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Abstract

We investigate high-dimensional non-convex penalized regression, where the number of

covariates may grow at an exponential rate. Although recent asymptotic theory established that

there exists a local minimum possessing the oracle property under general conditions, it is still

largely an open problem how to identify the oracle estimator among potentially multiple local

minima. There are two main obstacles: (1) due to the presence of multiple minima, the solution

path is nonunique and is not guaranteed to contain the oracle estimator; (2) even if a solution path

is known to contain the oracle estimator, the optimal tuning parameter depends on many unknown

factors and is hard to estimate. To address these two challenging issues, we first prove that an

easy-to-calculate calibrated CCCP algorithm produces a consistent solution path which contains

the oracle estimator with probability approaching one. Furthermore, we propose a high-

dimensional BIC criterion and show that it can be applied to the solution path to select the optimal

tuning parameter which asymptotically identifies the oracle estimator. The theory for a general

class of non-convex penalties in the ultra-high dimensional setup is established when the random

errors follow the sub-Gaussian distribution. Monte Carlo studies confirm that the calibrated CCCP

algorithm combined with the proposed high-dimensional BIC has desirable performance in

identifying the underlying sparsity pattern for high-dimensional data analysis.

Keywords

High-dimensional regression; LASSO; MCP; SCAD; variable selection; penalized least squares

SUPPLEMENTARY MATERIAL Supplement to “Calibrating Non-convex Penalized Regression in Ultra-high Dimension”:
(doi: COMPLETED BY THE TYPESETTER; .pdf). This supplemental material includes the proofs of Lemmas 3.1 and 6.1, and some
additional numerical results.
*Support in part by National Science Foundation grant DMS-1308960.
†Support in part by National Research Foundation of Korea grant number 20100012671 funded by the Korea government.
‡Support in part by National Natural Science Foundation of China, 11028103 and NIH grants P50 DA10075, R21 DA024260, R01
CA168676 and R01 MH096711.

NIH Public Access
Author Manuscript
Ann Stat. Author manuscript; available in PMC 2014 June 17.

Published in final edited form as:
Ann Stat. 2013 October 1; 41(5): 2505–2536. doi:10.1214/13-AOS1159.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. Introduction

High-dimensional data, where the number of covariates p greatly exceeds the sample size n,

arise frequently in modern applications in biology, chemometrics, economics, neuroscience

and other scientific fields. To facilitate the analysis, it is often useful and reasonable to

assume that only a small number of covariates are relevant for modeling the response

variable. Under this sparsity assumption, a widely used approach for analyzing high-

dimensional data is regularized or penalized regression. This approach estimates the

unknown regression coefficients by solving the following penalized regression problem

(1.1)

where y is the vector of responses, X is an n × p matrix of covariates, β = (β1, … ,βp)T is the

vector of unknown regression coefficients, ∥ · ∥ denotes the L2 norm (Euclidean norm), and

Pλ(·) is a penalty function which depends on a tuning parameter λ > 0. Many commonly

used variable selection procedures in the literature can be cast into the above framework,

including the best subset selection, L1 penalized regression or Lasso (Tib-shirani, 1996),

Bridge regression (Frank and Friedman, 1993), SCAD (Fan and Li, 2001), MCP (Zhang,

2010), among others.

The Lasso penalized regression is computationally attractive and enjoys great performance

in prediction. However, it is known that Lasso requires rather stringent conditions on the

design matrix to be variable selection consistent (Zou, 2006; Zhao and Yu, 2006). Focusing

on identifying the unknown sparsity pattern, non-convex penalized high-dimensional

regression has recently received considerable attention. Fan and Li (2001) first

systematically studied nonconvex penalized likelihood for fixed finite dimension p. In

particular, they recommended the SCAD penalty which enjoys the oracle property for

variable selection. That is, it can estimate the zero coefficients as exact zero with probability

approaching one, and estimate the non-zero coefficients as efficiently as if the true sparsity

pattern is known in advance. Fan and Peng (2004) extended these results by allowing p to

grow with n at the rate p = o(n1/5) or p = o(n1/3). For high dimensional nonconvex penalized

regression with p ⪢ n, Kim et al. (2008) proved that the oracle estimator itself is a local

minimum of SCAD penalized least squares regression under very relaxed conditions; Zhang

(2010) proposed a minimax concave penalty (MCP) and devised a novel PLUS algorithm

which when used together can achieve the oracle property under certain regularity

conditions. Important insight has also been gained through the recent work on theoretical

analysis of the global solution (Kim and Kwon, 2012; Zhang and Zhang, 2012). However,

direct computation of the global solution to the nonconvex penalized regression is infeasible

in high dimensional setting.

For practical data analysis, it is critical to find an easy-to-implement procedure which can

find a local solution with satisfactory theoretical propertyeven when the number of

covariates greatly exceeds the sample size. Two challenging issues remain unsolved. One is

the problem of multiple local minima; the other is the problem of optimal tuning parameter

selection.
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A direct consequence of the multiple local minima problem is that the solution path is not

unique and is not guaranteed to contain the oracle estimator. This problem is due to the

nature of the non-convexity of the penalty. To understand it, we note that the penalized

objective function in (1.1) is non-convex in β whenever the convexity of the least squares

loss function does not dominate the concavity of the penalty part. In general, the occurrence

of multiple minima is unavoidable unless strong assumptions are imposed on both the design

matrix and the penalty function. The recent theory for SCAD penalized linear regression

(Kim et al., 2008) and for general non-concave penalized generalized linear models (Fan and

Lv, 2011) indicates that one of the local minima enjoys the oracle property but it is still an

unsolved problem how to identify the oracle estimator among multiple minima when p ⪢ n.

Popularly used algorithms generally only en sure the convergence to a local minimum,

which is not necessarily the oracle estimator. Numerical evidence in Section 4 suggests that

the local minima identified by some of the popular algorithms have a relatively low

probability to recover the unknown sparsity pattern although it may have small estimation

error.

Even if a solution path is known to contain the oracle estimator, identifying such a desirable

estimator from the path is itself a challenging problem in ultra-high dimension. The main

issue is to find the optimal tuning parameter which yields the oracle estimator. The

theoretically optimal tuning parameter does not have an explicit representation and depends

on unknown factors such as the variance of the unobserved random noise. Cross-validation

is commonly adopted in practice to select the tuning parameter but is observed to often

result in overfitting. In the case of fixed p, Wang, Li and Tsai (2007) rigorously proved that

generalized cross-validation leads to an overfitted model with a positive probability for

SCAD-penalized regression. Effective BIC-type criterion for nonconvex penalized

regression has been investigated in Wang, Li and Tsai (2007) and Zhang, Li and Tsai (2010)

for fixed p; and in Wang, Li and Leng (2009) for diverging p (but p < n). However, to the

best of our knowledge, there is still no satisfactory tuning parameter selection procedure for

nonconvex penalized regression in ultra-high dimension.

