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Abstract

Significance: Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues sur-
rounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the
adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the
irradiated tissue bed. Recent Advances: Preclinical studies presented in this review provide encouraging proof of
concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with
radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin compli-
cations are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue
regeneration. Critical Issues: While therapeutic efficacy has been demonstrated in a variety of animal models
and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-
induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and
genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up
are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. Future
Directions: Follow-up studies will need to identify the best possible stem cell types for the treatment of early and
late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes,
identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into
more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the
irradiated microenvironment. Antioxid. Redox Signal. 21, 338–355.

Introduction

Targeted radiotherapy is an effective treatment for
cancer, but the amount of curative radiation that can be

delivered to the tumor is limited by the sensitivity of normal
tissues surrounding the lesion. While cancer therapies in-
creasingly achieve cure and extend survival, they often result
in chronic side effects in patients (29, 99, 142, 148, 149).
Paradoxically, modern therapies threaten to increase the

burden of chronic toxicity, not reduce it (6). Acute reactions
impacting normal tissue injury early after treatment are re-
lated to oxidative stress and inflammation that alter the mi-
croenvironment which includes sensitive stem cell niches (78).
These changes prime the irradiated tissue bed for a wide-
range of multifaceted late effects.

Recent research has identified a wealth of pharmacologic
strategies to temper the adverse effects of radiation exposure
(23, 163). Although pharmacologic interventions have only
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limited ability to mitigate severe side effects of radiotherapy,
some studies have shown the potential of these treatments to
inhibit the onset of tissue damage (163). While certain phar-
macologic approaches are beneficial, none offer the potential
of stem cell-based strategies, which afford the opportunity to
functionally replace cells lost or damaged during irradiation.
The use of stem cell therapy to promote recovery of normal
tissues exposed to ionizing radiation aims at ameliorating the
unintended side effects due to normal tissue damage. With
the exception of bone marrow transplants, used for many
years to reconstitute the hematopoietic compartment after
ablative irradiation (83), the application of stem cell therapies
for reducing other normal tissue sequelae remains a new but
burgeoning area of research.

The potential benefits of stem cell therapy are certainly not
limited to cell replacement, as significant evidence exists,
showing that engrafted cells provide trophic support to the
surrounding host tissue (123, 172, 196, 198). Regardless of the
mechanism, protecting and/or restoring endogenous cell
function will reduce normal tissue injury and hasten the
recovery of patients who are subjected to irradiation.
Mesenchymal stem cells (MSCs) were originally proposed for
therapeutic purposes in regenerative medicine, based on their
multipotent, proliferative, and anti-inflammatory properties.
However, in recent years, therapeutic strategies are now
evolving in which other stem/progenitor cell types are used
alone or in co-transplantation with endothelial or epithelial
progenitors to hasten the recovery and reconstitution of nor-
mal tissue.

The identification of stem cell populations and the capa-
bility to isolate and expand them for therapeutic uses has
stimulated a wealth of research into regenerating injured tis-
sue. Despite this promise, the past decade has also shown that
translating the potential of stem cell therapy into actual
practice is not easy, and many barriers, including im-
munorejection (22, 129), teratogenesis (106), regulatory (107)
and ethical issues (46), still need to be overcome before such
strategies become commonplace in the clinic. Thus, discus-
sions of therapeutic efficacy to restore functionality to irradi-
ated tissues are provided along with the caveats associated
with such treatments. The present review will highlight recent
advances in the application of various stem cell-based strat-
egies to ameliorate radiation-induced normal tissue damage
occurring within selected target organ sites.

Stem Cell Therapy to Ameliorate Radiation-Induced
Cognitive Impairment

Worldwide, *240,000 patients are diagnosed with brain
tumors per year. Delayed adverse cognitive effects can occur
in approximately 50% of irradiated patients, depending on
radiation dose, fractionation schedule, irradiated volume, and
location (29, 59, 82). Brain necrosis developing > 6 months
after radiotherapy is uncommon when total doses of 50 Gray
(Gy) are delivered in fractions of 2 Gy or less; a tolerance dose
of 57 Gy has been suggested. However, children who receive
30–35 Gy of whole brain irradiation frequently develop in-
tellectual deficiencies over the next few years (84, 156, 180,
189).

Acute and early delayed effects are associated with short-
term memory loss, fatigue, and somnolence (197). Acute re-
sponses involving oxidative stress and inflammation can elicit

apoptosis and signaling changes that contribute to disruption
of the blood–brain barrier, hypoxia, transient demyelination,
and more persistent injury (208). Late effects typified by de-
myelination, vascular breakdown leading to edema, and
radionecrosis of the white matter are progressive and gener-
ally irreversible (181–183, 201). Current concepts of radiation
injury now recognize that alterations to the microenviron-
ment involving oxidative stress, inflammation, vascular dys-
function, and impaired neurogenesis contribute to central
nervous system (CNS) pathology and disrupted cognitive
processing (68, 69, 197, 208).

Some of the more promising interventions for ameliorating
radiation-induced neurocognitive sequelae are agents that
inhibit inflammatory processes (169, 170, 217). Agonists tar-
geting the peroxisomal proliferator-activated receptor family
can attenuate neuroinflammation, resulting in preserved
hippocampal neurogenesis and cognitive ability after irradi-
ation (169, 170, 216). Inhibiting the renin–angiotensin system
also has shown promise at ameliorating late effects in the CNS
after irradiation (41, 176).

