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Abstract

Background—Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a

life-threatening inflammatory disorder of the lung. The development of effective therapies for

COPD has been hampered by the lack of an animal model that mimics the human disease in a

short time-frame.
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Objectives—To create an early onset mouse model of cigarette smoke-induced COPD that

develops the hallmark features of the human condition in a short time-frame. To use this model to

better understand pathogenesis and the roles of macrophages and mast cells (MCs) in COPD.

Methods—Tightly controlled amounts of cigarette smoke were delivered to the airways of mice,

and the development of the pathological features of COPD was assessed. The roles of

macrophages and MC tryptase in pathogenesis were evaluated using depletion and in vitro studies

and MC protease-6 deficient mice.

Results—After just 8 weeks of smoke exposure, wild-type mice developed chronic

inflammation, mucus hypersecretion, airway remodeling, emphysema, and reduced lung function.

These characteristic features of COPD were glucocorticoid-resistant and did not spontaneously

resolve. Systemic effects on skeletal muscle and the heart, and increased susceptibility to

respiratory infections also were observed. Macrophages and tryptase-expressing MCs were

required for the development of COPD. Recombinant MC tryptase induced pro-inflammatory

responses from cultured macrophages.

Conclusion—A short-term mouse model of cigarette smoke-induced COPD was developed in

which the characteristic features of the disease were induced more rapidly than existing models.

The model can be used to better understand COPD pathogenesis, and we show a requirement for

macrophages and tryptase-expressing MCs.
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INTRODUCTION

Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a debilitating

disorder of the lung. It is the 4th leading cause of chronic morbidity and death worldwide,

and its prevalence is increasing.1 The disease is characterized by chronic airway

inflammation, mucus hypersecretion, airway remodeling, and emphysema that lead to

reduced lung function and breathlessness.2,3 Systemic effects also are observed in the

skeletal muscle, heart, and other organs. Moreover, COPD patients are more susceptible to

respiratory infections. Because the mechanisms that lead to COPD and its sequelae are

poorly understood at the molecular level, there are no effective treatments.

A major factor that has hampered the study of COPD is the lack of a small animal model

that recapitulates the hallmark features of the disease in a reasonable time frame. While

lipopolysaccharide and elastase have been used to induce lung damage in rodents that

somewhat resemble COPD in humans, such single-factor approaches are not representative

of the complex pathology that occurs in those patients who smoke for many years.3 Current

models of smoke-induced COPD involve whole body or nose-only exposure of mice to

cigarette smoke.3 Acute models of 4 days to 4 weeks duration have been valuable for

evaluating the early smoke-induced inflammatory responses in the lung. However, the

smoke-exposed mice in these models do not develop emphysema or have diminished lung

function.4–8 Chronic models of >6 months duration result in airway remodeling and
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emphysema, but only induce mild alterations in lung function,4,9–12 and the prolonged time

needed to induce these features greatly restricts the use of these models for extensive

therapeutic and mechanistic research. This is especially relevant considering the short life-

span of the mouse and the substantial animal and labor expenses needed for 6-month

experiments. Thus, there is a need for a mouse model of cigarette smoke-induced COPD that

has all of the major features of the human condition that are induced in a shorter time frame.

Although mast cells (MCs) have been casually linked to the pathogenesis of COPD, the

relevant factors exocytosed from these immune cells have not been identified.13 MC

numbers are increased in inflammatory infiltrates in COPD patients, which is associated

with reduced lung function, airway remodeling and emphysema.14,15 The levels of MC-

derived human (h)Tryptase-β in sputum correlated with the severity of COPD in one

study,16 and the exposure of IL-3-dependent MCs to cigarette smoke-treated culture medium

resulted in increased expression of mouse MC protease-6 (mMCP-6).17 mMCP-6 is also

known to promote inflammation, chemokine expression and macrophage and neutrophil

chemotaxis,18 which are all hallmark features of COPD. Nevertheless, the roles of

hTryptase-β and mMCP-6 in COPD pathogenesis have not been investigated in depth.

Here we report the development of a mouse model of COPD in which we deliver tightly

controlled amounts of cigarette smoke directly into the airways. The exposed mice exhibit

the major characteristic features of COPD observed in humans after only 8 weeks of smoke

exposure, thereby facilitating the discovery and/or testing of the efficacy of new

therapeutics. The model also enables us to elucidate the cellular, biochemical and molecular

mechanisms that underpin the pathogenesis of COPD. In that regard, we now show for the

first time detrimental roles for a MC-restricted tetramer-forming tryptase in experimental

COPD.

