the exponential increase in the computational capabilities

of hardware onboard medical devices over the past decade, the algorithmic simplicity of

thresholding-based methods is becoming less attractive.
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5. Stochastic and Learning-based Methods

Stochastic methods exploit differences between uptake regions and surrounding tissues

statistically. Learning-based methods, similarly, use pattern recognition techniques to

statistically estimate dependencies in the data. Since there are strong similarities between

learning-based methods and stochastic methods, in this section we introduce the core

concepts of the both groups together (Figure 7).

5.1. Mixture models

The intensity distribution of objects within PET images are commonly considered to be

approximately Gaussian in shape, and this prior knowledge can be useful for segmentation.

Gaussian Mixture Models (GMM) assume any distribution of intensities on the PET image

can be approximated by a summation of Gaussian densities with the goal of identifying and

separating these densities using an optimization technique such as the Expectation

Maximization (EM) algorithm. There are currently several state-of-the-art GMMs in the

literature that we will highlight here [118, 121]. A GMM-based segmentation technique was

created in [121], and three tissue classifications were considered: background, uncertain

regions, and the target. A user defined ROI was required to initiate the algorithm, and the

EM method was used to estimate the underlying Gaussians. Then, the voxels were assigned

to one of the three classes. From these regions, the segmentation was constructed. The

algorithm was evaluated on PET images of tumors from non-small cell lung cancer patients

and performed favorably compared to 40% SUVmax and to the adaptive thresholding

method.

5.2. Fuzzy locally adaptive Bayesian (FLAB) method

Another approach that uses Gaussian mixtures of the objects is a locally adaptive PET

segmentation method based on Bayesian statistics [118]. This method is known as fuzzy

locally adaptive Bayesian (FLAB) segmentation. FLAB is an unsupervised statistical

method that considers the image as having two hard tissue classes and a finite level of

“fuzzy levels” that includes mixtures of the hard tissue classes. Due to the fuzzy properties

of the model, FLAB allows the co-existence of voxels to belong to one of two hard classes,

where voxels belonging to a “fuzzy level” depend on its membership to the two hard classes.

A ROI identification step is necessary to perform FLAB (like most of the other PET

segmentation methods); therefore, it is not fully automated. Although FLAB has been shown

to be quite robust and reproducible [118, 67] for tumor volume assessments, ROI

identification may be difficult when heterogeneous or high uptake regions occur [122].

Since heterogeneous or high uptake regions could be close to the object of interest, placing

the ROI with these restrictions can in some cases be difficult. Moreover, a significant

number of background voxels are necessary for accurate statistical modeling of tissue

classes, so the number of background voxels should be small enough to avoid nearby uptake

regions to be involved in model computation, other than the lesion of interest. In addition,

the use of FLAB for the segmentation of heterogeneous lesions is limited to only two classes

(background and foreground); therefore, FLAB may fall short when dealing with more than

two classes.
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Fortunately, an improved version of FLAB was recently published to deal with heterogenous

uptakes by allowing up to three tumor classes instead of just the two hard classes of the

initial version of FLAB [123]. The improved version, named 3-FLAB, had a higher

accuracy and robustness as compared with adaptive threshold and FCM with a mean

classification error of less than 9% ± 8%. Additionally, the accuracy [124], robustness [67],

and reproducibility [125], as well as its clinical impact have been demonstrated in numerous

papers [126, 127, 128, 129].

5.3. Clustering/Classification of PET image intensities

Classification methods seek to partition a feature space derived from the image by using

data with known labels [130]. Due to the requirement of training data for labeling the data,

classifiers are known as supervised methods. The most common feature is image intensity

itself. Classifiers can transfer the labels of the training data to new data as long as the feature

space sufficiently distinguishes each label as well [130]. However, a disadvantage of

supervised methods is that they generally do not incorporate spatial information into the

decision of labeling, and the requirement of manual interaction to obtain training data is very

labor intensive and time consuming. This eventually increases the computational

complexity.

Similar to the classification methods, clustering methods can utilize the spatial information

contained within the PET images but without the use of training data [131]. Since these

methods do not need training data, they are termed unsupervised methods. Compared to

supervised methods, clustering methods have less computational complexity; however, they

are sensitive to noise and cannot integrate spatial information well due to inherent

uncertainty of the data.

Examples of supervised and unsupervised methods used in PET segmentation include k-

nearest neighbor (k-NN) [111, 112, 113], support vector machine (SVM) [132, 133], Fuzzy

C - Means (FCM) [116], artificial neural network (ANN) [111], and more recently Affinity

Propagation (AP) [134, 135] and spectral clustering [119]. Clustering methods aim at

gathering items with similar properties (i.e., intensity values, spatial location, etc) into local

groups. Similar to some advanced thresholding methods, clustering can also entail hard and

soft boundaries or “fuzzy” objects [11]. These methods usually take similarities between

data points as inputs and outputs a set of data points that best represent the data with

corresponding labels (i.e., foreground, background). Clustering is very useful particularly

when the shapes of the uptakes regions are non-convex with a heterogeneous background.

Non-convex regions are quite common for different diseases, in particular pulmonary

infections; hence, there is a growing interest in the use of clustering based methods to

segment complex shaped uptake regions [134, 135].