One well-defined effect of cranial irradiation is its adverse
effect on endogenous neurogenesis. Generation of CNS pro-
genitor cells occurs in the subventricular (SVZ) and dentate
subgranular zones (SGZ) (74, 202). Each of these processes
contributes new glia and neurons to the brain. SVZ-derived
neuroblasts migrate along the rostral migratory stream to
repopulate the olfactory bulb, while SGZ-derived neural
precursors repopulate the granule cell layer of the hippo-
campus (74). Irradiation depletes radiosensitive populations
of multipotent precursors in the hippocampus, leading to an
inhibition of neurogenesis and cognitive impairment (144,
167, 177). The growing evidence linking neural stem and
precursor cell depletion to neurocognitive sequelae has
stimulated efforts that are aimed at cell replacement strategies
in the CNS.

Regenerative medicine targeted to the CNS took shape
soon after the first isolation of neural stem cells from the ro-
dent brain (173, 190). Application of stem cell therapies to
ameliorate radiation-induced normal tissue injury soon fol-
lowed, as neural stem cell transplants to the spinal cord were
found to ameliorate radiation-induced myelopathy (174).
While radionecrosis remains a complicating factor for spinal
cord treatments (34), neurologic dysfunction is now consid-
ered the major dose-limiting factor for radiotherapy of the
brain (56). The sensitivity of adult neurogenesis to irradiation
has stimulated efforts to explore the use of stem cell trans-
plantation for reversing cognitive dysfunction after cranial
radiotherapy. Recent work has demonstrated the benefits of
intrahippocampal transplantation of either human embryonic
or human neural stem cells (hNSCs) to ameliorate radiation-
induced impairment of cognition (1–3). In these studies,
rats were cranially irradiated 2 days before bilateral in-
trahippocampal transplantation of human stem cells. At 1 and
4 months after irradiation and transplantation, significant
survival of the transplanted cells was demonstrated. Engrafted
cells migrated extensively throughout the septo-temporal axis
of the hippocampus and differentiated along neuronal and
astroglial lineages. Importantly, rats receiving stem cell
transplants showed improved cognitive performance com-
pared with irradiated rats receiving sham surgery (1–3). Key
features of the foregoing experimental approach are depicted
in Figure 1.
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The mechanisms of stem cell-based cognitive rescue after
irradiation are definitely complex. The beneficial effects are
likely to involve both the replacement of lost or damaged
cells and increased trophic support to the brain by trans-
planted cells or endogenous stem cells homing to the site of
radiation injury. Research by the group of Limoli has
shown that transplanted cells express activity-regulated
cytoskeleton-associated protein, suggesting their capabil-
ity to functionally integrate into the hippocampus (2).
Moreover, trophic factors such as glial cell line-derived
neurotrophic factor and basic fibroblast growth factor
(FGF) released from engrafted astro-glial cells may support
the functions of mature host neurons or foster neurogenesis
and the maturing neuroblasts (35, 80, 101, 192). The release
of brain-derived neurotrophic factor from transplanted
hNSCs has been shown to provide some cognitive benefits
in a mouse model of Alzheimer Disease (18). Moreover,
bone marrow-derived stem cells may provide vascular
support and help maintain the specialized vascular niche

for stem cell maintenance (54, 91, 150, 195, 220). They can be
recruited directly to the site of radiation injury in the brain,
where they appear to provide support to the microvascu-
lature (28).

While regenerative medicine holds considerable promise,
inherent limitations to the repair of neural tissue present
practical limitations. The migration of engrafted cells toward
damaged tissue is a critical step in stem cell therapy, and
further work is required to elucidate the chemokine signaling
networks that regulate this process (16, 31, 95). The risk of
immunorejection also weighs heavily on any transplantation
study (9). These issues impact the assessment of stem cell
safety and efficacy in efforts to translate animal studies to the
clinic (9). Clearly, there is much to learn, but despite these
inherent shortcomings, the treatment of neurocognitive
sequelae through stem cell therapy is a worthy pursuit, es-
pecially in the absence of any satisfactory, long-term
interventions for this serious complication of cranial radio-
therapy.

FIG. 1. Stem cell transplantation for ameliorating radiation-induced cognitive dysfunction. Immunocompromised athymic rats
are subjected to cranial irradiation, while human stem cells are grown in parallel. At specified times (2 days, 2 or 4 weeks) after
irradiation, animals are subjected to hippocampal transplantation with fixed numbers of human stem cells. At specific times (1 or 4
months) after irradiation, animals are then evaluated for cognitive performance using NPR and FC tasks. Irradiated animals trans-
planted with stem cells (IRR + hNSC) exhibit higher exploration ratios in NPR and increased time spent freezing in the context phase of
FC, demonstrating improved hippocampal-dependent performance. After completion of cognitive testing, the brains of animals are
analyzed for engrafted cell survival, migration, differentiated fate (NeuN-neuronal fate, GFAP-astroglial fate), and functional inte-
gration by the expression of the Arc. Asterisks represent significance (p < 0.05) compared to irradiated groups. Arc, activity-regulated
cytoskeleton-associated protein; FC, fear conditioning; hNSC, human neural stem cell; NPR, novel place recognition.
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Stem Cell Therapy to Ameliorate Radiation-Induced
Xerostomia

Worldwide, about 500,000 patients are diagnosed with
head and neck cancer (HNC) per year. Of these, 70% are
treated with radiotherapy alone or in combination with sur-
gery and/or chemotherapy (94). Radiotherapy of HNC often
involves co-irradiation of the salivary glands that may induce
hyposalivation, an important factor in the development of
xerostomia (58, 204). To avoid a long-term loss of salivary
function, at least one parotid gland should be spared to a
mean dose of less than 20 Gy to preserve function if the other
is targeted with a higher dose. Alternatively, when both
glands are irradiated, total doses need to be less than 25 Gy,
whereas the submandibular gland needs to be spared to doses
less than 35 Gy (25, 50, 116).