The above two main concerns motivate us to consider calibrating nonconvex penalized

regression in ultra-high dimension with the goal to identify the oracle estimator with high

probability. To achieve this, we first prove that a calibration of the CCCP algorithm (Kim et

al., 2008) for non-convex penalized regression produces a consistent solution path with

probability approaching one in merely two steps under conditions much more relaxed than

what would be required for the Lasso estimator to be model selection consistent.

Furthermore, extending the recent work of Chen and Chen (2008) and Kim et al. (2011) for

Bayesian information criterion (BIC) on high dimensional least squares regression, we

propose a high-dimensional BIC for a nonconvex penalized solution path and prove its

validity under more general conditions when p grows at an exponential rate. The recent

independent work of Zhang (2010, 2012) devised a multi-stage convex relaxation scheme

and proved that for the capped L1 penalty the algorithm can find a consistent solution path

with probability approaching one under certain conditions. Despite the similar flavor shared

with the algorithm proposed in this paper, his algorithm takes multiple steps (which can be
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very large in practice depending on the design condition) and the paper has not studied the

problem of tuning parameter selection.

To deepen our understanding of the nonconvex penalized regression, we also derive an

interesting auxiliary theoretical result of an upper bound on the L2 distance between a sparse

local solution of nonconvex penalized regression and the oracle estimator. This result is new

and insightful. It suggests that under general regularity conditions a sparse local minimum

can often have small estimation error even though it may not be the oracle estimator.

Overall, the theoretical results in this paper fill in important gaps in the literature, thus

substantially enlarge the scope of applications of nonconvex penalized regression in ultra-

high dimension. In Monte Carlo studies, we demonstrate that the calibrated CCCP algorithm

combined with the proposed high-dimensional BIC is effective in identifying the underlying

sparsity pattern.

The rest of the paper is organized as follows. In Section 2, we define the notation, review the

CCCP algorithm and introduce the new methodology. In Section 3, we establish that the

proposed calibrated CCCP solution path contains the oracle estimator with probability

approaching one under general conditions, and that the proposed high-dimensional BIC is

able to select the optimal tuning parameter with probability tending to one. In Section 4, we

report numerical results from Monte Carlo simulations and a real data example. In Section 5,

we present an auxiliary theoretical result which sheds light on the estimation accuracy of a

local minimum of non-convex penalized regression if it is not the oracle estimator. The

proofs are given in Section 6.

2. Calibrated non-convex penalized least squares method

2.1. Notation and setup

Suppose that  is a random sample from the linear regression model:

(2.1)

where y = (Y1, … , Yn)T , X is the n × p non-stochastic design matrix with the ith row

 is the vector of unknown true parameters, and ∊ = (∊1, … , ∊n)T is a vector of

independent and identically distributed random errors.

We are interested in the case where p = pn greatly exceeds the sample size n. The vector of

the true parameters β* is assumed to be sparse in the sense that the majority of its

components are exactly zero. Let  be the index set of covariates with non-

zero coefficients and let  denote the cardinality of A0. We use 

to denote the minimal absolute value of the non-zero coefficients. Without loss of generality,

we may assume that the first q components of β* are non-zero, thus we can write

, where 0 represents a zero vector of length p − q. The oracle estimator is
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defined as , where  is the least squares estimator fitted using only the

covariates whose indices are in A0.

To handle the high-dimensional covariates, we consider the penalized regression in (1.1).

The penalty function pλ(t) is assumed to be increasing and concave for t ∈ [0, +∞) with a

continuous derivative  on (0, +∞). To induce sparsity of the penalized estimator, it is

generally necessary for the penalty function to have a singularity at the origin, i.e.,

. Without loss of generality, the penalty function can be standardized such that

. Furthermore, it is required that

(2.2)

(2.3)

for some positive constant a0. Condition (2.3) plays the key role of not over-penalizing large

coefficients, thus alleviating the bias problem associated with Lasso.

The above class of penalty functions include the popularly used SCAD penalty and MCP.

The SCAD penalty is defined by

(2.4)

for some a > 2, where the notation b+ stands for the positive part of b, i.e., b+ = bI(b > 0).

Fan and Li (2001) recommended to use a = 3.7 from a Bayesian perspective. On the other

hand, the MCP is defined by  for some a > 0 (as a ↓ 1, it amounts to

hard-thresholding, thus in the following we assume a > 1).

Let x(j) be the jth column vector of X. Without loss of generality, we assume that

 for all j. Throughout this paper the following notation is used. For an arbitrary

index set A ⊆ {1, 2 … , p}, XA denotes the n × ∣A∣ submatrix of X formed by those columns

of X whose indices are in A. For a vector v = (v1, … , vp)’, we use ∥v∥ to denote its L2 norm;

on the other hand ∥v∥0 = #{j : vj ≠ 0} denotes the L0 norm, ∥v∥1 = ∑j ∣vj∣ denotes the L1

norm and ∥v∥∞ = maxj ∣vj∣ denotes the L∞ norm. We use vA to represent the size-∣A∣

subvector of v formed by the entries vj with indices in A. For a symmetric matrix B, λmin(B)

and λmax(B) stand for the smallest and largest eigenvalues of B, respectively. Furthermore,

we let

(2.5)

Finally, p, q, λ and other related quantities are all allowed to depend on n, but we suppress

such dependence for notational simplicity.
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2.2. The CCCP algorithm

It is challenging to solve the penalized regression problem in (1.1) when the penalty function

is nonconvex. Kim et al. (2008) proposed a fast optimization algorithm called the SCAD-

CCCP (CCCP stands for ConCave Convex procedure) algorithm for solving the SCAD-

penalized regression. The key idea is to update the solution with the minimizer of the tight

convex upper bound of the objective function obtained at the current solution. What makes a

fast algorithm practical relies on the possibility of decomposing the non-convexed penalized

least squares objective function as the sum of a convex function and a concave function. To

be specific, suppose we want to minimize an objective function C(β) which has the

representation C(β) = Cvex(β) + Ccav(β) for a convex function Cvex(β) and a concave function

Ccav(β). Given a current solution β(k), the tight convex upper bound of C(β) is given by Q(β)

= Cvex(β) + ▿Ccav(βk)’ β where ▿Ccav(β) = ∂Ccav(β)/∂β. We then update the solution by

minimizing Q(β). Since Q(β) is a convex function, it can be easily minimized.

For the penalized regression in (1.1), we consider a penalty function pλ(∣βj∣) which has the

decomposition

(2.6)

where Jλ(∣βj∣) is a differentiable concave function. For example, for the SCAD penalty,

while for the MCP penalty,

Hence, using the decomposition in (2.6), the penalized objective function in (1.1) can be

rewritten as

which is the sum of convex and concave functions. The CCCP algorithm is applied as

follows. Given a current solution β(k), the tight convex upper bound is

(2.7)

We then update the current solution by β(k+1) = arg minβ Q(β∣β(k), λ).
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An important property of the CCCP algorithm is that the objective function always

decreases after each iteration (Yuille and Rangarajan, 2003 and Tao and An, 1997), from

which it can be deduced that the solution converges to a local minimum. See, for example,

Corollary 3.2 of Hunter and Li (2005). However, there is no guarantee that the local

minimum found is the oracle estimator itself because there are multiple local minima and the

solution of the CCCP algorithm depends on the choice of the initial solution.