The spectral clustering method has been shown to have the potential to accurately delineate

tumors containing inhomogeneous activities in the presence of a heterogeneous background

in [119]. However, the number of tumors segmented in the study was limited, and there was

no clear consensus on the choice of similarity parameters, which might not be optimal when

only intensity values are used as similarity parameters. Another common clustering method,

FCM, was used in PET segmentation context first in [136], and it has been used mainly for
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PET brain lesion segmentation since [136, 137]. The FCM algorithm classifies voxels into

one of two groups, based on “fuzzy” levels where, due to the low resolution and the PVE, a

particular voxel is allowed to included a mixture of multiple tissue types. FCM then decides

which tissue type the voxel is most likely to belong to (i.e., it has more of one particular

tissue type in the voxel over any of the other possible tissue types). Finally, the algorithm

cuts the clusters into a foreground and background using a graph-based approach and

converges to the global optima iteratively.

Most PET segmentation techniques are suited well for the determination of focal uptake, but

generally give poor segmentation results for diffuse and multi-focal radiotracer uptake

patterns such as those seen in infectious lung disease (Figure 8). However, a recent study

proposes a PET segmentation framework uniquely suited for the segmentation of these

difficult uptake patterns [134, 135]. This method utilized a novel similarity function that

estimates the “similarity” (or affinity) of the data points on the histogram on the image(s)

within the AP platform [138]. AP then uses these similarities to select the optimal thresholds

to separate the image into multiple regions. In particular, [134] demonstrates the usability

for quantification of small animal infectious disease models such as rabbits with tuberculosis

or Ferrets with H1N1 (swine flu).

Table 5 lists some landmark studies that utilize clustering methods for PET image

segmentation. The classification method used along with the other PET image segmentation

methods are listed in the first column of Table 5. Also, the sample size and the types of

images used in the studies (such the type of phantom used or the type of disease if the

studies used patient images) are listed in the second column. The quantitative results, as

reported in the studies, are listed in the third column.

6. Region-based segmentation methods

Another distinct type of PET segmentation technique is region-based segmentation methods

where the homogeneity of the image is the main consideration for determining object

boundaries. While it is true that the region-based segmentation methods also utilize the

intensities of the image, they are much more concerned about the local distribution

(homogeneity) of the intensities on the image. The region-based methods are mainly divided

into two subgroups when considering PET images: Region Growing in Subsection 6.1 and

Graph Cut methods in Subsection 6.2. Figure 9 shows further subgroups of these region-

based segmentation methods.

6.1. Region Growing

The fundamental drawback of histogram based segmentation, methods such as thresholding,

is that histograms provide no spatial information which is extremely valuable information

not being considered. One such method that incorporates spatial information in the image

along with the intensity information is Region Growing, as first presented in [139]. The

algorithm starts at a user defined seed and based on the mean and standard deviation of the

intensities within the local seed region, connected pixels are either included or excluded in

the segmentation results. A second input, a homogeneity metric, is used to decide how

different a new pixel can be from the statistics of the region already selected and can still be
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included in the segmentation [87]. This process is repeated until the entire region of interest

has been dissected or the segmented region does not change.

Region growing is a widely applied technique for different segmentation purposes [87, 139,

140, 141, 142, 143]. The main assumption in region growing is that regions of the object of

interest have nearly constant or slowly varying intensity values to satisfy the homogeneity

requirement. In region growing, it is expected that different homogeneity criterion and initial

seed locations could easily affect the final segmentation results. Despite these difficulties,

PET images tend to be sufficiently homogeneous in general, so region growing usually gives

satisfactory results. For example, when compared to fixed thresholding techniques such as

SUV2.5 and SUV43%, the region growing algorithm was shown to be much more accurate

with a smaller standard deviation of the segmentation accuracy [87]. Furthermore,

segmentation results obtained from the region growing method are highly reproducible, but,

again, are strongly depend on the initialization of the segmentation. See Figure 10 for an

example of the delineation process with regard to different initializations of the seeds and

homogeneity parameters. Although region growing methods have been shown to work well

in homogeneous regions with appropriately set intensity homogeneity parameters,

segmentation of heterogeneous structures has not been satisfactory (Figure 10 (a,b)). Region

growing may fail even for sufficiently homogeneous uptake regions when the homogeneity

parameter of the region growing algorithm is not appropriately set (Figure 10 (c)).

Moreover, region growing methods reported in the literature for PET segmentation are not

able to handle multiple object segmentation (Figure 10 (d)). Thus, homogeneity parameters

for multiple lesion cases have yet to be assessed.

The main challenge in the region growing algorithm is “leakage”, that often occurs in PET

images due to the high PVE, low resolution, and motion artifacts. Leakage can usually be

limited using shape information [144], or be removed during an additional step after

segmentation [145]. There has also been some methods proposed in the literature that

discuss how to prevent or limit the leakage of region growing segmentation on PET images.