METHODS

Additional details are described in the Journal’s Online Repository at www.jacionline.org.

Smoke exposure

Wild-type (WT) BALB/c, WT C57BL/6 (B6), and mMCP-6−/− B6 mice18 were used in the

study. In each experiment, 12 mice were simultaneously exposed to cigarette smoke [twelve

3R4F reference cigarettes (University of Kentucky, Lexington, Ky) twice/day, 5 times/week,

for 1–12 weeks] using a custom-designed and purpose-built nose-only, directed flow

inhalation and smoke-exposure system (CH Technologies, Nj) housed in a fume and laminar

flow hood (Fig S1). Each exposure lasted 75 minutes. All experiments were approved by our

institutional animal ethics committee.

Airway and lung inflammation, airway remodeling, and emphysema

Airway inflammation was assessed by differential enumeration of inflammatory cells in

bronchoalveolar lavage fluid (BALF).19–22 Parenchymal inflammation was assessed by

counting the inflammatory cells in 10 randomized fields (x100 magnification) of whole lung

sections.23 RNA was extracted and transcript levels were assessed by standard real-time

quantitative (q)PCR assays,24 using the primers described in Table S1.
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The numbers of macrophages and MCs in lung homogenates were assessed by flow

cytometry and histochemistry.25–27 Airway remodeling was determined by measuring the

number of mucus-expressing goblet cells around the airways and by assessing airway

epithelium thickening.22,23,28–30 Emphysema was assessed using the mean linear intercept

technique, which is a standard method of assessing alveolar diameter and emphysema in

mice.28

Lung function

Forced oscillation and forced maneuver techniques were used to assess lung function

parameters.25,31

Glucocorticoid treatment

Dexamethasone (1 mg/kg in 50 µL sterile water, Sigma, St Louis, MO) was administered

intranasally 3 times/week.32 Controls were sham-treated with sterile water.

Respiratory infections

Mice were infected with mouse-adapted strains of Streptococcus pneumoniae intratracheally

or influenza virus intranasally. Pathogen load was determined by culture or plaque assays of

lung homogenates, respectively.33–36

Macrophage and neutrophil depletion

Lung macrophages and neutrophils were depleted by intranasal administration of liposome-

encapsulated clodronate or intraperitoneal injection of anti-Ly6G antibody (1A8, Bioxcell,

Lebannon, Nh), respectively, 3 times/week.25,37

Transcript expression in tryptase-treated macrophages

B6 mouse bone marrow-derived macrophages were cultured in the absence or presence of

recombinant hTryptase-β (0.8 µg/ml, 25 nM, Promega, Madison, Wi). RNA was isolated,

and qPCR assays were used to evaluate the levels of tumor necrosis factor-α (TNF-α),

Cxcl1/KC, and interleukin (IL)-1β transcripts.

Statistical analyses

Data are presented as mean±SEM (n=6–8). Comparisons between two groups were made

using a two-tailed Mann-Whitney Test. Multiple comparisons were made by one-way

ANOVA with Tukey’s post-test, or Kruskal-Wallis with Dunn’s post-test, where non-

parametric analyses were appropriate. Weights were assessed using one-way ANOVA

(repeated measures). Analyses used GraphPad Prism Software (San Diego, CA).

RESULTS

Nose-only exposure of WT BALB/c mice to cigarette smoke induces the hallmark features
of COPD

We delivered tightly controlled amounts of cigarette smoke into the nares of WT BALB/c

mice for 1–12 weeks and assessed the hallmark features of COPD. Weight loss was evident
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within the 1st week of exposure (Fig 1, A). Animals lost 10% of their initial weight after 3

weeks, and only re-gained 5% of this initial weight over the remaining exposure period. In

contrast, age-matched non-exposed mice steadily gained weight. Four days of exposure to

cigarette smoke led to acute inflammation in the airways, characterized by increased

numbers of macrophages and neutrophils in the BALF (Fig 1, B). Inflammation persisted

and increased with the additional involvement of lymphocytes (particularly CD8+ T cells)

after 8-weeks. Smoke exposure also induced progressive increases in chronic parenchymal

inflammation (Fig 1, C). This was accompanied by increased expression in the lung of the

transcripts that encode TNF-α (Fig 1, D), Cxcl1 (Fig 1, E), and IL-1β (Fig 1, F), but not

IL-6, IL-10, IL-13, or interferon-γ (IFN-γ) (data not shown). There were signs of airway

remodeling with increased numbers of MSCs in the airways from week 6 and thickening of

the airway epithelium from week 8 (Fig 1, G and H). Airway remodeling was accompanied

by alveolar enlargement (increases in alveolar diameter, representative of emphysematous

tissue destruction) after 8 weeks, which increased in severity by week 12 (Fig 1, I).