2.3. Calibrated non-convex penalized regression

In this paper, we propose and study a calibrated CCCP estimator. More specifically, we start

with the initial value β(0) = 0 and a tuning parameter λ > 0, and let Q be the tight convex

upper bound defined in (2.7). The calibrated algorithm consists of the following two steps.

1.
Let , where the choice of τ > 0 will be discussed

later.

2.
2. Let .

When we consider a sequence of tuning parameter values, we obtain a solution path

. The calculation of the path is fast even for very high-dimensional p as for

each of the two steps a convex minimization problem is solved. In step 1, a smaller tuning

parameter τλ is adopted to increase the estimation accuracy, see Section 3.1 for discussions

on the practical choice of τ. We call a solution path “path consistent” if it contains the oracle

estimator. In Section 3.1, we will prove that the calibrated CCCP algorithm produces a

consistent solution path under rather weak conditions.

Given such a solution path, a critical question is how to tune the regularization parameter λ

in order to identify the oracle estimator. The performance of a penalized regression

estimator is known to heavily depend on the choice of the tuning parameter. To further

calibrate non-convex penalized regression, we consider the following high-dimensional BIC

criterion (HBIC) to compare the estimators from the above solution path:

(2.8)

where  is the model identified by  denotes the cardinality of

Mλ, and  with . As we are interested in the case where

p greatly exceeds n, the penalty term also depends on p; and Cn is a sequence of numbers

that diverges to ∞, which will be discussed later.

We compare the value of the above HBIC criterion for λ ∈ Λn = {λ : ∣Mλ∣ ≤ Kn}, where Kn

> q represents a rough estimate of an upper bound of the sparsity of the model and is

allowed to diverge to ∞. We select the tuning parameter
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The above criterion extends the recent works of Chen and Chen (2008) and Kim et al.

(2012) on the high-dimensional BIC for the least squares regression to tuning parameter

selection for nonconvex penalized regression. In Sections 3.1-3.3, we study asymptotic

properties under conditions such as sub-Gaussian random errors, dimension of the covariates

growing at the exponential rate and diverging Kn.

3. Theoretical properties

The main theory comprises two parts. We first show that under some general regularity

conditions the calibrated CCCP algorithm yields a solution path with the “path consistency”

property. We next verify that when the proposed high-dimensional BIC is applied to this

solution path to choose the tuning parameter λ, with probability tending to one the resulted

estimator is the oracle estimator itself.

To facilitate the presentation, we specify a set of regularity conditions.

(A1) There exists a positive constant C1 such that .

(A2) The random errors ∊1, … , ∊ν are i.i.d. mean zero sub-Gaussian random variables with

a scale factor 0 < σ < ∞, i.e., E[exp(t∊i)] ≤ eσ2t2/2, ∀ t.

(A3) The penalty function pλ(t) is assumed to be increasing and concave for t ∈ [0, +∞)

with a continuous derivative  on (0, +∞). It admits a convex-concave decomposition

as in (2.6) with Jλ(·) satisfies: ▿Jλ(∣t∣) = −λsign(t) for ∣t∣ > aλ, where a > 1 is a constant; and

∣▿Jλ(∣t∣)∣ ≤ ∣t∣ for ∣t∣ ≤ bλ, where b ≤ a is a positive constant.

(A4) The design matrix X satisfies: .

(A5) Assume that λ = o(d*) and τ = o(1), where d* is defined on page 5, λ and τ are the two

parameters in the modified CCCP algorithm given in the first paragraph of Section 2.3.

Remark 1

Condition (A1) concerns the true model and is a common assumption in the literature on

high-dimensional regression. Condition (A2) implies that for a vector a = (a1, … , an)T,

(3.1)

Condition (A3) is satisfied by popular nonconvex penalty functions such as SCAD and

MCP. Note that the condition ▿Jλ(∣t∣) = −λsign(t) for ∣t∣ > aλ is equivalent to assuming that

 i.e., large coefficients are not penalized, which is exactly the motivation

for nonconvex penalties. Condition (A4), which is given in Bickel et al. (2009), ensures a

desirable bound on the L1 estimation loss of the Lasso estimator. Note that the CCCP

algorithm yields the Lasso estimator after the first iteration, so the asymptotic properties of

the CCCP estimator is related to that of the Lasso estimator. Condition (A4) holds under the
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restricted eigenvalue condition which is known to be a relatively mild condition on the

design matrix for high-dimensional estimation. In particular, it is known to hold in some

examples where the covariates are highly dependent, and is much weaker than the

irrepresentable condition (Zhao and Yu, 2006) which is almost necessary for Lasso to be

model selection consistent.

3.1. Property of the solution path

We first state a useful lemma that characterizes a nonasymptotic property of the oracle

estimator in high dimension. The result is an extension of that in Kim et al. (2008) under the

more general sub-Gaussian random error condition.

Lemma 3.1—For any given 0 < b1 < 1 and 0 < b2 < 1, consider the events

where Sj(β) = −n−1x(j)
T(y − Xβ). Then under conditions (A1) and (A2),

The proof of Lemma 3.1 is given in the online supplementary material. Theorem 3.2 below

provides a non-asymptotic bound of the probability the solution path contains the oracle

estimator. Under general conditions, this probability tends to one.

Theorem 3.2—(1) Assume that conditions (A1)-(A5) hold. If τγ−2q = o(1), then for all n

sufficiently large,

(2) Assume that conditions (A1)-(A5) hold. If nτ2λ2 → ∞, log p = o(nτ2λ2) and τγ−2q =

o(1), then

as n → ∞.

Remark 2—Meinshausen and Yu (2009) considered thresholding Lasso, which has the

oracle property under an incoherent design condition in the ultra-high dimension. Zhou

(2010) further proposed and investigated a multi-step thresholding procedure which can

accurately estimate the sparsity pattern under the restricted eigenvalue condition of Bickel et

al. (2009). These theoretical results are derived by assuming the initial Lasso is obtained

using a theoretical tuning parameter value, which depends on the unknown random noise
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variance σ2. Estimating σ2 is a difficult problem in high-dimensional setting, particularly

when the random noise is non-Gaussian. On the other hand, if the true value of σ2 is known

a priori, then it is possible to derive variable selection consistency under somewhat more

relaxed conditions on the design matrix than those in the current paper. Adaptive Lasso,

originally proposed by Zou (2006) for fixed dimension, was extended to high dimension by

Huang et al. (2008) under a rather strong mutual incoherence condition. Zhou, van der Geer

and Bühlmann (2009) derived the consistency of adaptive Lasso in high dimension under

similar conditions on X, but still requires complex conditions on s and d*. Some favorable

empirical performance of the multi-step thresholded Lasso versus the adaptive Lasso was

reported in Zhou (2010). A theoretical comparison of these two procedures in high

dimension was considered by van de Geer, Bühlmann and Zhou (2011) and Chapter 7 of

Bühlmann and van de Geer (2011). For both adaptive and thresholded Lasso, if a covariate

is deleted in the first step, it will be excluded from the final selected model. Zhang (2010)

proved that selection consistency holds for the MCP solution at the universal penalty level

. The LLA algorithm, which Zou and Li (2008) originally proposed for fixed

dimensional models, alleviates this problem and has the potential to be extended to the ultra-

high dimension under conditions similar as those in this paper. Needless to say, the

performances of the above procedures all depend on the choice of tuning parameter.