Here, we highlight a few state-of-the-art methods that aim to “constrain” region growing

from leaking into the background or nearby objects. In [146], a region growing algorithm

that avoids false-positive segmentation though user incorporated input was introduced. This

has been done simply by ROI definition to limit the possible areas where region growing

could leak into. Initially, the voxel with the highest intensity in the ROI was chosen as the

starting seed. Then, an adaptive version of the conventional region growing algorithm

determined the boundaries of a lesion by assessing whether there has been a sharp volume

increase between iterations. After the final step, a dual-front active contour based method

was applied to the segmented region using the ROI to refine the segmentation and to further

reduce any background leakage that may have occurred. Similar to the final step in the

previous algorithm, another region growing based method attempted to constrain the

algorithm by integrating a threshold based segmentation with region growing to fine-tune an

absolute thresholding level after the background signal was subtracted from the PET signals

[96]. This improved the robustness of thresholding segmentation against noise by

considering the homogeneity and connectedness of the segmented area of the image;
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however, the selection of stopping criteria and inclusion of non-target structures within the

segmented areas are some of the drawbacks [96].

The last approach that we will describe is using the condensed connected region growing

(CCRG) method, which is an iterative algorithm utilizing the statistics from a user defined

tumor region for segmentation. After defining the ROI, the voxel with the highest intensity

is found, and the region growing begins at this location. Iteratively, the mean and standard

deviation of this region is calculated, and a value derived by a formula that containing both

of these metrics, is used to determine whether or not to include nearby voxels [87]. The

CCRG gave significantly better segmentation results compared to thresholding-based

methods; however, high false positive rates remains a challenging problem.

6.2. Graph-based methods

Graph-based approaches have a big advantage over other PET segmentation methods by

incorporating efficient recognition into the segmentation process by using foreground and

background seeds, specified by the user (or automatically) to locate the objects in the image

[69]. These seed points act as hard constraints and combine global information with local

pairwise pixel similarities [147] for optimal segmentation results. The two most common

graph based methods used for PET segmentation are Graph Cut and Random Walk. We

describe them in the following subsections in detail.

6.2.1. Graph-cut—Initially, graph-cut constructs a graph where the nodes are the voxels

on the image and the edges represent the strength of similarity between the nodes. Once the

graph is constructed, the edges are cut using energy functions to minimize the cost of all

possible cuts. Graph-cut optimizes these partitions with respect to the energy function.

Notably, graph-cut has been shown to optimally segment images using local pairwise pixel

similarities [147]. However, graph-cut is not very robust and fails to give optimal results for

noisy images [69].

6.2.2. Random walk—The random walk (RW) algorithm first appeared for computer

vision applications in [148], and was used later for image segmentation in [69, 149, 150,

151]. RW is robust against noise and weak boundaries, a necessary trait due to the low

resolution and high noise characteristics of PET images. It was first proposed for PET image

segmentation in [69]. The study compared RW with two well-known threshold based

segmentation methods (described previously in this review), FLAB and FCM, and

outperformed them. Authors found that RW was superior to these commonly used methods

in terms of accuracy, robustness, repeatability, and computational efficiency. RW has also

been used in multi-modality segmentation, as described later in Section 8. One drawback of

RW is that it may not properly handle multi-focal uptake regions when distributed in large

areas of the body region. Although an automated seeding process was proposed recently in

[58] for this purpose, human incorporation may still be necessary for some extreme cases.

7. Boundary-based methods

Instead of using the statistics of the entire image or the homogeneity of the image for

segmentation, boundary-based segmentation methods were designed to locate and identify
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the boundaries of the objects in PET images. However, locating the boundaries of the

objects in PET images is challenging due to the low resolution and noise of the PET images.

The boundary-based methods can be categorized into two subgroups, Level Set/Active

Contours and Gradient Based methods, as shown in Figure 11.

7.1. Level Set and Active Contours

The concept of active contours, also called snakes, was first proposed in [152], where an

initial contour around the object of interest deforms and moves towards the desired object’s

edges. The deformation of the contour is handled by what is termed as the energy function.

The energy function consists of two set of terms: internal and external energies. The internal

energy guarantees the smoothness of the contour, whereas the external term forces the

contour to move to the desired features (gradient, texture, edge information, etc.) of the

image. Classical active contour methods rely on the gradient information and their

performance is highly dependent on the location of the initial contour, i.e., the initial contour

must be as close to the object of interest as possible so that the external energy is strong

enough to move contour towards the target object boundaries. Moreover, the classical model

cannot handle the topological changes of the curve. Geometric active contours capable of

handling these curves were later introduced by Caselles et al. [153]. Their model utilizes the

gradient information to define an edge; whereas the energy functional minimization

procedure is carried out using the level set formulation.

As applied to PET images, a number of active contour-based segmentation techniques have

been adapted in the literature. For instance, Hsu et al. [154] applied the classical active

contour model to segment liver PET images. In their approach they estimated the external

energy by solving a Poisson partial differential equation (PDE) and the algorithm was

initialized by a Canny edge detection. Geometric active contours combined with an iterative

deblurring algorithm were applied to PET images in [66] in the delineation of non-small cell

lung cancer. Li et al. [146] used region growing as a pre-processing step to improve the

active contour robustness for PET tumor delineation. Recently Abdoli et al. [155] combined

geometric active contours with anisotropic diffusion filtering as a preprocessing step for

smoothing, followed by a multi-resolution contourlet transform to segment tumors. The

purpose of using the contourlet transform is to make the energy functional more effective in

directing the evolving contour towards the target object.

The level set (LS) method was proposed in [156] for a way of modeling active contours by

tracing interfaces between different phases of fluid flows. It has proven to be a very

powerful tool for tracking moving interfaces over time and intensity. LS has been adopted in

many applications involving movement of interfaces, including their widespread use in

different imaging problems such as image segmentation and image registration [157, 158].