Although there likely was a steady continuum of pathologic changes taking place in the

smoke-exposed lungs of the WT mice, the results revealed the induction and progression of

the disease over weeks 4–6 and 8–12, respectively.

Smoke exposure of the airways of mice resulted in reduced lung function similar to that
observed in humans with COPD

Since 8 weeks of exposure was required to induce key features of COPD, other parameters

were assessed at this time-point. We next investigated the effects of smoke exposure on

parameters of lung function. Exposure decreased hysteresis, transpulmonary and airway-

specific resistance (RI), tissue damping, and forced expiratory volume in 100 milliseconds/

functional vital capacity ratio (FEV100/FVC, representative of FEV1/FVC ratio in humans),

but increased dynamic compliance (Cdyn), work of breathing, functional residual capacity

(FRC), and total lung capacity (TLC) (Fig 2, A–I). These adverse changes in lung function

likely resulted from the combination of chronic inflammation, airway remodeling, and

emphysematous lesions with associated reductions in alveolar tissue and supporting airway

attachments.

COPD features in the experimental model are glucocorticoid-resistant

While glucocorticoids are used to treat patients with COPD to reduce acute inflammation

and the frequency of acute exacerbations,38,39 they have limited efficacy.40–42

Glucocorticoid treatment (either throughout, or for the last 6 weeks of 12 weeks of smoke

exposure) did not prevent chronic inflammation or emphysema, nor did they suppress

declines in lung function (Fig 3, A–F).

Smoke exposure of the airways has systemic effects

The lung is not the only organ adversely affected in humans with COPD, and systemic

inflammation, loss in skeletal muscle mass, and cardiovascular disease often occur in this

disease.43 In our model, 8 weeks of exposure also induced systemic changes with significant

alterations in the proportion of leukocytes in the blood. The percentage of monocytes

decreased but the percentage of neutrophils and lymphocytes increased (Fig 4, A).
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Furthermore, skeletal muscle mass (i.e., the quadriceps) was reduced (Fig 4, B). Moreover,

the hearts of smoke-exposed mice also were enlarged by ~25% and had more surrounding

fatty tissue (Fig 4, C).

Induction of experimental COPD exacerbates respiratory infections

Chronic microbial colonization of the airways and infection-induced exacerbations are

common in COPD patients.44 When we infected mice previously exposed to smoke for 8

weeks with S. pneumoniae or influenza virus (and smoke exposure discontinued), pathogen

burden increased ~10- and ~2.5-fold, respectively (Fig 4, D and E).

Experimental COPD does not rapidly resolve following smoking cessation

Once patients develop COPD, their clinical conditions generally do not improve

significantly after smoking cessation, and often lung function further deteriorates.2 In our

model, smoke exposure for 8 weeks followed by cessation for 4 weeks did not improve

airway inflammation, emphysema, lung function, or circulating leukocyte abnormalities (Fig

5, A–F). In regard to airway inflammation (Fig 5, A), the numbers of macrophages continued

to increase, suggesting the presence of a macrophage-rich pro-inflammatory environment in

the lung that underpins the progression of disease.

Experimental COPD is macrophage dependent

Numerous studies have indicated that pulmonary macrophages have prominent pathologic

roles in humans with COPD.7,9,45,46 Since increased numbers of macrophages were found in

the lungs of our smoked-exposed WT mice (Fig 1, B), we assessed the importance of these

phagocytes in the development of experimental COPD by reducing their numbers during

smoke exposure using the clodronate-depletion method. Liposome-encapsulated clodronate

were administered into the airways 3 times/week throughout 8 weeks of smoke exposure.

Control animals were sham-treated with empty liposomes. The numbers of macrophages

were then quantified in the BALF by morphology and in dispersed whole lung by flow

cytometry (F4/80+). Macrophages were depleted by 61±4% and 73±5% in smoke-exposed

mice and by 25±3% and 36±2% in non-exposed controls in BALF and lung tissue,

respectively. In contrast, the percentage of monocytes in the peripheral blood was

unaffected. Macrophage depletion in the lung resulted in reduced smoke-induced epithelial

thickening and emphysema, and protection against alterations in lung function (Fig 6, A–E).