Current strategies that prevent radiation-induced salivary
gland dysfunction include the use of protective medication,
such as amifostine or pilocarpine (24, 27, 120), surgical relo-
cation of the submandibular gland (215), and minimization of
the radiation dose administered to the major salivary glands
(43, 62, 153, 203, 206). Although intensity-modulated radio-
therapy has provided a significant reduction of xerostomia,
40% of patients still develop life-long complaints (62).
Radiation-induced damage to salivary glands mainly results
from the inability of stem cells to produce a sufficient number
of mature functional cells (110). Increasing the regenerative
potential of salivary glands by stem cell therapy should help
restore tissue homeostasis, and adult tissue stem cells have
shown great clinical potential (43, 44, 55).

Interestingly, the non-functioning ducts mostly remain intact
after irradiation (43), offering the opportunity for transplanted

stem cells to engraft to a proper niche and to regenerate the
salivary gland. Indeed, the protective effect of prophylactic
pilocarpine (26) and keratinocyte growth factor (KGF) (126)
seems to be due to stimulated proliferation of ductal stem/
progenitor cells. Ductal stem/progenitor cells can also be
stimulated by factors which are secreted by bone marrow-
derived cells (BMDCs) that home to damaged salivary glands
after mobilization (125). Some studies controversially claim that
salivary glands which are damaged by irradiation can be res-
cued by bone marrow stem cells that transdifferentiate or have
adopted an acinar-like phenotype (121, 199). Similar observa-
tions have been made for MSCs (137). However, characteriza-
tion of the most potent salivary gland stem cell is still ongoing.

Current research is largely focused on the characterization,
isolation, and transplantation of tissue-derived stem cells. Both
mouse (164) and human (67) salivary gland stem cells can be
isolated from cultured salispheres. While identification of the
bonafide salivary stem cell remains elusive, c-Kit + cells ex-
hibited a remarkable capability to ameliorate radiation dam-
age, as shown in Figure 2 (124). Furthermore, CD24/CD29,
CD49f, and CD133 expressing cells were able to differentiate
into all salivary gland lineages (67, 124, 151, 164) and were able
to regenerate the irradiated salivary gland (124, 151).

Despite these advances, several issues need to be addressed
before these laboratory-based findings can be translated to the
clinic (165). Evidence substantiating that functional recovery
can be achieved through the preferential administration of
transplanted cells via retrograde ductal injection needs to be
obtained. Moreover, while several candidate salivary gland
stem/progenitor cells have been suggested for human use (13,
42, 108, 127, 136, 157), safety issues need to be addressed
experimentally before their clinical application (79).

FIG. 2. Transplantation of salivary gland
stem cells rescues mice from radiation-
induced hyposalivation. Salivary gland
tissue is dispersed to a cell solution and al-
lowed to form salispheres in culture. From
these salispheres, c-Kit expressing stem cells
are selected and injected into locally irradi-
ated glands to improve saliva secretion
[adapted from Gao et al. (75)]. n.d., not
determined.
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Stem Cell Therapy to Ameliorate Osteoradionecrosis

Irradiation of bone may result in four major complications:
osteoradionecrosis (ORN) (139), insufficiency fractures (40),
severe alterations of bone growth, and radiation-induced
neoplasms. Septic ORN typically occurs in HNC patients,
combining superficial epithelial radionecrotic ulceration and
deep exposed mandible, whereas aseptic ORN may affect the
hip in pelvic cancer or the ribs in breast cancer. The estimated
tolerance doses for mandibular bone are 60 and 72 Gy for 5%
and 50% incidences of necrosis (63, 93).

ORN is a non-healing wound resulting from hypoxia,
hypovascularization, and tissue hypocellularity followed by
tissue breakdown (139). Early stages of bone atrophy are
linked to the imbalance between bone formation and bone
resorption (103). Irradiation leads to the inhibition of MSCs
and osteogenic cell proliferation (179) and may promote the
terminal differentiation of osteoblasts (48). During progres-
sion of the lesion, irradiated bone shows signs of osteopo-
rosis characterized by atrophy and a disorganized trabecular
structure, resulting from an imbalance in osteogenesis/
osteolysis, defects in neovascularization, and fibrosis. After
irradiation, the myofibroblasts appear at the initial inflam-
matory phase and persist during the constitutive fibrotic
phase (14). Transforming growth factor-b1 (TGF-b1) is con-
sidered the main cytokine involved in this process, resulting
in increased extracellular matrix secretion and decreased
metalloproteinase excretion (51). TGF-b1 plays an important
role in establishing and maintaining vessel integrity by
ameliorating damage to the arteries and veins surrounding
the bone after irradiation (161). Vascular damage and is-
chemia appear before osteoblast alteration (60, 152).

Treatment of squamous cell carcinoma of the upper aero-
digestive tract often requires large surgical bone removal and
reconstruction with anastomosed free flaps (90). Irradiation
reduces healing capacities and is associated with a higher risk
of vascularized flap failure. The use of calcium phosphate
biomaterials has been considered an alternative to autoge-
nous bone grafts. However, calcium phosphate alone is not
sufficient for bone substitution in irradiated areas (119), and it
needs to be used in conjunction with total bone marrow
(TBM) for more optimal stimulation of bone healing (Fig. 3).
Biphasic calcium phosphate (BCP) associated with TBM
provides better bone reconstruction after radiotherapy (131),
whereas association of MSCs with calcium phosphate leads to
better bone reconstruction in non-irradiated areas (12, 134,
211, 221). Studies in an irradiated mouse model also showed
that TBM was superior to MSC for association with BCP for
bone reconstruction in irradiated areas (64). These results
highlight the potential benefits of stem cells used in conjunc-
tion with biomaterials for combined regenerative strategies
proposed in clinical applications (64). A current phase I clin-
ical trial for mandible ORN treatment (ClinicalTrials.gov,
identifier: NCT01147315) will provide some of the first results
in humans.