Basically, LS attempts to exploit the intensity gradient information based on the concept of

evolving level sets by iteratively solving Euler-Lagrange partial differential equation

(3)
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where φ is an implicit function (e.g., distance) that monitors the evolving level set and V is

the velocity function for controlling the expansion and shrinkage of level set that is directly

proportional to the curvature κ and inversely proportional to the image intensity gradient.

The spatial regularization imposed by LS-based methods encourages the segmentation to

have a smooth boundary; therefore, the resulting segmentations have a more regular shape

than obtained by other methods.

Several techniques have been proposed in the literature that employ LS with pre- or post-

processing techniques to segment images in different imaging modalities including PET. As

a representative method, [159] recently developed a technique that utilizes both spatial and

temporal information in dynamic PET data based on a multi-phase level set. The authors

explained that in a PET scan, activity contrast between organs varies from frame-to-frame

because of changes in tracer distribution over time. The method defines different weighting

of absolute difference in the data term to each image frame and considers the noise level and

activity difference. The authors validated their segmentation method using both phantom

and real mice data [159]. The method was compared with the k-means algorithm and shown

to have a higher accuracy accordingly.

As described in the region growing methods, an adaptive region-growing method [143] was

used as a preprocessing step, and then the LS method was used to further refine the

segmentation result. The method was shown to outperform iterative threshold methods on

phantom and real images. Further, a PSF-based deconvolution method was used in [160] as

a preprocessing step with LS for co-registered PET/CT in order to segment lung tumors in a

semi-automated way. Both methods were tested on phantom as well as clinical data and

showed that it produced accurate results with high reproducibility.

LS methods have proven to be an elegant tool for tracking moving interfaces. By implicitly

including curve parametrization and geometric property estimation, these methods are able

to handle topological changes much better than other boundary and region-based methods.

Also LS works well at segmenting multi-objects if initialization of LS has been done

properly. However, depending on the energy function, the method can be computationally

complex and is highly dependent on the initial condition.

7.2. Gradient-based methods

In general, the edges of an image usually have a sharp change in intensity values to signify

the boundary of an object. To locate where these local changes of intensity occur, the

gradient of the image is usually calculated between a voxel and the neighboring voxels.

However, simply analyzing the abrupt changes in the PET intensity values does not often

give optimal segmentation results due to several challenges that make the segmentation

process less robust or not very accurate. The most significant of these challenges is the low

resolution of the PET images and high PVE, which cause the boundaries to be smoothed and

sometimes disconnected. PET images have also considerable noise, and this is amplified on

gradient-based methods, which may result in a sub-optimal solution as well [161].

Despite all of the challenges that PET images pose for gradient-based segmentation

methods, there were some attempts for compensating all of these difficulties. In [162], the
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images were first iteratively processed using an edge preserving filter and an iterative

deconvolution algorithm to enhance the edges and reduce the effects of partial volume and

smoothing that results from the reconstruction process. The deconvolution kernel involves

the PSF of the PET scanner and the PSF must be estimated or known prior. Next, the

watershed transform [161], which determines the edges using the gradient of an image, and

hierarchical cluster analysis were applied to the PET images. The hierarchical clustering

algorithm (Wards algorithm) clustered the small patches found from the watershed

transform together to construct the segmentation. When this method was compared to the

ground truth volumes of the phantoms, a slight underestimation of approximately 10 – 20%

was observed, and a slight radius underestimation around 0.5–1.1 mm was reported [162].

The proposed method was also evaluated on PET images of non-small cell lung cancer and

compared to volumes derived from CT, other PET image threshold-based techniques, as

well as histopathology slices of surgical specimens that were inated with gelatin, frozen, and

then sliced [91]. The segmentation method was shown to have a high accuracy with respect

to 3D tumor volumes derived from histopathology and had the best estimation of true tumor

volume as compared to the various PET segmentation methods.

Another gradient based PET image segmentation method has been developed named

GRADIENT (MIM Software, Cleveland, OH) and was validated in several studies

demonstrating higher performance than manual and constant threshold methods in a

phantom study [52, 163]. GRADIENT requires a user defined initial starting point and a

user defined ellipse which is then used for the initial bounding region for gradient detection

[52]. In addition, another method, [164], used the watershed algorithm for segmenting noisy

PET transmission images by utilizing a multi-resolution approach to deal with the PVE and

the excessive noise in the data. However, the amount of smoothing used in the preprocessing

and post-processing steps to fuse the over-segmented regions together, and the noise in PET

images are some of the unsolved issues in PET image segmentation problems.