However, the important issue of tuning parameter selection has not been addressed.

Remark 3—We proved that the calibrated CCCP algorithm which involves merely two

iterations is guaranteed to yield a solution path that contains the oracle estimator with high

probability under general conditions. To provide some intuition on this theory, we first note

that the first step of the algorithm yields the Lasso estimator, albeit with a small penalty

level τλ. If we denote the first step estimator by , then based on the optimization

theory, the oracle property is achieved when

The proof of Theorem 3.2 relies on the following condition:

(3.2)

for the given a > 1. The proof proceeds by bounding the first part of (3.2) using a result of

Bickel et al. (2009) via . In Section 3.3, we

considered an alternative approach using the recent result of Zhang and Zhang (2012),

which leads to weaker requirement on the minimal signal strength under slightly stronger

assumptions on the design matrix. We also noted that Theorem 3.2 holds for any a > 1,

although in the numerical studies we use the familiar a = 3.7.
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How fast the probability that our estimator is equal to the oracle estimator approaches one

depends on the sparsity level, the magnitude of the smallest signal, the size of the tuning

parameter and the condition of the design matrix. Corollary 3.3 below confirms that the

path-consistency can hold in ultra-high dimension.

Corollary 3.3: Assume that conditions (A1)-(A4) hold. Suppose there are two positive

constants γ0 and K such that γ ≥ γ0 > 0 and q < K. If d* = O(n−c1) for some c1 ≥ 0 and p =

O(exp(nc2)) for some c2 > 0, then

provided λ = O(n−c3) for some c3 > c1, τ2n1−2c3−c2 → ∞ and τ = o(1).

The above corollary indicates that if the true model is very sparse (i.e. q < K) and the design

matrix behaves well (i.e. γ ≥ γ0 > 0), then we can take τ to be a sequence that converges to 0

slowly, for example, τ = 1/log n. On the other hand, if one is concerned that the true model

may not be very sparse (q → ∞) and the design matrix may not behave very well (γ → 0),

then an alternative choice is to take τ = λ which works also quite well in practice. The

following corollary establishes that under some general conditions, the choice of τ = λ yields

a consistent solution path under ultra high-dimensionality.

Corollary 3.4: Assume that conditions (A1)-(A4) hold. If q = O(nc1) for some c1 ≥ 0, d* =

O(n−c2) for some c2 ≥ 0, γ = O(n−c3) for some c3 ≥ 0, p = O(exp(nc4)) for some 0 < c4 < 1, λ

= O(n−c5) for some max(c2, c1 + 2c3) < c5 < (1 − c4)/4 and τ = λ, then

3.2. Property of the high-dimensional BIC

Theorem 3.5 below establishes the effectiveness of the HBIC defined in (2.8) for selecting

the oracle estimator along a solution path of the calibrated CCCP.

Theorem 3.5—(Property of HBIC) Assume that the conditions of Theorem 3.2(2) hold,

and there exists a positive constant κ such that

(3.3)

where In denotes the n × n identity matrix and PA denotes the projection matrix onto the

linear space spanned by the columns of XA. If Cn, → ∞, qCn log(p) = o(n) and

, then
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as n, p → ∞.

Remark 4—Condition (3.3) is an asymptotic model identifiability condition, similar to that

in Chen and Chen (2008). This condition states that if we consider any model which

contains at most Kn covariates, it cannot predict the response variable as well as the true

model does if it is not the true model. To give some intuition of this condition, as in Chen

and Chen (2008), one can show that for A ⊉ A0,

The theorem confirms that the BIC criterion for shrinkage parameter selection investigated

in Wang, Li and Tsai (2007), Wang, Li and Leng (2009) and Zhang, Li and Tsai (2010) can

be modified and extended to ultra-high dimensionality. Carefully examining the proof, it is

worth noting that the consistency of the HBIC only requires a consistent solution path but

does not rely on the particular method used to construct the path. Hence, the proposed HBIC

has the potential to be generalized to other settings with ultra-high dimensionality. The

sequence Cn should diverge to ∞ slowly, e.g. Cn = log(log n), which is used in our

numerical studies.

3.3. Relaxing the conditions on the minimal signal

Theorem 3.2, which is the main result of the paper, implies that the oracle property of the

calibrated CCCP estimator requires the following lower bound on the magnitude of the

smallest nonzero regression coefficient

(3.4)

where a ≻ b means limn→∞ a/b = ∞, and c is a constant that depends on the design matrix

X and other unknown factors such as σ2. When the true model dimension q is fixed, the

lower bound for d* is arbitrarily close to the optimal lower bound  for nonconvex

penalized approaches (e.g. Zhang, 2010). However, when q is diverging, this bound is

suboptimal. In general, there is a tradeoff between the conditions on d* and the conditions on

the design matrix. Comparing to the results in the literature, Theorem 3.2 imposes weak

conditions on the design matrix and the algorithm we investigate is transparent. In this

section, we will prove that the optimal lower bound of d* can be achieved by the calibrated

CCCP procedure under a set of slightly stronger conditions on the design matrix.

Note that the calibrated CCCP estimator depends on , which is the Lasso estimator

obtained after the first iteration of the CCCP algorithm. In fact, the lower bound of d* is

proportional to the l∞ convergence rate of , to β*, and Condition (A4) only implies that

 is proportional to . If
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(3.5)

we can show that  for any τ = o(1); and hence we can achieve almost the

optimal lower bound for d*. Now, the question is under what conditions inequality (3.5)

holds. Let vij be the (i, j) entry of XT X. Lounici (2008) derived the convergence rate (3.5)

under the condition of mutual coherence:

(3.6)

for some constant b > 0. However, the mutual coherence condition would be too strong for

practical purposes when q is diverging, since it requires that the pairwise correlations

between all possible pairs are sufficiently small. In this subsection, we give an alternative

condition for (3.5) based on the l1 operation norm of XT X.

We replace condition (A4) with the slightly stronger condition (A4’) below. We also

introduce an additional condition (A6) based on the matrix l1 operational norm. For a given

m × m matrix A, the l1 operational norm ∥A∥1 is defined by ,

where aij is the (i, j)th entry of A. Let

Condition (A4’): There exist positive constants α and κmin such that

(3.7)

and

(3.8)

where .