Stem Cell Therapy to Ameliorate Radiation-Induced
Skin Fibro-Necrosis

Acute skin reactions that range from a mild rash to severe
ulceration are one of the most common side effects of external
radiotherapy. This pathological condition leads to pain, de-
lays in treatment, and an overall decrease in quality of life

(130, 141). Radiation dermatitis may occur after a total dose of
55 Gy and usually manifests within 1–4 weeks. At later times,
subcutaneous fibrosis and occasionally radionecrosis may
develop (20). Acute reactions result from the loss of rapidly
proliferating cells, combined with vascular and inflammatory
responses. Late radiation effects manifest in the slowly pro-
liferating cell populations, resulting in progressive TGF-b1-
mediated fibrosis and tissue hypoxia. Radiation-induced
fibrosis and necrosis are usually considered intractable,
manifesting as impaired healing and prone to recurrence even
after minor trauma.

A current management strategy for skin fibrosis includes
anti-inflammatory treatment with corticosteroids or inter-
feron gamma, vascular therapy with pentoxifylline or hy-
perbaric oxygen, and antioxidant treatment with superoxide
dismutase or tocopherol (52). Under certain circumstances,
the radiolesion becomes refractory to treatment, leaving sur-
gery as a final option, with increased risk of disability and
morbidity. Such complications suggest the need to develop
new therapeutic approaches using adult stem cells for the
repair of radiation-induced tissue injury. Preclinical studies
have identified MSCs as promising cell-based agents for the
treatment of tissue necrosis. For clinical applications, MSCs
can be expanded to mass culture, and they can be cryopre-
served without loss of viability or stem cell potency (5, 118).
Recent work has successfully demonstrated the preclinical
benefit of systemic MSC injections for ulcerated skin and
muscle restoration after high-dose irradiation (17). The ben-
eficial effects rely on paracrine mechanisms, by which cyto-
kines and growth factors that are released from engrafted cells
favorably influence wound healing (73).

Recent studies have demonstrated a marked plasticity of
adipose-derived stem cells (ADSC), mainly comprising mes-
enchymal cells. The harvest of adipose tissue is easy, generally
involving minimally invasive lipoaspiration procedures. To-
pical administration of ADSC into full-thickness wounds
normalizes defective wound healing in irradiated mice (61).

FIG. 3. Bone marrow grafts treated with BCP. Histologic
section reveals healing of defective bone, shown as the BCP
substitute associated with the bone marrow graft in the ir-
radiated bone area. New bone formation (yellow, )) in
contact with the BCP (gray, *). Rich bone marrow (red, 0) in
contact with the BCP. BCP, biphasic calcium phosphate.
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Interestingly, ADSC can differentiate into keratinocytes, and
ADSC-derived KGF released at the site of injury may regulate
the healing of the cutaneous wound. ADSC have also been
shown to incorporate into vessels and differentiate into en-
dothelial cells, leading to improved perfusion and vessel
density (61). A schematic demonstrating the plasticity and
capability of ADSC to facilitate wound healing is shown in
Figure 4. Endothelial progenitor cells (EPC) similarly incor-
porated into vessels, differentiated into CD31-expressing en-
dothelial cells, and increased perfusion and vessel density
(102). An injection of EPC increased vascular permeability,
suggesting that progenitor cell-induced nitric oxide-
dependent vasodilatation and hyperpermeability were re-
quired for their proangiogenic effects (210, 212).

The group of Rigotti (175) demonstrated that lipoaspirate
transplantation was clinically effective in the treatment of the
side effects of skin radiation. Autologous fat grafts showed a
generalized improvement of clinical symptoms in all 20
treated patients (104). Clinically purified autologous lipoas-
pirates were also proposed by the group of Akita (7) for the
treatment of radiation-induced late skin complications. ADSC
showed the capability to promote the growth of a microvas-
cular bed that facilitated the subsequent correction of chronic
ischemic damage. The group of Klinger also recently dem-
onstrated (32) the efficacy of autologous fat grafts in the
post-mastectomy pain syndrome (PMPS). The cohort was
composed of 113 patients who were affected by PMPS and
who underwent mastectomy with axillary dissection and ra-
diotherapy. The reported pain control with a mean follow up
of 13 months could be linked to inflammation reduction along
with an improvement in tissue quality and scar softness with
beneficial effects on nerve entrapment (115). Finally, adequate
debridement combined with skin autograft and an injection of
MSC showed significant therapeutic benefit for approxima-
tely 7 years in the medical management of severe skin and
underlying muscle necrosis in eight patients (17).

The foregoing pre-clinical and clinical studies have now
demonstrated proof of concept for the use of stem cells in the
therapeutic management of radiation-induced skin damage.
Further innovations are now required to efficiently translate
these findings into clinical protocols for minimizing the side
effects associated with radiotherapy.

