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Abstract

The use of mixed microbial communities (microbiomes) for biotechnological applications has steadily increased over the
past decades. However, these microbiomes are not readily available from public culture collections, hampering their
potential for widespread use. The main reason for this lack of availability is the lack of an effective cryopreservation protocol.
Due to this critical need, we evaluated the functionality as well as the community structure of three different types of
microbiomes before and after cryopreservation with two cryoprotective agents (CPA). Microbiomes were selected based
upon relevance towards applications: (1) a methanotrophic co-culture (MOB), with potential for mitigation of greenhouse
gas emissions, environmental pollutants removal and bioplastics production; (2) an oxygen limited autotrophic nitrification/
denitrification (OLAND) biofilm, with enhanced economic and ecological benefits for wastewater treatment, and (3) fecal
material from a human donor, with potential applications for fecal transplants and pre/probiotics research. After three
months of cryopreservation at 280uC, we found that metabolic activity, in terms of the specific activity recovery of MOB,
aerobic ammonium oxidizing bacteria (AerAOB) and anaerobic AOB (AnAOB, anammox) in the OLAND mixed culture,
resumes sooner when one of our selected CPA [dimethyl sulfoxide (DMSO) and DMSO plus trehalose and tryptic soy broth
(DMSO+TT)] was added. However, the activity of the fecal community was not influenced by the CPA addition, although the
preservation of the community structure (as determined by 16S rRNA gene sequencing) was enhanced by addition of CPA.
In summary, we have evaluated a cryopreservation protocol that succeeded in preserving both community structure and
functionality of value-added microbiomes. This will allow individual laboratories and culture collections to boost the use of
microbiomes in biotechnological applications.
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Introduction

In a bio-based economy, the exploitation of microbial resources

represents a valuable solution for many of the current sustainabil-

ity issues [1–6]. Both single strains and consortia of different

microorganisms with various interconnected functions (i.e. micro-

biomes [7]) have been employed. The latter strategy has been

gaining importance since the last decade [1,3,6,8,9] and in certain

applications microbiomes are known to outperform pure cultures

[9–13]. Hence, the use of mixed microbial communities is

interesting both from a purely scientific point of view as well as

from the viewpoint of practical applications. Nonetheless, no

optimized approach to maintain a reproducible mixed community

inoculum is available to date (even when correcting the inherent

variability found in mixed bacterial communities (i.e. community

dynamics [7]).

The majority of the existing protocols for long-term and stable

storage have been described for axenic cultures, which is obviously

linked with the almost exclusive focus of biological resource centers

(BRC) on pure culture microorganisms [14,15]. In non-BRC labs

the preservation method of freezing at 280uC is preferred over

freeze-drying or other drying techniques, because of the direct

access to electrical freezers for most researchers and the

straightforwardness of the procedure [16]. To avoid cellular

damage during cryopreservation and subsequent thawing, a wide

array of cryoprotective agents (CPA) has been applied. Of these,

cryopreservation with dimethylsulfoxide (DMSO) is comparatively

more successful than the commonly used glycerol [17]. Moreover,

recent studies on preservation of fastidious pure cultures have

shown the effectiveness of complex media for cryopreservation of

methanotrophic bacteria (MOB) [18], aerobic and anaerobic

ammonia-oxidizing bacteria (AerAOB and AnAOB) [19,20] and
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nitrite oxidizing bacteria [21]. These complex cryopreservation

media exploit the concerted protective effects of a fast penetrating

CPA (DMSO) and the innate cryoprotective effects of carbon-rich

media (Trehalose and Tryptic Soy Broth, TT). Apart from the

choice of CPA, which has been indicated to be one of the most

determining factors for cryopreservation success [17], a rigorous

protocol for freezing, thawing, resuscitation and storage with as

less temperature variations as possible is essential for successful

cryopreservation [16].

To date, only a few methodologies for cryopreservation of non-

axenic cultures have been described [20,22–24]. Conversely,

regardless of the increasing interest in processes driven by mixed

microbial communities or microbiomes [3,7], they are currently

not readily available from any culture collection [14]. Among the

described preservation methodologies, the use of DMSO and

DMSO+TT as CPA has been evaluated for highly enriched

anammox communities, without further evaluation of the com-

munity structure [20]. The preservation of the activity of

anammox enrichments has also been evaluated at 260uC (not at

280uC) without evaluation of DMSO as a CPA but with

evaluation of community changes by means of comparative FISH

[25]. Cryopreservation of gel entrapped nitrifying sludge has also

been evaluated [26] but not with DMSO as a CPA, nor with

further evaluation of the community structure. The recovery of

both activity and community structure (evaluated with DGGE)

have been evaluated for cryopreserved denitrifying biomass [24].

However, DMSO nor TT were incorporated as CPA in the study

design. Finally, cryopreservation of the oxygen-limited autotrophic

nitrification/denitrification (OLAND) biofilm has been evaluated

previously [22] but cryopreservation was not evaluated at 280uC
nor with the use of DMSO or DMSO+TT as a CPA. To

summarize, none of the described methodologies to this day have

evaluated both the documented benefits of DMSO with or without

carbon rich compounds as a CPA on both community compo-

sition and functionality.