8. Joint Segmentation Methods

Image fusion involves combining two or more images of differing modalities to create a

composite that contains complementary information from the inputs. Before PET-CT and

MRI-PET hybrid scanners were developed, image registration techniques were being used to

align images. It is evident that fused images are more suitable for visual perception,

particularly for radiologists as analyzing fused images reduces uncertainty and minimizes

redundancy in the output while maximizing relevant information rather than analyzing the

images alone. In parallel to the developments of multi-modal scanners (PET-CT and MRI-

PET), there have been recent attempts in the literature to bring the usefulness of integrating

anatomical information (from CT and MRI) with functional data (from PET) for joint

delineation of tumors [45, 165, 166, 167, 168]. Figure 12 shows an example segmentation

that incorporates information from PET and CT images where the individual segmentations

from PET and CT are shown in white and pink, respectively, and the resulting joint-

segmentation (i.e., co-segmentation) is in black. There are multiple-benefits of using a co-

segmentation algorithm other than the conventional advantages of image fusion. First, co-

segmentation algorithms bring increased robustness into the lesion delineation process due

to unified information. Second, they provide wider spatial and temporal coverage of the
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tissues. Third, there is less uncertainty and more reliability in results of co-segmentation

algorithms. All these benefits are due to the fact that co-segmentation algorithms try to

mimic human visual image recognition performance which depends on the amount of

informative features such as corners, texture, edges, and lines available in the images [169].

Co-segmentation algorithms optimize the number of these details by unifying two or more

images into the same platform.

Currently, there are four main ideas on how to incorporate anatomical and PET information

into the same space. First, a multi-valued LS deformable model was developed in [167] for

integrating individual segmentations from PET and CT together to incorporate the

information from both. The individual segmentations were combined together using the

multi-valued LS method. Second, textural features from CT images were used to distinguish

cancerous tissue types, and PET information was incorporated into this knowledge [165,

168]. However, these efforts have some drawbacks when utilizing PET and CT information

simultaneously such as potentially unrealistic assumption of one-to-one correspondences

between anatomical and functional images of lesions and lack of standard for combining

feature sets from different imaging modalities, as well as long execution times and sub-

optimal solutions to individual segmentation problems. As a possible solution, third, a joint

PET-CT image segmentation method was proposed in [166] and extended in [170], where a

MRF algorithm was formulated on a graph. The approach formulates the segmentation

problem as a minimization problem of a Markov random field model, which encodes the

information from both modalities. Furthermore, the optimization task of the MRF

minimization is solved using a graph-cut based method. Two sub-graphs are constructed for

the segmentation of the PET and the CT images, respectively. Later, authors extended their

method in [170] to achieve consistent results in two modalities by adding an adaptive

context cost between the two sub-graphs. Although an optimal solution can be obtained by

solving a single maximum flow problem, which leads to simultaneous segmentation of the

tumor volumes in both modalities, the method itself requires user interaction, and it was

only used with images from the head-neck with large tumors. Its performance in small

uptake regions was not assessed. Another shortcoming of the proposed approach was due to

the potentially unrealistic assumption that there is a one-to-one correspondence between

PET and CT delineations. However, it is the first attempt in the literature showing full

interaction between anatomical and functional information, and it has been successfully

applied for simultaneous segmentation of head and neck tumors from PET-CT images.

Furthermore, authors showed that graph-based PET-CT co-segmentation algorithm

concurrently segment tumor from both modalities, achieving globally optimal solutions in

low-order polynomial time.

Forth, the assumption of one-to-one-correspondence was recently relaxed in [45], where a

fully automated co-segmentation method was driven by the uptake regions from PET, and

then the correct anatomical boundaries were found in the corresponding CT images. The

proposed method was based on the random walk image co-segmentation, and more

importantly, it did not have the assumption of one-to-one correspondence between PET and

CT images or PET and MR (i.e., the lesions may have had a smaller or larger uptake region

on PET compared to the anatomical abnormality in the CT or MR image). Therefore, this
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method is more realistic for clinical and pre-clinical applications, where relative differences

may occur in structural and functional regions. Recently, the method from [45] was applied

to quantify lesions from PET, PET-CT, PET-MRI, and MRI-PET-CT images in [58]. For an

example of their findings, when considering only the information from the PET image, the

co-segmentation method had a DSC of 83.23 ± 1.87%. But when considering the

information from CT and the information from PET, the DSC increased statistically

significantly to 91.44 ± 1.71%. The authors also compared their method with the state-of-

the-art co-segmentation method [166] (described above) and it outperformed that method

which has a high DSC of 89.34 ± 1.95%. In both studies, evaluation of the algorithms are

based on the ground-truth annotations manually obtained from multiple observers.

Radiologists visually judge spatial relationships between images better when images are

fused. Appropriately and jointly displaying the PET-CT and MRI-PET images is important

in many diagnostic tasks. For example, it has been shown that fusion of abdominal images

from different modalities can improve diagnosis and monitoring of disease progression

[171]. Indeed, hybrid imaging techniques have proven useful for the evaluation of patients

with cancer including diagnosis, staging, treatment planning, and monitoring the response to

therapy including disease progression [172]. Although it was widely accepted that the

process of combining relevant information from two or more images into a single image

carries more information than the single image alone, segmentation of the lesions was being

conducted in single images until the co-segmentation algorithms came into play. Similar to

the fusion process that radiologists use for qualitative evaluation of the lesions, the co-

segmentation process combines the strength of multi-modal images to facilitate a globally

optimal lesion boundary.

Future research into the co-segmentation of functional and anatomical images will strive

towards improving the efficiency of the methods so that they can be used in clinical routine

readily. Although available methods are shown to be efficient enough, real time processing

of images will require several post-processing and interactive methods to be conducted prior

to the delineation process. Therefore, computational efficiency and even the use of the co-

segmentation algorithms within the hardware (i.e., scanner) will be the potential directions.