In contrast, depletion of neutrophils using the anti-Ly6G antibody approach did not suppress

the effects of smoke exposure (Fig S2). The accumulated data suggest a central role for

pulmonary macrophages in our animal model of cigarette smoke-induced COPD, thereby

supporting the clinical data of others that have implicated these cells in the pathogenesis of

COPD in humans.7

Exposure of WT B6 mice to cigarette smoke also induces COPD

WT BALB/c and B6 mice respond differently in numerous disease models. To assess the

general applicability of our model to another commonly used mouse strain, we examined the

effects of smoke exposure on the lungs of WT B6 mice. Exposure for 8 weeks resulted in a

similar profile and magnitude of weight loss, parenchymal inflammation, airway
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remodeling, emphysematous destruction (alveolar enlargement), and altered lung function in

B6 mice compared to BALB/c mice (Fig S3, A–N).

The tetramer-forming tryptase mMCP-6 contributes to macrophage accumulation and
inflammation in the airways, and is required for experimental COPD

Macrophage accumulation in the lungs of smoke-exposed mice could be caused by unknown

factors released from activated MCs. Although MCs also have been implicated in the

pathogenesis of COPD, the link between these two cell types and smoke-induced COPD has

not been demonstrated, and the relevant MC-derived factors have not been identified.13

Following 8 weeks of smoke exposure, the numbers of macrophages and MCs in the lung of

WT B6 mice (i.e., the largest lobe in the multi-lobed right lung by flow cytometry or in the

single-lobed left lung by histochemistry) increased ~3 fold in both instances (Fig 7, A–C and

Fig S4).

To provide further evidence for the importance of macrophages and MCs in pathogenesis we

also assessed their levels in the smoking cessation and clodronate depletion studies. In the

cessation studies, the numbers of both of these cells types were elevated concomitant with

the maintenance of disease (Fig 7, A–C). In the depletion studies, the suppression of

macrophages but not MCs in the lung correlated with the prevention of COPD (Fig 7, A–C).

These studies provide further evidence for the pivotal role of macrophages in the

pathogenesis of experimental COPD.

mMCP-6 and hTryptase-β have prominent roles in innate immunity and inflammation.18,47

Thus, we hypothesized that mMCP-6 might play a critical role in experimental COPD, as

occurs in experimental arthritis and colitis. We therefore subjected WT and mMCP-6 null

(−/−) B6 mice18 to smoke exposure. We could not detect mMCP-6 mRNA by qPCR in the

lungs of non-treated and smoke-treated WT mice, and the levels of mMCP-6 protein were

below the limits of detection by SDS-PAGE immunoblot analysis. The numbers of MCs in

the lungs of smoke-exposed mMCP-6−/− mice were not affected and were similar to those in

the lungs of smoke-exposed WT mice. However, smoke-exposed mMCP-6-null mice had

significantly fewer macrophages (Fig 8, A and B). The reduction in macrophage

accumulation in the airways of the tryptase-deficient mice correlated with reductions in

neutrophil numbers in the BALF, inflammation of the parenchyma, pro-inflammatory

cytokine (e.g., TNF-α and IL-1β) and chemokine (e.g., Cxcl1) mRNA levels, and

emphysematous lesions (Fig 8, C–H). While airway remodeling also was abrogated, there

were no obvious differences in the lung function parameters measured between smoke-

treated WT and mMCP-6−/− mice (Fig 8, I and J). While our accumulated data revealed

adverse roles for mMCP-6 in the COPD model, other factors that remain to be identified

must contribute to the deterioration in lung function in the smoke-exposed mice.

hTryptase-β induces macrophages to increase their expression of pro-inflammatory
cytokines and chemokines

To confirm the link between MC tryptases and the pro-inflammatory activity of activated

macrophages, we next treated cultured mouse bone marrow-derived macrophages with

recombinant hTryptase-β. The tryptase induced these macrophages to markedly increase the
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levels of the transcripts that encode TNF-α, Cxcl1, and IL-1β (Fig 8, K–M). These changes

did not occur if the tryptase was boiled for 5 minutes before treatment. Although the

mechanism by which MC tetramer-forming tryptases induce macrophages to increase the

expression of these cytokines and chemokines remains to be determined at the molecular

level, the collective data suggest that mMCP-6 and hTryptase-β are associated with

macrophage accumulation and macrophage-dependent inflammation, remodeling, and

emphysema in COPD.