Condition (A6): Let u = α + 1. There exist finite positive constants ηmax and ηmin such that

and
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Remark 5—Similar conditions to Condition (A4’) were considered by Meinshausen and

Yu (2009) and Bickel et al. (2009) for the l2 convergence of the Lasso estimator. However,

(3.8) of Condition (A4’), which essentially assumes that ξmax(αq)/α is sufficiently small, is

weaker, at least asymptotically, than the corresponding condition in Meinshausen and Yu

(2009) and Bickel et al. (2009), which assumes that ξmax(q + min{n, p}) is bounded. Zhang

and Zhang (2012) proved that  under Condition (A4’). In

addition, Condition (A4’) implies Condition (A4) (see Bickel et al. 2009). Condition (A6) is

not too restrictive. Assume the xi’s are randomly sampled from a distribution with mean 0
and covariance matrix ∑. If the l1 operational norm of ∑ and ∑−1 are bounded, then we have

ζmax(uq) ≤ max∣B∣≤uq,A0⊂B ∥∑B∥1 + op(1) and

 provided that q does not diverge too fast.

Here ∑B is the ∣B∣ × ∣B∣ whose entries consist of σjl, the (j, l)th entry ∑, for j ∈ B and l ∈ B.

See Proposition A.1 in the online supplementary material of this paper. An example of ∑

satisfying max∣B∣≤uq,A0⊂B ∥∑B∥1 *** ∞ and  is a block diagonal

matrix where each block is well posed and of finite dimension. Moreover, Condition (A6) is

almost necessary for the l∞ convergence of the Lasso estimator. Suppose that p is small and

d* is large so that all coefficients of the Lasso coefficients are nonzero. Then,

where  is the least square estimator, and δ = (δ1, … , δp) with . Hence, for

the sup norm between  to be the order of τλ, the l1 operational norm of (XTX/n)−1

should be bounded.

Theorem 3.6: Assume that conditions A(1)-A(3), (A4’), (A5) and (A6) hold.

(1) If τ = o(1), then for all n sufficiently large,

(2) If τ = o(1) and log p = o(nτ2λ2), then

as n → ∞

(3) Assume that the conditions of (2) and (3.3) hold. Let  be the tuning parameter selected

by HBIC. If , then ,

as n, p → ∞.

Wang et al. Page 14

Ann Stat. Author manuscript; available in PMC 2014 June 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Remark 6—We only need τ = o(1) in Theorem 3.6 for the probability bound of the

calibrated CCCP estimator, while Theorem 3.2 requires τγ−2q = o(1): Under the conditions

of Theorem 3.6, the oracle property of  holds when

(3.9)

Since τ can converge to 0 arbitrarily slowly (e.g. τ = 1/log n), the lower bound of d* given

by (3.9), , is almost optimal.

4. Numerical results

4.1. Monte Carlo studies

We now investigate the sparsity recovery and estimation properties of the proposed

estimator via numerical simulations. We compare the following estimators: the oracle

estimator which assumes the availability of the knowledge of the true underlying model; the

Lasso estimator (implemented using the R package glmnet); the adaptive Lasso estimator

(denoted by ALasso, Zou (2006), Section 2.8 of Bühlmann and van de Geer (2011)), the

hard-thresholded Lasso estimator (denoted by HLasso, Section 2.8, Bühlmann and van de

Geer (2011)), the SCAD estimator from the original CCCP algorithm without calibration

(denoted by SCAD); the MCP estimator with a = 1.5 and 3. For Lasso and SCAD, 5-fold

cross-validation is used to select the tuning parameter; for ALasso, sequential tuning as

described in Chapter 2 of Bühlmann and van de Geer (2011) is applied. For HLasso,

following a referee’s suggestion, we first used λ as the tuning parameter to obtain the initial

Lasso estimator, then thresholded the Lasso estimator using thresholding parameter η = cλ

for some c > 0 and refitted least squares regression. We denote the solution path of HLasso

by , and apply HBIC to select λ. We consider c = 2 and set Cn = log log n in the

HBIC as it is found they lead to overall good performance for HLasso. The MCP estimator

is computed using the R package PLUS with the theoretical optimal tuning parameter value

, where the standard deviation σ is taken to be known. For the proposed

calibrated CCCP estimator (denoted by New), we take τ = 1/log n and set Cn = log log n in

the HBIC. We observe that the new estimator performs similarly if we take τ = λ. In the

following, we report simulation results from two examples. Results of additional simulations

can be found in the online supplemental file.

Example 1—We generate a random sample {yi, xi}, i = 1, … , 100 from the following

linear regression model:

where  with 0k denoting a k-dimensional vector of zeros, the p-

dimensional vector xi has the N(0p, Σ) distribution with covariance matrix Σ, ∊i is

independent of xi and has a normal distribution with mean zero and standard deviation σ = 2.
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This simulation setup was considered in Fan and Li (2001) for a small p case. In this

example, we consider p = 3000 and the following choices of Σ: (1) Case 1a: the (i, j)th entry

of Σ is equal to 0.5∣i−j∣, 1 ≤ i, j ≤ p; (2) Case 1b: the (i, j)th entry of Σ is equal to 0.8∣i−j∣, 1 ≤

i, j ≤ p; (3) Case 1c: the (i, j)th entry of Σ equal to 1 if i = j and 0.5 if 1 ≤ i ≠ j ≤ p.

Example 2—We consider a more challenging case by modifying Example 1 Case 1a. We

divide the p components of β* into continuous blocks of size 20. We randomly select 10

blocks and assign each block the value . Hence, the number of nonzero

coefficients is 30. The entries in other blocks are set to be zero. We consider σ = 1. Two

different cases are investigated: (1) Case 2a: n = 200 and p = 3000; (2) Case 2b: n = 300 and

p = 4000.

In the two examples, based on 100 simulation runs we report the average number of non-

zero coefficients correctly estimated to be nonzero (i.e., true positive, denoted by TP) and

average number of zero coefficients incorrectly estimated to be nonzero (i.e., false positive,

denoted by FP) and the proportion of times the true model is exactly identified (denoted by

TM). These three quantities describe the ability of various estimators for sparsity recovery.

To measure the estimation accuracy, we report the mean squared error (MSE), which is

defined to be , where  is the estimator from the mth

simulation run.

The results are summarized in Table 1 and Table 2. It is not surprising that Lasso always

overfits. Other procedures improve the performance of Lasso by reducing the false positive

rate. The SCAD estimator from the original CCCP algorithm without calibration has no

guarantee to find a good local minimum and has low probability of identifying the true

model. The best overall performance is achieved by the calibrated new estimator: the

probability of identifying the true model is high and the MSE is relatively small. The

HLasso (with thresholding parameter selected by our proposed HBIC) and MCP (using

PLUS algorithm and the theoretically optimal tuning parameter) also have overall fine

performance. We do not report the results of the MCP with a = 1.5 for Example 2 since the

PLUS algorithm sometimes runs into convergence problems.

4.2. Real data analysis

To demonstrate the application, we analyze the gene expression data set of Scheetz et al.

(2006), which contains expression values of 31042 probe sets on 120 twelve-week-old male

offspring of rats. We are interested in identifying genes whose expressions are related to that

of gene TRIM32 (known to be associated with human diseases of the retina) corresponding

to probe 1389163_at. We first preprocess the data as described in Huang et al.(2008) to

exclude genes that are either not expressed or lacking sufficient variation. This leaves 18957

genes.