9. Discussion

This review gives an overview of the current image segmentation techniques for PET

images. The similarities, main ideas, assumptions, and quantitative comparisons between the

many PET segmentation methods have been outlined to give researchers and clinicians an

idea of which method is applicable for most situations. When choosing which method is

appropriate for a specific quantification application, it should be noted that there are some

important details outside the scope of this manuscript. For instance, application specific

algorithms for particular radiotracers or diseases were not included in this manuscript.

Different radiotracers can also have impact on the performance of individual segmentation

algorithms. Specifically, both location and degree of concentration will change using

different radiotracers. Therefore, for basic threshold-based methods, it will lead to

considerable change in the appropriate thresholds. On the other hand, for more advanced

methods using region information and edge information, it will influence less on the final
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segmentation result. Furthermore, the use of contrast media and metallic implants have been

associated with focal radiotracer uptake, which may affect the accuracy of the image

segmentation [173, 174, 175].

Segmentation methods developed for dynamic PET imaging were not included in this

review either. Dynamic PET images are primarily used in research and drug development

applications, and the long imaging times makes dynamic PET imaging extremely

impractical for use in routine clinics. Interested readers should refer to [176, 177, 178, 179,

180, 181, 182] for examples of current research on this topic.

To the best of our knowledge, there is currently no study in the literature that directly

compares the computational time of the PET image segmentation methods utilizing

standardized images and hardware. Nevertheless, most of the PET segmentation algorithms

can be considered efficient enough to be used in clinics due to the advancement of parallel

computing and powerful workstations. However, we should also note that the magnitude of

user interaction varies significantly depending on the pre-clinical/clinical applications and

this may greatly affect the time for obtaining the segmentation results. For instance,

supervised clustering methods require time-consuming training and labeling of the data

while region-based methods often require a single seed location within the object of interest.

From the relevant publications that we reviewed in this work, it appears that methods for

PET image segmentation are advancing towards fully automatic approaches that are

clinically more feasible: (a) in the efficiency sense, and (b) the decrease in the variability

from the lack of required input. Regarding the research direction (b), the choice of

segmentation method for the particular application can be very specific. For instance, the

AP-based segmentation method [135] was shown to be superior to other methods when

uptake are diffuse and multi-focal; therefore, clustering based algorithms are preferred to

other algorithms when uptake has non-spherical shapes and is multi-focal, as common in

infectious lung diseases. In tumor segmentation, for another example, if manual ROI

definition is not time consuming, then preferably FLAB method [135] or other fuzzy

clustering methods [135] can be used to delineate tumors succesfully. When there are

multiple lesions and it is difficult to define individual ROIs for every lesion, then graph-cut,

random walk, and region growing type algorithms are preferred due to the fast convergence,

accurate results, and more automated nature. In particular, the random walk algorithm is

preferred when noise is a concern, and the region growing algorithm is less preferred due to

lack of a leakage control system. Last, but not least, when lesions are spherical or near-

spherical, thresholding methods, in particular ITM or adaptive thresholding, are satisfactory

enough and the segmentation results are not statistically significantly different from each

other [135].

Research in the PET image segmentation area will continue, perhaps indefinitely, as there is

no single general optimal solution framework for all clinical problems in terms of accuracy,

precision, and efficiency. Indeed, it is important to note that image segmentation has an

infinite dimensional solution space which encourages researchers to distinguish image

segmentation methods based on the application domain specific solution starting from

general solution frameworks. In this way, even though the solution space is constrained to
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certain methods and the methods developed for specific clinical application will only have

subtle differences in their accuracy measurements, there will still be improvements in terms

of efficiency of the methods. Improving the efficiency of the image segmentation methods

pertaining to application specific domains in PET imaging will shed new light on how to

deal with a large number of data in a shorter time interval.

From reviewing a vast amount of research in PET segmentation methods, it is clear to the

authors that one of the future directions of this community is an immediate need for

standardization between the many different segmentation methods such as a publicly

available database of PET images for evaluating new and old methods against. This database

should consist of phantom images (such as the excellent PET simulation images from the

Monte Carlo-based Geant4 application for emission tomography (GATE) software [183]) as

well as small animal and human PET images with multiple manual delineations. Currently,

beyond taking the time for implementing and conducting research on the optimal parameters

for a new segmentation method against a common image database, there is no way to fairly

and throughly evaluate one segmentation algorithm or framework versus another. In this

review, the accuracy of the many methods that was reported in the respect studies was given,

but when comparing and considering these methods using the reported accuracy there

should be a reasonable amount of skepticism. It is apparent that some studies may have done

more extensive and through testing versus another and without a common database of

images and standardized testing these numbers are less significant. There are similar

databases in the computer vision, machine learning, and many other fields of image

processing research and this common database would aid in advancing the PET

segmentation community significantly. Notably, there is an ongoing study proposing a

protocol for evaluation of current and future segmentation methods based on a general

framework, which will be expanded and adapted to PET imaging [184, 185]. With the

completion of that study, a benchmark database for validation and comparison of

segmentation methods will be available and very beneficial for PET imaging and image

processing applications.