DISCUSSION

COPD is a major respiratory health problem worldwide2 that is usually caused by the

chronic inhalation of cigarette smoke.48,49 Although a heterogeneous disease, COPD is

characterized by chronic airway inflammation (bronchitis) and/or emphysema, as well as

reduced lung function.49 The chronic inflammation that occurs in the smoke-exposed lung is

thought to drive the progressive mucus hypersecretion, airway remodeling, and destruction

of alveolar tissue that synergize to reduce pulmonary function.48,49 While inhaled

glucocorticoids and bronchodilators are used therapeutically to treat the symptoms and

exacerbations of COPD,39 there is no effective treatment that prevents the induction of the

disease or halts its progression.41

The lack of a cigarette smoke-induced animal model of COPD of short duration that

recapitulates the major features of the human condition has hindered our understanding of

the disease. To address this deficiency, we developed a short-term mouse model of cigarette

smoke-induced COPD that has most of the key pathological and clinical features of the

human disease. Importantly, our in vivo model gradually progresses to overt disease over 6–

8 weeks (Fig 1) and does not rapidly resolve (Fig 5). The hallmark features of the disease

are induced within 8 weeks (Figs 1, 2, and S3), providing opportunities to identify

therapeutic targets for both the induction and progression phases of the disease. As occurs in

humans who smoke,14,47,50 the direct delivery of smoke to the airways of WT BALB/c and

B6 mice resulted in acute and chronic inflammation that was dominated by neutrophils,

macrophages, and eventually CD8+ T cells (Figs 1 and S3). The disease also had a MC

component (Figs 7 and 8).

Inflammation was associated with airway remodeling, emphysematous changes, and reduced

lung function (Figs 1, 2, S2, and S3). The airway remodeling, alveolar enlargement and

emphysema were likely due to inflammation-induced damage of the parenchymal walls.

Together, the airway remodeling and emphysema in our model led to reduced lung function,

as occurs in humans with COPD (Figs 2 and S3).

The only feature not consistent with human COPD was a decrease in airway resistance (Fig

2, B and C). This finding suggests an absence of obstruction despite the presence of goblet

cell metaplasia and airway remodeling. Because mice have a greater proportion of

parenchyma to airway tissue compared to humans, the reduced resistance might be the result

of emphysema and associated reductions in tissue attachments. Alveolar distension and

hyperinflation led to widening of the airways during ventilation and reduced resistance in

other mouse models of emphysema.51
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Glucocorticoids have limited efficacy in treating COPD symptoms in humans. They

partially suppress chronic inflammation, but do not reverse the tissue lesions or modify

factors that drive chronic disease, and have no effect on the decline in lung function.40–42 As

occurs in COPD patients, dexamethasone did not suppress inflammation, emphysema, or

alterations in lung function in our model (Fig 3). COPD has a systemic component with

changes in circulating leukocyte populations and loss of skeletal muscle mass.43 Both of

these features were observed in our model (Fig 4, A and B). COPD is also linked to

cardiovascular disease, and the hearts of smoke-exposed WT mice had pathologic changes

(Fig 4, C).

COPD patients have a 3–6 fold increased risk of S. pneumoniae-induced pneumonia.52 They

also are more susceptible to influenza virus and suffer more severe symptoms when

infected.53 Respiratory infections induce further inflammation and acute exacerbations of

COPD symptoms which, in turn, increase the rate of disease progression.54 The

development of experimental COPD was associated with enhanced respiratory infection by

S. pneumoniae and influenza virus (Fig 4, D and E). The numbers of CD8+ T cells that

infiltrated the lungs of smoke-exposed mice were elevated but these lymphocytes had

reduced expression of the activation marker CD98 (data not shown), which may contribute

to impaired pathogen clearance. Although inflammation was increased, the latter findings

suggest that immune function was suppressed, thereby predisposing the diseased mice to

more severe pulmonary infections.

Once COPD develops in humans, the clinical condition and features of disease often

deteriorate further even after the cessation of smoking.2 After 8 weeks of smoking and 4

weeks of cessation in our model, macrophage accumulation in the airways of WT mice

actually increased compared to that observed immediately after 8 weeks of smoking (Fig 5,

A). It is possible that the increase in the number of macrophages in the lungs underpins the

progression of COPD even after smoking cessation. This macrophage accumulation may be

additionally exacerbated by infection that could further increase the rate of disease

progression. There were no signs of resolution of any features of disease, at least 4 weeks

after smoking cessation (Fig 5).