For the analysis, we select 3000 genes that display the largest variance in expression level.

We further analyze the top p (p = 1000 and 2000) genes that have the largest absolute value

of marginal correlation with gene TRIM32. We randomly partition the 120 rats into the
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training data set (80 rates) and testing data set (40 rats). We use the training data set to fit the

model and select the tuning parameter; and use the testing data set to evaluate the prediction

performance. We perform 1000 random partitions and report in Table 3 the average model

sizes and the average prediction error on the testing data set for p = 1000 and 2000. For the

MCP estimators, the tuning parameters are selected by cross-validation since the standard

deviation of the random error is not known. We observe that the Lasso procedure yields the

smallest prediction error. However, this is achieved by fitting substantially more complex

models. The calibrated CCCP algorithm as well as ALasso and HLasso result in much

sparser models with still small prediction errors. The performance of the MCP procedure is

satisfactory but its optimal performance depends on the parameter a. In screening or

diagnostic applications, it is often important to develop an accurate diagnostic test using as

few features as possible in order to control the cost. The same consideration also matters

when selecting target genes in gene therapies.

We also applied the calibrated CCCP procedure directly to the 18957 genes and evaluated

the predicative performance based on 100 random partitions. The calibrated CCCP estimator

has an average model size 8.1 and an average prediction error 0.58. Note that the model size

and predictive performance are similar to what we obtain when we first select 1000 (or

2000) genes with the largest variance and marginal correlation. This demonstrates the

stability of the calibrated CCCP estimator in ultra-high dimension.

When a probe is simultaneously identified by different variable selection procedures, we

consider it as evidence for the strength of the signal. Probe 1368113_at is identified by both

Lasso and the calibrated CCCP estimator. This probe corresponds to gene tff2, which was

found to up-regulate cell proliferation in developing mice retina (Paunel-Görgülü et al.,

2011). On the other hand, the probes identified by the calibrated CCCP but not by Lasso

also merit further investigation. For instance, probe 1371168_at was identified by the

calibrated CCCP estimator but not by Lasso. This probe corresponds to gene mpp2, which

was found to be related to protein metabolism abnormalities in the development of

retinopathy in diabetic mice (Gao et al., 2009).

4.3. Extension to penalized logistic regression

Regularized logistic regression is known to automatically result in a sparse set of features

for classification in ultra-high dimension (van de Geer, 2008; Kwon and Kim, 2011). We

consider the representative two-class classification problem, where the response variable yi

takes two possible values 0 or 1, indicating the class membership. It is assumed that

(4.1)

The penalized logistic regression estimator minimizes
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When a nonconvex penalty is adopted, it is easy to see that the CCCP algorithm can be

extended to this case without difficulty as the penalized log-likelihood naturally possesses

the convex-concave decomposition discussed in Section 2.2 of the main paper, because of

the convexity of the negative log-likelihood for the exponential family. For easy

implementation, the CCCP algorithm can be combined with the iteratively reweighted least

squares algorithm for ordinary logistic regression, thus taking advantage of the CCCP

algorithm for linear regression. Denote the nonconvex penalized logistic regression

estimator by , then for a new feature vector x, the predicted class membership is

.

We demonstrate the performance of nonconvex penalized sion logistic regresfor

classification through the following example: we generate xi as in Example 1 of the main

paper, and the response variable yi is generated according to (4.1) with

. We consider sample size n = 300 and feature dimension p =

2000. Furthermore, an independent test set of size 1000 is used to evaluate the

misclassificaiton error. The simulation results are reported in Table 4. The results

demonstrate that the calibrated CCCP estimator is effective in both accurate classification

and identifying the relevant features.

We expect that the theory we derived for the linear regression case continues to hold for the

logistic regression under similar conditions due to the convexity of the negative log-

likelihood function and the fact that the Bernoulli random variables automatically satisfies

the sub-Gaussian tail assumption. The latter is essential for obtaining the exponential bounds

in deriving the theory.

5. Revisiting local minima of nonconvex penalized regression

In the following, we shall revisit the issue of multiple local minima of non-convex penalized

regression. We derive an L2 bound of the distance between a sparse local minimum and the

oracle estimator. The result indicates that a local minimum which is sufficiently sparse often

enjoys fairly accurate estimation even when it is not the oracle estimator. This result, to our

knowledge, is new in the literature on high-dimensional nonconvex penalized regression.

Our theory applies the necessary condition for the local minimizer as in Tao and An (1997)

for convex differencing problems. Let

and
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where lj = sign(βj) if βj ≠ 0 and lj ∈ [−1, 1] otherwise, 1 ≤ j ≤ p. As Qn(β) can be expressed as

the difference of two convex functions, a necessary condition for β to be a local minimizer

of Qn(β) is

(5.1)

where , where Jλ(∣βj∣) is defined in Section 2.2 for SCAD and MCP

penalty functions.

To facilitate our study, we introduce below a new concept.

Definition 5.1

The relaxed sparse Riesz condition (SRC) in an L0-neighborhood of the true model is

satisfied for a positive integer m (2q ≤ m ≤ n) if

where ξmin is defined in (2.5).

Remark

The relaxed SRC condition is related to, but generally weaker than the sparse Reisz

condition (Zhang and Huang 2008, Zhang 2010), the restricted eigenvalue condition of

Bickel et al. (2009) and the partial orthogonality condition of Huang et al. (2008).

The theorem below unveils that for a given sparse estimator which is a local minimum of

(1.1), its L2 distance to the oracle estimator  has an upper bound, which is determined by

three key factors: tuning parameter λ, the sparsity size of the local solution, and the

magnitude of the smallest sparse eigenvalue as characterized by the relaxed SRC condition.

To this end, we consider any local minimum  corresponding to the tuning

parameter λ. Assume that the sparsity size of this local solution satisfies:  for

some un > 0:

Theorem 5.2—(Properties of the local minima of nonconvex penalized regression)

Consider SCAD or MCP penalized least squares regression. Assume that conditions (A1)

and (A2) hold, and that the relaxed SRC condition in an L0-neighborhood of the true model

is satisfied for  where . Then if λ = o(d*), then for all n sufficiently large,

(5.2)

where ξmin(m) is defined in (2.5) and the positive constant C1 is defined in (A1).
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Corollary 5.3—Under the conditions of Theorem 5.2, if we take , then we

have

The simple form in the above corollary suggests that if a local minimum is sufficiently

sparse, in the sense that un diverge to ∞ very slowly, this bound is nevertheless quite tight

as the rate q log(p)/n is near-oracle. The factor  is expected to go to infinity at a

relatively slow rate if the local solution is sufficiently sparse. Our experience with existing

algorithms for solving nonconvex penalized regression is that they often yield a sparse local

minimum, which however has a low probability to be the oracle estimator itself.

6. Proofs

We will provide here proofs for the main theoretical results in this paper.