10. Conclusions

PET imaging provides quantitative functional information on diseases, and image

segmentation is of great importance for extracting this information. In this paper, we

presented the state-of-the-art image segmentation methods that are commonly used for PET

imaging, as well as the recent advances in techniques applicable to PET, PET-CT, and MRI-

PET images. We investigated different segmentation methods in detail; results were listed

and compared throughout this review. Given the vast number and wide variety of methods

for approaching the segmentation task, this review compares and contrasts the state-of-the-

art methods and provides researchers and clinicians with detailed segmentation methods that

are well suited for any particular application. We noted that although there is no PET image

segmentation method that is optimal for all applications or can compensate for all of the

difficulties inherent to PET images, development of trending image segmentation techniques

which combine anatomical information and metabolic activities in the same hybrid

frameworks (PET-CT, PET-CT, and MRI-PET-CT) is encouraging and open to further

investigations. Continued refinements of PET image segmentation methods in parallel to
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these advances in imaging instrumentation will provide basis for improved evaluation of

prognosis.
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Figure 1.
A summary of PET technology used in the U.S is shown in (a) [10]. (b) gives the breakdown

of clinical PET and PET-CT studies in 2011 by the branch of medicine. (c) demonstrates

2010 PET technology used in the U.S. for oncology applications, in which PET has been

used for mostly staging and follow-up therapy.
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Figure 2.
Analysis of publications pertaining to PET image segmentation methods and their

applications is shown (from 1983-2012). Journal and conference publications are shown in

(a). A comparison of modality dependent image segmentation methods published for MRI,

CT, and PET are shown in (b). Further categorization on the published papers has been

conducted in (c) and (d) from 1984 to 2012 and from 2007 to 2012, respectively.
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Figure 3.
An overview of the categories of PET segmentation methods: Manual segmentation,

Thresholding-based, Region-based, Stochastic and Learning-based, Boundary Based, and

Joint segmentation methods.
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Figure 4.
An overview of intensity-based segmentation methods for PET images.
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Figure 5.
Iterative thresholding method for finding optimal thresholding value.
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Figure 6.
The segmentation result at each iteration using the ITM is shown.
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Figure 7.
An overview of the Stochastic and learning-based segmentation methods.
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Figure 8.
Left: A representative slice (segmented to remove non-lung regions) showing focal

radiotracer uptake in a small animal model while Right: demonstrates multi-focal/diffuse

uptake patterns in a rabbit model infected with tuberculosis (5 weeks). Most PET

segmentation techniques focus on segmenting the focal uptakes while ignoring the diffuse

uptakes that occur in infectious pulmonary disease.
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Figure 9.
An overview of the region-based segmentation methods.
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Figure 10.
The homogeneity metric for (a), (b) = 0.1 and (c), (d) = 0.3. The black outline in the images

is the gold standard while the blue line is found from the region grown algorithm. The blue

dot represents the location of the user defined seed.
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Figure 11.
An overview of the boundary-based segmentation methods.
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Figure 12.
Here is an example of a segmentation that incorporates anatomical and functional

information from multi-modalities (PET and CT). The original images are shown on the left

while a zoom in view showing the segmentation (using the information only from the

respective image) is provided on the right. The resulting co-segmentation is in the middle

image on the right in white.
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Table 1

Methods for Correcting Physical and Physiological Factors Influencing SUV Computation

Physiological Factors Effects Corrective Measure References

Body Composition SUV in obese patients overesti-
mates FDG

Use of lean body mass
(SUVLBM) or body surface
area (SUVBSA)

[19, 21, 22]

Blood Glucose Concen-
tration

Reduced FDG uptake in tissues
with increasing glucose levels

Control blood glucose levels
before administering FDG

[23, 24, 25]

Uptake Period Increase of SUV over time in ma-
lignant tissues

Standardize the time of image
acquisition

[26, 27, 28]

Physical Factors Effects Corrective Measure References

Respiratory Motion Reduction of SUVmax up to 7 –
159%

Respiratory gating or 4D re-
construction

[29, 30, 31]

Attenuation correction
and reconstruction
methods

Underestimation of SUV with
highly smoothed reconstruction
by roughly 20%

Standardize reconstruction
algorithm

[32, 33]

PVE Underestimates SUV in lesions
with diameters less than 2-3
times spatial resolution of scan-
ner

Adopt an optimal PVE factor [34, 35]
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Table 2

Manual segmentation variability by expert radiologists - the gold standard: Intra- and Interobserver percent

variability is the average percent variation in the segmentation volume. The reliability coefficient is used to

quantifies the consistency among multiple measurements on a scale from 0 to 1, where 1 indicates most

reliable, and 0 shows unreliable.

Intra-observer Inter-observer References

42-84% 44 - 78% [61]

5% 10 - 18% [64]

13.4 ± 17.3% 16.4 ± 21.8% [67]

0 - 44% 0 - 66% [68]

10.14 ± 4.23% 22.27 ± 6.49% [69]

Reliability Coefficient

0.91 0.85 [70]

0.90 0.82 [71]
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Table 3

Example studies using fixed-threshold based PET segmentation

Segmentation
Method

Anatomical Area Sample Size Accuracy References

T 42% Static phantom 3 elliptical
spheres 4 SBR

Mean volume deviation (%):
8.4%

[80]

T 34% Moving phantom 3 Spheres 3
Motions

Difference from ideal ranged
from 3 to 94 cm3 for motion
volumes of 1.2 to 243 cm3

[81]