We then performed macrophage-depletion studies in WT mice to demonstrate that these

phagocytes were essential for smoke-induced emphysema and reduced lung function (Fig 6).

The clodronate method is the only method that can be used to reliably deplete the number of

macrophages in the lungs of mice. Although clodronate might deplete some dendritic cells,

there was no reduction in neutrophils by the method. Furthermore, the direct depletion of

neutrophils did not suppress changes in lung structure or function (Fig S3).

The mechanisms that drive COPD pathogenesis are incompletely understood. Chronic influx

of inflammatory cells into the lungs in COPD leads to the generation and release of pro-

inflammatory cytokines, chemokines, and leukotrienes55 that are thought to contribute to

tissue destruction and the development of COPD. However, abnormalities in the

protease:protease inhibitor balance in the lung also is important.56 In that regard, MCs and

their tryptase•serglycin proteoglycan complexes promote inflammation in numerous

diseases,47,57,58 and MCs have been implicated in COPD pathogenesis.13 MCs are common
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in inflammatory infiltrates in COPD, and increases in their numbers correlate with reduced

lung function and airway remodeling.14 The numbers of MCs detected in smoke-exposed

mice were not high relative to other cell types (Fig 7). Nevertheless, it is well known that

MCs release potent pro-inflammatory mediators, and that even small numbers of these cells

can have devastating effects in vivo as occurs in systemic anaphylaxis.

hTryptase-β59,60 comprises up to 50% of the protein content of a human MC. Its ortholog

mMCP-661 has beneficial roles in the control of infections,18,62 but adverse roles in MC-

dependent inflammation of the airways,53 joints,47,57 and colon in mice.58,63 However, the

roles of MCs and their granule mediators in COPD pathogenesis have not been elucidated.

In our model, there were no detectable increases in mMCP-6 mRNA or protein levels. This

was not surprising since MC tryptases are pre-formed and stored in the cell’s granules. Thus,

changes in their mRNA levels are not as important as their release or the activation state of

the MC. Only low levels of MCs were observed and mMCP-6 protein levels were below the

limits of detection by immunoblot in whole lung tissues. There are no other more sensitive

tests, such as ELISA, available. Nevertheless, Mortaz and coworkers, have demonstrated

that cigarette smoke conditioned media induced the expression of mMCP-6 protein in

primary cultured mast cells.17

Despite these data, the generation of mMCP-6−/− B6 mice18 allowed us the opportunity for

the first time to definitively evaluate the importance of this MC-restricted tryptase in

experimental COPD. The MCs in WT BALB/c mice express mMCP-661 and the other

tryptase family member mMCP-7.64 In contrast, the MCs in WT B6 mice lack mMCP-7 due

to a splice-site mutation in its gene.65 The finding that all the features of COPD were similar

in WT BALB/c (Fig 1) and B6 (Fig S3) mice indicates that mMCP-7 is not essential in our

experimental model.

Smoke exposure resulted in enhanced pro-inflammatory cytokine and chemokine expression

(Fig 1, D–F and 8, E and F) and increased the numbers of macrophages and MCs in the

lungs of WT B6 mice (Fig 7). We then employed our mMCP-6−/− B6 mice to demonstrate

that the presence of this tryptase is required for smoke-induced pro-inflammatory cytokine

and chemokine expression and accumulation of macrophages in the lung, and for airway

epithelial thickening and emphysematous damage (Fig 8). There were no statistically

significant differences between neutrophil numbers or chemokine mRNA levels in the lung

(Fig 8, C and F) or the percentage of leukocytes that were neutrophils in the blood (data not

shown) at baseline. Thus, the decreased cellular infiltration in the lungs of the smoke-treated

mMCP-6-null mice was not due to a baseline defect. We then showed that recombinant

hTryptase-β induced mouse macrophages to increase their expression of the transcripts that

encode the cytokines and chemokines that are increased in the lungs of mice with

experimental COPD. These findings suggest the tryptase contributes to COPD, at least in

part, by directly activating the macrophages in the lungs of the diseased animals. Our

discovery that macrophages and tryptase+ MCs participate in the pathogenesis of COPD in

our model raise the possibility that these cells and their granule tetramer-forming tryptases

have comparable adverse roles in human COPD. Thus, the next generation of hTryptase-β

inhibitors might have efficacy in the treatment of patients with COPD.
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In summary, we developed a short-term cigarette smoke-induced mouse model that has the

hallmark features of COPD. This animal model enables the study of the pathogenesis of

COPD in a significantly shorter time-frame than existing cigarette smoke-induced models,

thereby providing opportunities for pharmacologic intervention. Our model also enables the

evaluation of the consequences of COPD on the ability of the lung to combat infections.