Proof of Theorem 3.2

By definition, , where

. Since 

is a convex function of β, the KKT condition is necessary and sufficient for characterizing

the minimum. To verify that  is the minimizer of , it is sufficient to show

that

(6.1)

and

(6.2)

We first verify (6.1). Note that with the initial value 0, we have

. Let ,

where ∥ · ∥1 denotes the L1 norm. By modifying the proof of Theorem 7.2 of Bickel et al.

(2009), we can show that under the conditions of the theorem,

(6.3)
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By the assumption of the theorem, on the event  for all n

sufficiently large. Furthermore, we consider the event Fn1 defined in Lemma 3.1 with b1 =

1/2. By Lemma 3.1, we have

. By the assumption λ =

o(d*), for all n sufficiently large, on the event Fn1 ⋂ Fn3, we have sign ,

for j ∈ A0 and . Hence, by condition (A3), on the event

. Furthermore,

, for j ∈ A0, following the definition of the oracle estimator.

Therefore (6.1) holds with probability at least 1 − 2q exp[−C1nλ2/(8σ2)] − 2p exp(−

nτ2λ2/(8σ2)).

Next we verify (6.2). On the event Fn3, we have , for all n sufficiently

large. We consider the event Fn2 defined in Lemma 3.1 with b2 = 1/2. Lemma 3.1 implies

that P(Fn2) ≥ 1 − 2(p − q) exp[−nλ2/(8σ2)]. On the event Fn2 we have

. By condition (A3), on the event Fn2 ⋂ Fn3, (6.2)

holds, and this occurs with probability at least 1 − 2(p − q) exp[−nλ2/(8σ2)] − 2p exp ( −

nτ2λ2/(8σ2).

The above two steps proves (1). The result in (2) follows immediately from (1).

Proof of Corollary 3.3 and Corollary 3.4

The proof follows immediately from Theorem 3.2.

Proof of Theorem 3.5

Recall that . We define the following three index sets: Λn− = {λ > 0 : λ

∈ Λn, A0 ⊄, Mλ}, Λn0 = {λ > 0 : λ ∈ Λn, A0 = Mλ}, and Λn+ = {λ > 0 : λ ∈ Λn A0 ⊂ Mλ and

A0 ≠ = Mλ}. In other words, Λn−, Λn0 and Λn+ denote the sets of λ values which lead to

underfitted, exactly fitted and overfitted models, respectively. For a given model (or

equivalently an index set) M, let . That is, SSEM is the

sum of squared residuals when the least squares method is used to estimate model M. Also,

let . From the definition, we always have .

Consider λn satisfying the of Theorem 3.2(2). We have P(Mλn = A0) → 1. We will prove

that P(infλ∈Λn− [HBIC(λ) − HBIC(λn)] > 0) → 1 and P(infλ∈Λn+ [HBIC(λ) − HBIC(λn) > 0)

→ 1.

Case I—Consider an arbitrary λ ∈ Λn−, i.e., the model corresponding to Mλ is underfitted.
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where the inequality uses Theorem 3.2(2). Furthermore, we observe that

Applying the inequality log(1 + x) ≥ min{0.5x, log(2)}, ∀ x > 0, we have

To evaluate ∊T (In − PA0)∊, we apply Corollary 1.3 of Mikosch (1991) with their An = In −

PA0 , Bn = 2σ4(n − q), μn = σ2 and yn = (n − q)/(log n), we have P(∊T(In − PA0)∊ ≤ 2σ2(n −

q)) → 1 as n → ∞. Thus

In what follows, we will prove that , which

combining with the assumption qCn log(p) = o(n) leads to the conclusion P(infλ∈Λn−
[HBIC(λ) − HBIC(λn)] > 0) → 1.

We have
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where μ = Xβ*, PMλ is the projection matrix into the space spanned by the columns of XMλ,

and the definition of Ii, i = 1, 2, 3, 4, should be clear from the context. Let M− = {j : j ∉ Mλ, j

∈ MT}. Note that M− is nonempty since Mλ underfits.

By assumption (3.3), ∣I1∣ ≥ κn, for all n sufficiently large. To evaluate I2, we have

where  with . Note that ∥an∥2 =

1 and . Applying the sub-Gaussian tail

property in (3.1), we have

as Kn log(p) log(n) = o(n). Hence supη∈Λn− ∣I2∣. To evaluate I3, let r(λ) = Trace(PMλ). It

follows from Proposition 3 of Zhang (2010) that for the sub-Gaussian random variables ∊i, ∀

t > 0,

(6.4)

We take t = n/(2σ2Kn log(n)) − 1 in the above inequality. Then t → ∞ by the assumptions of

the theorem. Thus for all n sufficiently large,

since . Finally, ∊TPA0∊ does not depend on λ. Similarly as above,

P(supλ∈Λn− ∣I4∣ ≥ n/log(n)) → ∞ 0 by the sub-Gaussian tail condition. Therefore, with

probability approaching one,  is dominated by I1. This finishes the proof for

the first case as qCn log(p) = o(n).
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Case II—Consider an arbitrary λ ∈ Λn+, i.e., the model corresponding to Mλ is overfitted.

In this case, we have yT(In − PMλ)y = ∊T(In − PMλ)∊. Therefore,

. Let , then

by the fact log(1 + x) ≤ x,∀ x ≥ 0.

Similarly as in Case I,

It suffices to show that

which is implied by

Note that , . Similarly

as in case I, we can show that P(supλ∈Λn+ ∊T(PMλ − PA0)∊ > n/log(n)) → 0, since

. Thus . Furthermore,

applying (6.4) by letting t = 8 log(p) − 1, we have for all n sufficiently large,
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Thus with probability approaching one, for all n sufficiently large,

since Cn → ∞. This finishes the proof.

Proof of Theorem 3.6

We will first prove that there exists a constant C > 0 such that for

, we have

(6.5)

Let Fn5 = {∣Sj(β*)∣ ≤ τλ/2 for all j}: Since

we have

Hence to prove (6.5), it suffices to show that Fn5 ⊂ Fn4.

Let
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Corollary 2 of Zhang and Zhang (2012) proves that on the event Fn5, ∣A ⋃ A0∣ ≤ (α + 1)q,

where , provided

Since θ ≥ γ2/16 (see (7) of Zhang and Zhang, 2012), where γ is defined in (A4) and

(see Bickel et al., 2009), Condition (A4’) implies that

(6.6)

Let  be the projection of Xβ* onto span(XA); the linear subspace spanned by the column

vectors of XA. We define the p-dimensional vector γ* such that  and  for j ∈

Ac. We have

Therefore, we can write

Hence , where θ ∈ Rp such that θj = 0 for j ∈ Ac and

 for j ∈ A. On Fn5; maxj ∣θj∣ ≤ 3τλ/2. Therefore, condition (A6)

with (6.6) implies that on the event Fn5,

(6.7)
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It follows from (6.7) that inequality (6.5) holds if we show that A0 ⊂ A, in which case

. We will prove this by contradiction. Assume A(−) = A0 ⋂ Ac is nonempty. Let 

be the projection of x(j) onto span(XA) and let . Then, we can write

Let . By Lemma 6.1 below, there exists l ∈ A− such that

(6.8)

By the KKT condition, we have . However we can

write . The inequalities (6.8) and

(6.7) with condition (A6) imply that on Fn5

if d* > 3τλ(ηmaxηmin + 1)/(2κmin); which contradicts the KKT condition. Hence, we

eventually have A0 ⊂ A on Fn5 and this proves (6.5).