T 34% Moving lollipop
phantom

1 Sphere with 3
longitudinal
movements

Volume deviation from
ground truth (%): 1.4 ±

8.1%

[82]

T 50% Intact squamous cell
carcinoma

40 Patients Volume deviation from CT
(%): 54.5%

[83]

T 50% NSCLC 101 Patients Volume deviation from CT
(%): 27 ± 3%

[84]

T42% : < 3cm
T24% : 3 – 5cm
T15% : > 5cm

NSCLC 20 Patients Determined threshold values
such that the volumes were

exactly the ground truth

[85]

T40%, SUV2.5 NSCLC 19 Patients Median volume deviation
from CT (%): −140%, −20%

[86]

Manual, T40%,
T50%, TSBR

Oral cavity,
oropharynx,

hypopharynx, larynx

78 Lesions Mean overlap fraction (CT):
0.61, 0.55, 0.39, 0.43

[77]

Manual, SUV2.5

T40%, TSBR

NSCLC 25 Lesions Mean GTV (cm3): 157.7,
164.6, 53.6, 94.7

Mean Radius (cm): 3.03,
3.05, 2.18, 2.52

[79]

T43%, SUV2.5 Rectal and anal
Cancer

18 patients 55.4 ± 18.3, 36.7 ± 38.4 Vol-
ume difference compared to

manual delineation

[87]

TSUVmax,
TIterative, TBgd,

FIT

Nonspherical
simulated tumors
inserted into real
patient PET scans

41 Lesions Mean error volume (%):
−50% ± 10%, −40% ± 40%,

4% ± 10%, 24% ± 20%

[88]

TSBR NSCLC 23 Tumors Compared to Histopathol-
ogy: Sensitivity: 66.7% and

Specificity: 95.0%
Compared to Manual Seg-

mentation: Sensitivity:
55.6% Specificity: 88.3%

[89]

T42%, T50%, FCM Sphere phantoms
with diameters 13 -

37 (mm)

6 Spheres using 4
scanners

Classification error (%):
42.6 ± 51.6, 20.3 ± 18.5,

27.8 ± 25.6

[67]

Manual, TSBR,
T40%,

T50%, SUV2.5

High-grade gliomas 18 patients Mean Overlap Fraction
(PET): 0.61, 0.62, 0.57,

0.67, 0.67
Mean Overlap Fraction
(MRI): 0.45, 0.44, 0.54,

0.36, 0.14

[78]

Manual,
TBgd20%

,TBgd40%,
SUV2.5, T40%

Esophageal
Carcinoma

96 Tumors Mean length of tumors (cm):
6.30 ± 2.69, 5.55 ± 2.48,
6.80 ± 2.92, 6.65 ± 2.66,
4.88 ± 1.99, 5.90 ± 2.38

[90]
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Segmentation
Method

Anatomical Area Sample Size Accuracy References

Gradient Based,
TSBR, T40%,

T40%

Stage I-II NSCLC 10 Patients DSC: 66%, 64%, 62%, 65% [91]

*
Patients had various number of tumors

TBgd: = ∊*T70% + mean background intensity

TBgdα = SUVBgd + α(%) * (SUVmax - SUVBgd)

FIT: In [88], the FIT method models the tumor as the convolution of actual tumor volume of uniform activity with a 3D Gaussian function
describing the local spatial resolution in the reconstructed image. The algorithm is from [92].
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Table 5

Examples of the performace of classification algorithms in PET segmentation

Classification Method Sample Size Results References

k-NN, ANN, Adaptive Thresh-
olding 6 Phantom spheres Absolute relative error(%)* 6.83,

0.28, 7.61
[111]

k-NN

Monte Carlo simu-
lation using Zubal
whole-body phan-
tom as prior

Dice similarity: ~ 80% - 85% [112]

k-NN, SUV2.5, T50%, TSBR
10 Head and neck
cancer patients

Sensitivity, Specificity: 0.90,
0.95 - 0.93, 0.84 - 0.48, 0.98 -
0.68, 0.96

[113]

k-Means, MRF, Multiscale MRF 4 Lesions Volume difference (%): 9.09,
6.97, 5.09 [114]

k-Means, MRF, Multiscale MRF 6 spheres using the
NIRMPA phantom

Volume difference (%): 42.86,
32.59, 15.36 [115]

FCM, FCM-SW*

Simulated lesions
from the NCAT
Phantom
21 NSCLC and 7
LSCC patients

Classification error (%): −10.8 ±
23.1 , 0.9 ± 14.4
Classification error (%): 21.7 ±
22.0, 8.6 ± 28.3

[116]

Standard GMM, SVFMM, CA-
SVFMM, ICM, MEANF, Dirich-
let Gaussian mixture model

PET Image of dog
lung and spherical
phantoms

Misclassification ratio(%):
32.15, 12.43, 11.85, 3.52, 1.19,
0.67

[117]

FLAB, FHMC, FCM, T42%
10 Spherical Phan-
toms

Classification errors (%): 25.2,
31.2, 51.6, 55.8 [118]

Spectral Clustering, Adaptive
Thresholding 30 Simulated lesions Dice Similarity: ~ 95%, 92% [119]

*
Integrated a trous wavelet transform and spatial information by first smoothing with a nonlinear anisotropic diffusion filter [120]
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