Stem Cell Therapy to Ameliorate Radiation-Induced
Liver Disease

Whole liver cannot tolerate more than 35 Gy of radiation
therapy (RT) in standard fractionation because of the induc-
tion of potentially lethal radiation-induced liver disease
(RILD). RILD was recently analyzed in the Quantitative As-
sessment of Normal Tissue Effects in the Clinic project (63, 96,
158). Patients with classic RILD present with symptoms of
fatigue, rapid weight gain, enlarged liver, ascites, and an
isolated elevation in alkaline phosphatase, *2 weeks to 4
months after liver RT (117). All other liver functions, including
serum bilirubin and ammonia levels, are usually normal,
unless the patients have radiation-induced reactivation of
hepatitis B virus replication. Histopathologically, RILD is
characterized as a hepatic central veno-occlusive disease with
occlusion of the central vein lumina and hepatic sinusoids by
reticulin and collagen fibers, resulting in vascular congestion
and atrophy of centrilobular hepatocytes (66, 154, 171). Since
radiation induces apoptosis of the liver sinusoidal endothelial
cells (LSECs) in a dose-dependent manner, the clinical syn-
drome has also been named sinusoidal obstructive syndrome
(53). Besides endothelial injury, regenerating hepatocytes are
sensitive to radiation-induced mitotic catastrophe, as noted in
patients with cirrhotic livers, who have elevated serum
transaminases and ascites, indicating radiation-induced he-
patocellular death (36).

Currently, there is no effective treatment for RILD (85).
Since irradiation inhibits hepatocellular regeneration, it was
hypothesized that intra-portal or intra-splenic transplantation
of unirradiated hepatocytes would enable donor cells to effi-
ciently engraft in irradiated liver lobes, and selectively pro-
liferate in response to mitogenic growth factors as the
irradiated host hepatocytes undergo cell cycle arrest and/or
mitotic death. A model of RILD was developed in F344 rats
after treatment with partial hepatectomy and hepatic irradi-
ation (HIR) (88). Within 6 weeks after HIR, acute effects in-
cluded perivenous steatosis and hepatocellular atrophy,
while late effects manifested as severe bile duct proliferation
and periportal fibrosis by 12 weeks. Mortality from RILD was
60–75%. Intrasplenic transplantation of 5 · 106 congenic he-
patocytes ameliorated the acute and late effects of RILD and

FIG. 4. ADSC for the resolution of skin
injury. ADSC exhibit marked plasticity to-
ward keratinocyte and endothelial cells.
Stem cells of the adipose lineage have the
ability to differentiate into epithelial cells,
acquire a functional keratinocyte phenotype,
and differentiate into vascular cells. These
cells can be used to facilitate the repair of
radiation-induced skin injury as well as other
pathological conditions of the skin. ADSC,
adipose-derived stem cells.
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significantly improved survival (88) with normal liver func-
tion. Immunohistochemical staining for donor hepatocytes
revealed progressive proliferation with near-total replace-
ment of the irradiated host hepatocytes by donor cells over 3
months. Such results are shown in Figure 5, where donor-
derived repopulation of a liver lobe subjected to partial irra-
diation was demonstrated after hepatocyte transplantation
(HT). Strikingly, proliferation of the donor hepatocytes oc-
curred primarily in the irradiated liver lobes, evident in the
lower power histomicrographs that highlight the efficiency of
the preparative regime for replacing hepatocytes depleted
during irradiation (Fig. 5).

Since classic RILD manifests as sinusoidal obstructive
syndrome, it was reasoned that acute loss of LSEC in irradi-
ated livers would require rapid restoration of the sinusoidal
endothelium. Therefore, LSECs were transplanted via an
intra-portal or intra-splenic injection after HIR and a recom-
binant adenovirus-expressing hepatocyte growth factor
(HGF) was administered to provide mitogenic signals for
donor cells. LSEC transplantation ameliorated radiation-
induced sinusoidal obstructive syndrome with donor cells
selectively engrafting and repopulating the irradiated hepatic
sinusoidal endothelium by 8 weeks (100).

Orthotopic liver transplantation (OLT) is the only curative
therapy for many patients with terminal liver diseases.
However, due to shortage of donor livers, there is a long
waiting list for OLT. HT is being explored as a therapeutic
alternative. However, HT is limited because the number of
cells that can be safely transplanted into the liver is inadequate
to compensate for liver function. Encouraged by the massive
repopulation of donor hepatocytes after HT for ameliorating
RILD in rodents, focal liver irradiation was examined as a
preparative regimen for HT in the treatment of metabolic liver
diseases (85–87). Several investigators have demonstrated
that preparative HIR in combination with hepatic mitogenic
signals can enable selective engraftment (209) and prolifera-
tion of donor hepatocytes in irradiated host livers (37, 111,
132). Thus, preparative HIR has been used to correct liver
function in murine and rodent models of inherited metabolic

diseases, such as primary hyperoxaluria (89, 97), Wilson’s
disease (133), and hypercholesterolemia (218).

A phase I clinical trial (NCT01345578) of preparative HIR to
facilitate HT has been initiated in patients with metabolic liver
diseases (70). Partial liver irradiation could be safely admin-
istered using stereotactic body RT via three dimensional
conformal or intensity modulated radiotherapy followed by
HT for the treatment of inherited liver diseases, liver failure,
hepatic gene therapy, RILD, and for generating human-
mouse liver chimera animal models.

Cardiac Damage and Stem Cell Replacement

Thoracic irradiation significantly increases the risk of cardio-
vascular disease in cancer survivors. Long-term survivors of
Hodgkin’s lymphoma and childhood cancers have 2 to > 7-fold
increased risks of cardiac death for total doses of 30–40 Gy (200).
Increased cardiac morbidity and mortality also occur after irra-
diation for breast cancer, despite having a relatively small part of
the heart included in the irradiation field. The Early Breast Cancer
Trialists’ Collaborative Group evaluated data from > 30,000
women in randomized trials of radiotherapy versus no radio-
therapy and showed a 27% excess of heart disease in the irradi-
ated group (38, 140). The risk of cardiac death was related to the
estimated mean cardiac dose, increasing by 3% per Gy (140).