COPD is the result of a complex interplay of immune dysregulation, and our model allows

the evaluation of other important parameters (e.g. systemic consequences) in COPD in the

mouse. This study raises the possibility that macrophages and tryptase+ MCs might have

similar adverse roles in patients with COPD.
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mMCP mouse MC protease

MSC mucus-secreting goblet cell
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TLC total lung capacity

TNF-α tumor necrosis factor-α
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Clinical implications

We describe a short-term mouse model with the hallmark features of cigarette smoke-

induced COPD. We then show that the model can be used to further our understanding of

the pathogenesis of COPD. We demonstrate for the first time that a MC-restricted

tetramer-forming tryptase has a prominent adverse role in experimental COPD.
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FIG 1.
Nose-only exposure of the lungs of BALB/c mice to cigarette smoke induces the hallmark

features of human COPD. A–I, WT BALB/c mice were exposed to cigarette smoke or

normal air for 1–12 weeks. Relative to control mice, smoke-exposed mice had (A) reduced

weight-gain relative to initial weight; (B) acute (after 4 days) and chronic (after 8 weeks)

increases in the numbers of macrophages (M), neutrophils (N) and lymphocytes (L) in

BALF; (C) increased cellular infiltrates in the parenchyma; increased levels of the

transcripts that encode (D) TNF-α, (E) Cxcl1, and (F) IL-1β in lung homogenates; (G)

increased number of mucus-secreting goblet cells (MSCs) in the airways; (H) airway

epithelium thickening; and (I) alveolar enlargement (scale bar on micrographs = 100 µm).

Data are means±SEM of 6–8 mice/group, # P<0.05, ## P<0.01, ### P<0.001 compared to
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mice that breathed normal air, * P<0.05, ** P<0.01 compared to other groups indicated.

Statistical significance of the reduced weight gain is for the whole curve.
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FIG 2.
Nose-only cigarette smoke exposure leads to changes in lung function that are similar to that

in humans with COPD. A–I, WT BALB/c mice were exposed to cigarette smoke or normal

air for 8 weeks. Relative to control mice, smoke-exposed mice had decreased (A) hysteresis,

(B) transpulmonary and (C) airway-specific resistance (RI) and (D) tissue damping, but

increased (E) dynamic compliance (Cdyn), (F) work of breathing, (G) functional residual

capacity (FRC), and (H) total lung capacity (TLC), and (I) reduced ratio of forced
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expiratory volume in 100 milliseconds/forced vital capacity (FEV100/FVC). Data are means

±SEM of 6–8 mice/group, # P<0.05, compared to mice that breathed normal air.
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FIG 3.
Experimental COPD is glucocorticoid-resistant. A–F, WT BALB/c mice were exposed to

cigarette smoke or normal air for 12 weeks and were treated with dexamethasone or sham-

treated with sterile distilled water either prophylactically throughout (Dex), or

therapeutically (tDex) for the last 6 weeks, of the smoking protocol. Steroid treatment had

no effect on (A) macrophage (M), neutrophil (N) and lymphocyte (L) numbers in the BALF,

(B) alveolar enlargement or changes in lung function; (C) work of breathing, (D) total lung

capacity (TLC), (E) functional residual capacity (FRC) or (F) forced expiratory volume in

100 milliseconds/forced vital capacity (FEV100/FVC) ratio. Data are means±SEM of 6–8

mice/group, # P<0.05, ## P<0.01, ### P<0.001 compared to mice that breathed normal air.

There were no differences between other groups.
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FIG 4.
Experimental COPD has systemic involvement and exacerbates respiratory infections. A–E,

WT BALB/c mice were exposed to cigarette smoke or normal air for 8 weeks. Relative to

control mice, smoke-exposed mice had (A) alterations in the proportions of monocytes (M,

decreased), neutrophils (N, increased), and lymphocytes (L, increased) in blood; (B) reduced

quadriceps weight; (C) increased heart weight, size, and fatty deposits; and decreased (D)

clearance of S. pneumoniae (after 48 hours of infection) and (E) influenza virus (after 7 days
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of infection). Data are means±SEM of 6–8 mice/group, # P<0.05, ## P<0.01, compared to

WT mice that breathed normal air.
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FIG 5.
Experimental COPD does not rapidly resolve following cessation of smoke exposure. A–F,

WT BALB/c mice were exposed to cigarette smoke or normal air for 8 weeks. Smoke

exposed mice were evaluated immediately after the cessation of smoking or 4 weeks later.