We now slightly modify the proof of (1) of Theorem 3.2. More specifically, replacing Fn3

by Fn4, we can show that , and this proves (1). The result

in (2) follows immediately from (1). The proof of (3) can be done similarly to that of

Theorem 3.5.

In the proof of Theorem 3.6, we have used the following lemma, whose proof is given in the

online supplementary material.

Lemma 6.1—There exists l ∈ A− which satisfies (6.8).

Proof of Theorem 5.2

By (5.1), a local minimizer β necessarily satisfies:

(6.9)
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where , with lj = sign(βj) if βj ≠ 0 and lj ∈ [−1, 1] otherwise, 1 ≤ j ≤ p.. It is

easy to see that ∣ξj∣ ≤ λ, 1 ≤ j ≤ p. Although the objective function is nonconvex, abusing the

notation a little, we refer to the collection of all vectors in the form of the left hand side of

(6.9) as the subdifferential ∂Qn(β) and refer to a specific element of this set a subgradient.

Then the necessary condition stated above can be considered as an extension of the classical

KKT condition.

Alternatively, minimizing Qn(β) can be expressed as a constrained smooth minimization

problem (e.g., Kim et al., 2008). By the corresponding second order sufficiency of KKT

condition (e.g., page 320 of Bertsekas, 1999),  is a local minimizer of Qn(β) if

Consider the event Fn = Fn2 ⋂ Fn6, where Fn2 is defined in Lemma 3.1 with b2 = 1, and

. Since  and λ = o(d*), similarly as in

the proof for Lemma 3.1, we can show that for all n sufficiently large, P(Fn6) ≥ 1 − 2q

exp[−C1n(d* − aλ)2/(2σ2)]. By Lemma 3.1, for all n sufficiently large, P(Fn) ≥ 1 − 2q

exp[−C1n(d* − aλ)2/(2σ2)] − 2(p − q) exp[−nλ2/(2σ2)]. It is apparent that on the event Fn,

the oracle estimator  satisfies the above sufficient condition. Therefore, by (6.9), there

exist , such that

Abusing notation a little, we denote this zero vector by .

Now for any local minimizer  which satisfies the sparsity constraint , we will

prove by contradiction that under the conditions of the theorem we must have

, where . More specifically, we’ll derive a

contradiction by showing that none of the subgradients of Qn(β) can be zero at .

Assume instead that . Let  or , then

. Let  be an

arbitrary subgradient in the subdifferential . Let , then ηj satisfies
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∣ηl∣ ≤ λ, 1 ≤ j ≤ p. We use  to denote the size-∣A*∣ subvector of , i.e.,

. And  is defined similarly. We have

where the second equality follows from the expression of subgradient, the second last

inequality applies the Cauchy-Schwarz inequality, and the last inequality follows from the

relaxed SRC condition in an L0-neighborhood of the true model. Thus this contradicts with

the fact that at least one of the subgradients is zero if  is a local minimizer and the theorem

is proved.

Proof of Corollary 5.3

It follows directly from Theorem 5.2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Example 1. We report TP (the average number of non-zero coefficients correctly estimated to be nonzero, i.e.,

true positive), FP (average number of zero coefficients incorrectly estimated to be nonzero, i.e. false positive),

TM (the proportion of the true model being exactly identified) and MSE.

Case method TP FP TM MSE

1a Oracle 3.00 0.00 1.00 0.146

Lasso 3.00 28.99 0.00 1.101

ALasso 3.00 11.47 0.01 1.327

HLasso 3.00 0.49 0.79 0.383

SCAD 3.00 10.12 0.08 1.496

MCP(a = 1.5) 2.89 0.28 0.76 0.561

MCP(a = 3) 2.91 0.42 0.68 1.292

New 2.99 0.09 0.91 0.222

1b Oracle 3.00 0.00 1.00 0.314

Lasso 3.00 20.64 0.00 1.248

ALasso 3.00 8.84 0.02 1.527

HLasso 2.79 0.50 0.56 1.244

SCAD 2.99 7.42 0.17 1.598

MCP(a = 1.5) 2.02 0.51 0.06 5.118

MCP(a = 3) 1.99 0.60 0.02 5.437

New 2.77 0.21 0.66 1.150

1c Oracle 3.00 0.00 1.00 0.195

Lasso 2.99 28.22 0.00 2.987

ALasso 2.96 10.09 0.02 2.433

HLasso 2.84 0.77 0.56 1.361

SCAD 2.96 18.09 0.01 3.428

MCP(a = 1.5) 2.67 0.17 0.72 1.636

MCP (a = 3) 2.77 0.22 0.68 1.677

New 2.79 0.46 0.58 1.244
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Table 2

Example 2. Captions are the same as those in Table 1.

Case method TP FP TM MSE

2a Oracle 30.00 0.00 1.00 0.223

Lasso 30.00 143.14 0.00 3.365

ALasso 29.98 7.50 0.00 0.393

HLasso 29.97 1.09 0.74 0.312

SCAD 29.98 46.15 0.00 2.495

MCP (a = 3) 29.83 0.50 0.92 0.807

New 29.99 0.20 0.89 0.247

2b Oracle 30.00 0.00 1.00 0.137

Lasso 30.00 133.65 0.00 1.089

ALasso 30.00 1.32 0.29 0.165

HLasso 30.00 0.00 1.00 0.137

SCAD 30.00 21.83 0.00 0.599

MCP (a = 3) 30.00 0.08 0.92 0.137

New 30.00 0.00 0.99 0.135
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Table 3

Gene expression data analysis. The results are based on 100 random partitions of the original data set.

p method ave model size Prediction Error

1000 Lasso 31.17 0.586

ALasso 11.76 0.646

HLasso 12.04 0.676

SCAD 4.81 0.827

MCP(a = 1.5) 11.79 0.668

MCP(a = 3) 7.02 0.768

New 8.50 0.689

2000 Lasso 32.01 0.604

ALasso 11.01 0.661

HLasso 10.82 0.689

SCAD 4.57 0.850

MCP(a = 1.5) 11.33 0.700

MCP(a = 3) 6.78 0.788

New 7.91 0.736
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Table 4

Simulations for classification in high dimension (n = 300, p = 2000).

method TP FP TM Misclassification Rate

Oracle 3.00 0.00 1.00 0.116

Lasso 3.00 46.48 0.00 0.134

SCAD 2.08 4.02 0.04 0.161

ALASSO 2.02 4.58 0.00 0.188

HLASSO 2.87 0.00 0.87 0.120

MCP (a = 3) 2.96 0.56 0.54 0.128

New 2.99 0.00 0.99 0.116
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