Animal studies show that radiation-induced damage to the
myocardium is primarily caused by damage to the micro-
vasculature, leading to inflammatory and thrombotic changes
and vascular leakage (184, 185). Progressive reduction in the
number of capillaries led to reduced perfusion of the cardiac
muscle, ischemia, myocardial cell death, and fibrosis (65, 138).
Animal data are supported by clinical studies that demon-
strate regional perfusion defects in non-symptomatic breast
cancer patients at 6 months to 5 years after radiotherapy (4,
47). Radiation also predisposes to the formation of inflam-
matory, unstable atherosclerotic lesions, which are prone to
rupture and may cause a fatal heart attack (155, 191).

There is currently no specific pharmacological treatment for
cancer therapy-related cardiomyopathy, although symptomatic

FIG. 5. Preparative liver irradiation for
hepatocyte transplantation. The anterior half
of the right lobe of liver was irradiated with a
single fraction of 50 Gray in C57Bl/6 mice,
followed by intrasplenic transplantation of
1 · 106 beta-galactosidase-proficient hepato-
cytes isolated from congeneic Rosa mouse, 1
day after irradiation. Hepatic mitogenic sig-
nal was provided by intravenous adminis-
tration of an adenovirus expressing
recombinant human HGF within 1 h after li-
ver irradiation. Animals were sacrificed 16
weeks after hepatocyte transplantation. Data
show beta-galactosidase staining of a fresh
frozen section of the right lobe of the liver 16
weeks after hepatocyte transplantation. Note
preferential repopulation of the donor beta-
galactosidase-positive hepatocytes (blue) in
the irradiated liver lobe. HGF, hepatocyte
growth factor.
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patients may receive standard treatments for congestive heart
failure, including angiotensin-converting-enzyme inhibitors.
Animal studies have demonstrated some benefit from the
radioprotector amifostine when administered before cardiac ir-
radiation (112), or pentoxifylline, in combination with the anti-
oxidant vitamin E (19, 122).

Recent studies have identified stem and progenitor cells that
can generate myocytes, smooth muscle cells, and endothelial
cells and participate in regeneration of the adult heart (11, 15, 30).
Circulating BMDCs also migrate to sites of ischemic damage in
the heart and can contribute to new vessel formation by fusion
with resident cardiac cells and by secretion of pro-angiogenic and
survival factors. Preclinical studies show that both mobilization
and transplantation of BMDC improve the microvascularity and
cardiac function after acute myocardial ischemia and in models
of chronic cardiac fibrosis (39, 45, 49, 147). Since radiation is
known to cause progressive microvascular damage and capillary
loss (65, 138, 184, 185), this technology may also have potential for
treating radiation-induced cardiac injury (Fig. 6), although this
has not yet been tested.

Meta-analyses of randomized clinical trials demonstrate
small, but significant, improvements in short-term cardiac
function after BMDC therapy, with reduced benefit at later
times (207, 214, 219). There was a positive correlation between
the number of cells injected and an improvement in cardiac
function, but there were no significant improvements in long-
term survival (207). Preclinical studies indicate that only 1–3%
of injected BMDC are found at infarcted areas of the heart,
although ex-vivo enrichment of specific cell populations, for
example, CD34 + cells, can considerably increase this en-
graftment. Cardiomyocyte progenitor cells (CPC) and em-
bryonic stem cells (ESC) have greater capacity for stable
engraftment and proliferation, and they can differentiate into
cardiomyocytes. There are several ongoing phase 1 trials us-
ing CPC isolated from a biopsy of the patient’s own heart and
expanded ex-vivo (92, 166). Preliminary results seem promis-
ing, but the numbers of patients included are very small (21).
Challenges for the future in applying stem cell therapy for
radiation injury to the heart include the identification and

expansion of optimal cell types, the number of cells, the route
of administration, and the timing of therapy.

Stem Cell Therapy to Ameliorate Radiation-Induced
Proctitis

Approximately 500,000 patients per year undergo abdom-
inal or pelvic radiotherapy worldwide. Of these, 5–10% will
develop pelvic radiation disease (PRD) within 10 years (10).
Acute radiation responses, including abdominal pain,
diarrhea/constipation, and malabsorption, may interrupt or
delay the radiotherapy protocol. Late radiation responses,
including fibro-necrosis, fistulae, hemorrhage, and occlusion,
can result in significant morbidity and mortality.

Acute epithelial ulceration, mucosal and submucosal in-
flammation, and chronic radiation enteropathy are charac-
terized by excessive extracellular matrix deposition, vascular
sclerosis, and muscular dystrophy. The cellular and molecular
mechanisms of PRD include oxidative stress, stem cell death
with compromised epithelial renewal (162), microvascular
damage with endothelial cell death, and pro-inflammatory
and pro-thrombotic changes (77, 143, 159). A current man-
agement strategy for PRD includes anti-inflammatory treat-
ment with sulfasalazine, vascular therapy with hyperbaric
oxygen or argon plasma coagulation, and pharmacological
modulation of fibrosis. The management of severe radio-
necrosis requires surgical intervention.