Relative to control mice, both groups of smoke-exposed mice had (A) increased airway

inflammation; (B) alveolar enlargement; and changes in lung function; decreased (C)

transpulmonary and (D) airway-specific resistance (RI); (E) increased dynamic compliance

(Cdyn); as well as (F) altered leukocyte populations in blood. Mice that had ceased smoking
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4 weeks earlier had more macrophages, but fewer neutrophils, in their BALF. Data are

means±SEM of 6–8 mice/group, # P<0.05, ## P<0.01, compared to mice that breathed

normal air, * P<0.05, compared to other groups indicated.
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FIG 6.
Depletion of pulmonary macrophages suppresses the development of experimental COPD.

A–E, WT BALB/c mice were exposed to cigarette smoke or normal air for 8 weeks. These

two groups of mice also were treated with either liposome encapsulated clodronate or empty

liposomes (Sham) 3 times/week for the duration of the experiment commencing on the 1st

day of smoking. Relative to smoke-exposed macrophage-sufficient mice, smoke-exposed

macrophage-depleted mice had reduced (A) airway epithelium thickening; and (B) alveolar

enlargement; and altered lung function; increased (C) transpulmonary and (D) increased

Beckett et al. Page 26

J Allergy Clin Immunol. Author manuscript; available in PMC 2014 June 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



airway-specific resistance (RI), and (E) reduced dynamic compliance (Cdyn). The smoke-

exposed macrophage-depleted mice had no alveolar enlargement or changes in lung function

compared to non-smoke exposed control mice. Data are means±SEM of 6–8 mice/group, ##

P<0.01, ### P<0.001 compared to mice that breathed normal air, * P<0.05, ** P<0.01 ***

P<0.001 compared to other groups indicated.
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FIG 7.
Experimental COPD increases the numbers of pulmonary macrophages and MCs. A–C, WT

B6 mice were exposed to cigarette smoke or normal air for 8 weeks. Some mice were then

rested for 4 weeks after smoking. Other mice were treated with clodronate. Relative to

control mice, smoke-exposed mice had increased numbers of (A) F4/80+ macrophages and

(B) Kit+/FcεRI+/IgE+ (by flow cytometry in the largest lobe of the multi-lobed right lung) or

(C) toluidine blue+ (by histochemistry in the single-lobed left lung) MCs in the lungs.

Smoking cessation did not alter macrophage or MC numbers. Clodronate specifically

attenuated macrophage numbers. Data are means±SEM of 6–8 mice/group, # P<0.05,

compared to mice that breathed normal air.
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FIG 8.
The tryptase mMCP-6 contributes to pulmonary macrophage accumulation and parenchymal

inflammation, and is required for airway remodeling and alveolar enlargement in

experimental COPD. A–J, WT and mMCP-6−/− B6 mice were exposed to cigarette smoke

or normal air for 8 weeks. Relative to smoke-exposed WT mice, smoke-exposed

mMCP-6−/− mice had (A) no change in the number of Kit+/FcεRI+/IgE+ MCs but had

reduced (B) numbers of F4/80+ macrophages and (C) neutrophils in the lung, (D) less

cellular infiltrates in the parenchyma, attenuated (E) TNF-α and (F) Cxcl1 mRNA levels in

lung homogenates, (G) diminished alveolar enlargement, (H) no airway remodelling and no

differences in lung function [e.g. (I) transpulmonary resistance (RI) or (J) dynamic
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compliance (Cdyn)]. K–M, B6 mouse bone marrow-derived macrophages were cultured in

the absence or presence of recombinant hTryptase-β. Relative to untreated cells, hTryptae-β-

treated cells had increased levels of the transcripts that encode (K) TNF-α, (L) Cxcl1 and

(M) IL-1β. Data are means±SEM of 6–8 mice/group, or of 3 cell cultures in triplicate

(representative of 4 repeat experiments), # P<0.05, ## P<0.01, ### P<0.001 compared to

mice that breathed normal air (A–J) or compared to sham-treated macrophages (K–M), *

P<0.05, compared to other groups indicated.
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