Stem cell therapy may offer a novel strategy to treat PRD. In
abdominally irradiated mice, MSCs injected via the tail vein
engraft to the enteric mucosa (213), enhance structural re-
covery, and delay death (186). The implantation of MSCs into
the wall of the irradiated intestine facilitates repair of
radiation-induced damage by inhibiting ulceration (113).
Lorenzi et al. (128) reported that MSCs improved muscle re-
generation and increased contractile function of anal sphinc-
ters after injury. Engrafted MSCs might regulate epithelial
stem cells niches that provide and maintain an optimal mi-
croenvironment for stem cell function by releasing cytokines
and growth factors such as interleukin-11, HGF, FGF-2, and

FIG. 6. Radiation-induced myocardial
damage and stem cell treatments. Irradiation
causes microvascular damage and capillary
loss, which leads to inadequate perfusion of
the tissue and may result in myocardial in-
farct. Bone marrow progenitor cells can either
be mobilized to the blood using growth fac-
tors, or extracted and cultured in vitro to en-
rich populations of endothelial progenitor
cells. Mobilized or injected progenitor cells
home to the infarct area and stimulate sur-
viving cells to proliferate and regenerate
damaged tissue.
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insulin growth factor-I (187). Interestingly, repeated infusion
of MSC-derived bioactive components after abdominal irra-
diation increased survival, decreased diarrhea, and improved
the small intestinal structural integrity of irradiated mice (75).
Mitigation of lethal radiation-induced intestinal injury can
also be achieved by the transplantation of bone marrow-de-
rived adipose stromal cells (BMASCs). Transplantation of
BMASC increased blood levels of intestinal growth factors
and induced the regeneration of intestinal villi, thereby ac-
celerating functional recovery of the intestine (178). A sum-
mary of pre-clinical data regarding the treatment of radiation
pelvic disease with MSCs is provided in Table 1.

In 2006, the radiation oncology accident at the public hos-
pital in Épinal-France affected 425 patients who were under
treatment for prostate cancer. Patients were overdosed by
approximately 10–20%. Clinical consequences were severe,
and sequelae classified from grade 2 to 5 on the common
terminology criteria for adverse events 3.0 scale were noted
(135, 160). Three patients received intravenous infusions of
MSCs (5 · 106/kg) from allogeneic bone marrow derived from
family donors for the treatment of hemorrhagic refractory
radiation-induced fistulizing colitis. Clinical parameters, in-
cluding pain, hemorrhage, and fistulization, were evaluated
(magnetic resonance imaging, colonoscopy) before and after
(1 and 6 months) MSC therapy. Two patients showed a sub-
stantial clinical response for pain and hemorrhage after MSC

therapy with no adverse events. One patient experienced a
relapse in pain after 6 months and was responsive to a second
infusion of MSCs. In another patient, early fistulization was
stopped by MSC treatment, with stable remission since then
observed over a 3-year follow up. These positive clinical re-
sponses suggest that MSC therapy may represent a safe and
effective intervention for patients developing rectitis and/or
cystitis of varying severity (205).

Conclusions

Allogeneic hematopoietic stem cell transplantation has
been successfully used over the past 4 decades for patients
with hematologic diseases (81). Conventional myeloablative
transplantation includes conditioning with high-dose radio-
therapy and chemotherapy to eradicate residual disease and
recipient (host) immunity in preparation for healthy donor-
derived hematopoietic stem cells (graft). This has been the
first and most robust demonstration of the efficacy of stem
cell therapies to completely reconstitute a sterilized tissue
after high-dose radiotherapy, thereby opening new avenues
for the treatment of other radiation-induced normal tissue
sequelae.

After more than a decade of intense activity, the science of
stem cells seems to be catching up with its promise. Clinical
trials have established techniques for cell delivery and

Table 1. Pre-Clinical Model of Mesenchymal Stem Cell to Treat Pelvic Radiation Disease

Main results
Configuration Non human primate References

Total body irradiation Engraft in gut 72
Mice

Abdominal MSC when infused to mice that received either extended or localized irradiation,
migrate to almost all tissues (including gut) where they engraft transiently
usually at very low levels of detection

72, 145

Engraft into enteric mucosa 113
Repair radiation-induced intestinal damage by inhibiting ulceration 186
Favor reestablishment of cellular homeostasis by both increasing endogenous

proliferation processes and inhibiting apoptosis of radiation induced of small
epithelial stem cells

187

MSC release cytokine and growth factors such as IL-11, hepatocyte growth factor,
fibroblast growth factor-2, and insulin growth factor-1 that prevent intestinal
radiation injury. Repeated infusion of MSC-derived bioactive components
increased survival rate, decreased diarrhea occurrence, and improved small
intestine structural integrity

75

Improved muscle regeneration, increased contractile function of anal sphincters
after injury (without radiation)

128

Mitigation of radiation-induced lethal intestinal injury can similarly be achieved by
transplantation of BMASC. BMASC increases blood levels of intestinal growth
factors and induces regeneration of intestinal villi, thereby accelerating functional
recovery of the intestine

178

Rescue epithelial integrity.
Limit radiation effect on the small intestine in an interleukine-6-dependent
manner by reducing the levels of pro-inflammatory cytokines, while inducing
anti-inflammatory cytokines, MSC dampen the systemic inflammatory response
in radiation-induced syndrome

71

Improve liver function and modulate hepatocellular death.
Regenerate the small intestine epithelium, which, in turn, restored the
enterohepatic recirculation pathway initially damaged by irradiation. The
consequence was a distant hepatic protection without engraftment of MSC in the
liver

146

BMASC, bone marrow-derived adipose stromal cell; IL-11, interleukin-11; MSCs, mesenchymal stem cells.
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protocols for establishing feasibility, safety, and early-stage
efficacy in humans. The first clinical trials for pathologies,
including diabetes (98), cardiac infarct (57), Crohn’s disease
(76), or Graft versus Host disease (118), have demonstrated
safety with trends of efficacy.

Preclinical studies presented in this review provide en-
couraging proof of concept regarding the therapeutic poten-
tial of stem cells for treating the side effects associated with
radiotherapy at different organ sites, including brain, salivary
glands, bone, skin, heart, liver, and gut. Initial clinical data for
radiation-induced lung (114), bone (ClinicalTrials.gov, iden-
tifier: NCT01147315), and skin (17, 32) injury indicate that
certain complications may be amenable to stem cell-based
approaches. However, successful translation to the clinic still
faces many hurdles. Subsequent work will be critical in de-
termining if/how and when to incorporate stem cell
interventions into clinical trials. By gaining a further under-
standing of the molecular interactions between donor stem
cells and host tissue, and how such interactions are modu-
lated by host immunity (109), we could discover ways to ex-
pedite the use of stem cells in the clinic. While data
demonstrating the efficacy of stem cells in the clinic remain
sparse, additional evidence demonstrating long-term safety is
also needed; transplanted stem cells should not form terato-
mas or undergo transformation and they should not promote
tumor recurrence, even after complete tumor sterilization.
Many of these issues are likely to be resolved by the appro-
priate selection of stem cell types for transplantation, but re-
quires further preclinical testing.

Lessons from clinical trials should also be taken into ac-
count; since the first reported trial in 1995, cultured MSCs
have been used in 125 registered clinical trials (registered at
http://clinicaltrial.gov/) without any reported confounding
side effects related to the cell therapy. The resistance to
transformation of MSCs produced in four clinical-grade cell
therapy facilities was investigated, and data demonstrated
that MSCs with or without chromosomal alterations showed
progressive growth arrest and entered senescence without
evidence of transformation either in vitro or in vivo (194). The
long-term genomic stability of cultured adult stem cells
may minimize certain concerns regarding their oncogenic
potential (188).

While current clinical data support the long-term safety of
MSCs, concerns do persist, and some are related to the po-
tential of transplanted MSCs to adversely impact tumor
growth and metastasis after radiotherapy. A variety of ex-
perimental tumor models involving the exogenous addition
of MSCs have led to conflicting findings regarding their ca-
pability to promote or suppress tumor growth (105). De-
pending on the model, mechanisms put forth have included
the inhibition or promotion of apoptosis, angiogenesis, or
immunity and related interactions within the tumor micro-
environment. Understanding the mechanisms in which adult
somatic stem cells modulate tumor growth will be essential
for the safe and efficient advancement of stem cell therapies
that counteract radiation injury. A summary of data regarding
stem cell therapies that are specific to the organ site from
selected clinical trials and pre-clinical studies are provided in
Table 2.

Pluripotent stem cells represent attractive sources of start-
ing material for cell-based therapies, largely due to their self-
renewing properties and their capability to differentiate into

tissue from all three germ layers (8). The use of pluripotent
ESC is still fraught with ethical controversy and concerns of
genetic instability and immune tolerance (46, 106, 129). The
group of Yamanaka (193) has recently developed a technique
for in-vitro reprogramming of terminally differentiated cells,
such as skin fibroblast, into pluripotent cells that closely re-
semble ESC. These induced pluripotent stem cells (iPS) could
be used for transplantation, with theoretical reductions in the
risk of immune rejection. Such a technology also provides the
capability to generate cell banks for future uses. Despite these
potential benefits, several issues with iPS technology still need
to be resolved before clinical use is possible. Viral integration
strategies used for cellular reprogramming add an element of
oncogenic risk, and reprogrammed somatic cells may harbor
underlying mutations of unknown consequence (168).

Regenerative therapy for radiation injury is at an important
juncture. Breaking down traditional barriers between spe-
cialized fields will be challenging, but necessary, if we are to
move stem cell biology beyond basic science and toward the
development of truly beneficial regenerative therapies. To
foster this sort of multidisciplinary collaboration, a parallel
effort needs to bring academic science in closer contact with
clinicians. The fate of future stem cell physician–scientists and
patients suffering from the adverse side effects of radiother-
apy will certainly depend on the outcome.
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Abbreviations Used

ADSC¼ adipose derived stem cells
Arc¼ activity-regulated cytoskeleton-associated

protein
BCP¼ biphasic calcium phosphate

BMASCs¼ bone marrow-derived adipose stromal cells
BMDC¼ bone marrow-derived cell

CNS¼ central nervous system
CPC¼ cardiomyocyte progenitor cells
EPC¼ endothelial progenitor cells
ESC¼ embryonic stem cells

FC¼ fear conditioning
FGF-2¼fibroblast growth factor-2

Gy¼Gray
hESC¼human embryonic stem cell
HGF¼hepatocyte growth factor
HIR¼hepatic irradiation

HNC¼head and neck cancer
hNSC¼human neural stem cell

HT¼hepatocyte transplantation
IL-11¼ interleukin-11

iPS¼ induced pluripotent stem cell
KGF¼ keratinocyte growth factor

LSECs¼ liver sinusoidal endothelial cells
MSCs¼mesenchymal stem cells

NPR¼novel place recognition
OLT¼ orthotopic liver transplantation

ORN¼ osteoradionecrosis
PMPS¼post mastectomy pain syndrome

PRD¼pelvic radiation disease
RILD¼ radiation-induced liver disease

RT¼ radiation therapy
SGZ¼ subgranular zone
SVZ¼ subventricular zone
TBM¼ total bone marrow

TGF-b1¼ transforming growth factor-b1
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