This study presents the innovative implementation of a

cryopreservation protocol, designed based on previous research

[17–21], for stable storage of bacterial mixed cultures in order to

retain both community composition and an associated key

functionality over time. DMSO was chosen over glycerol as the

CPA. The combination of DMSO and TT was evaluated as a

separate CPA. Storage was performed at 280uC. Three different

bacterial mixed communities were included: (i) a highly enriched

co-culture of methane-oxidizing bacteria (MOB) and heterotrophs

[27], (ii) a biofilm from the OLAND process [28] which contained

both nitrifiers (aerobic ammonium-oxidizing bacteria, AerAOB

and nitrite-oxidizing bacteria, NOB) and anoxic ammonium-

oxidizing bacteria (or anammox bacteria: AnAOB) and (iii) a

human fecal microbiome. These mixed bacterial cultures were

selected based upon their relevance for science and industry. MOB

mixed communities are the key drivers of a variety of biotechno-

logical processes [29]: methane removal in gaseous or liquid

wastestreams, production of added-value compounds from these

wastestreams [2,30,31] or biodegradation of hazardous organic

compounds [32]. The OLAND mixed communities form a one-

stage sustainable nitrogen removal process removing ammonia

from wastewaters with a low C/N ratio and ammonia loaded gas

streams through a combination of partial nitritation and anammox

[28,33,34]. Finally, the fecal microbiome opens perspective for

pre- and probiotics testing and fecal transplantations [4–6].

Materials and Methods

1. Biomass Sampling and Pretreatment
Prior to cryopreservation, biomass was harvested from three

different sources with their own key specific functionality.

1.1. MOB biomass. A methanotrophic co-culture was sub-

cultivated from the original enrichment culture by Van Der Ha et

al. [27] on NMS medium (with copper). Headspace air was

replenished every three days, in a non-sterile fashion. Biomass was

sampled from these communities growing in active methane

oxidizing fed-batch reactors.

1.2. OLAND biomass. OLAND is a one-stage autotrophic

process removing ammonia from wastewaters with a low C/N

ratio and ammonia loaded gas streams through a combination of

partial nitritation and anammox [28,33,34].

The OLAND-biomass was harvested from a lab-scale rotating

biological contactor (RBC) showing stable operation for several

years [35]. The reactor is being operated at 3461uC and has been

fed with synthetic influent at a volumetric loading rate of 600 mg

N L21 d21 and a hydraulic residence time of 40 h. At the time of

sampling, the average nitrogen removal efficiency was 77%. About

100 g of biofilm was harvested from the RBC discs by scraping.

To remove all dissolved nitrogen compounds originating from the

reactor liquid, the harvested biomass was washed with tap water in

a sieve (pore size 250 mm).

1.3. Fecal biomass. Following verbal consent, a stool sample

of a healthy human volunteer was collected in a sealed, plastic

container with an AnaeroGen bag to create an anaerobic

environment. The sample was preserved within 2 h after

defecation.

2. Experimental Setup
The experimental design, over a three month period of

cryopreservation, is outlined in Figure 1. Each source of biomass

at t0 was divided in three parts: one part was subjected to

cryopreservation, with or without addition of CPA, another part

was subjected to the reference activity test, and a final part was

sampled for DNA extraction and biomass quantification. At the

end of the reference activity test, biomass was again sampled for

DNA extraction and biomass quantification (t1). After 106 days,

biomass was resuscitated (t2) and used as inoculum for the post-

freezing activity test. At the end of the post-freezing activity test

biomass was sampled again for quantification and DNA extraction

(t3). DNA sampling at this point allows to investigate the active

community after resuscitation and a standard batch activity test.

2.1. Storage conditions. Prior to cryopreservation and

activity testing, all mixed cultures were cultivated in their

appropriate growth media (described in section 2.3). Cultures

were harvested from running (fed-) batch reactors or human fecal

matter. Biomass was transported in under one h to the

cryopreservation location on coldpacks (approx. 4uC). Biomass

was stored in quadruplicate 50 mL falcon tubes for each

cryopreservation condition (see Table 1), to allow for an adequate

amount of inoculum to be preserved to execute activity

measurements and reactor startup immediately after resuscitation

[20].

In each falcon tube either 20 mL of liquid broth for the MOB

biomass (previously cultivated on NMS) or 8 g of wet weight for

the OLAND and fecal biomass was added. No particular

precautions were made to avoid exposure of the anaerobized

fecal slurry and OLAND biofilm to air in preparation of the

50 mL falcon tubes for freezing [20]. To the OLAND and fecal

biomass, 20 mL of autoclaved tap water (Ghent, Belgium) or basal

medium [36] was added, respectively. Immediately upon arrival at
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the cryopreservation site, 20 mL of the selected CPA (Table 1),

was added and gently mixed. Addition of CPA was performed at

4uC to decrease DMSO toxicity. Biomass was allowed to

equilibrate with the added CPA for 30 minutes at room

temperature (21uC). Immediately after, biomass was transferred

to 280uC. The falcon tubes were stored in non-insulated

cryopreservation boxes in an aluminum rack placed in the 2

80uC ULT freezer. The freezing and thawing rates in medium

with 5% DMSO at 280uC were similar to values determined by

the authors in a previous experiment [19] as an identical protocol

and equipment were used. In this experiment it was shown that the

rates of freezing to 280uC were much lower than in liquid

nitrogen, while thawing rates were similar. A slower freezing rate is

beneficial for preservation success, as a rapid cooling can increase

the chance of intracellular ice formation, leading to cell death.

2.2. Resuscitation conditions. The last step in every

preservation protocol is the resuscitation of preserved biomass so

that cells again become active and are able to reproduce [16].

Samples were thawed in a warm water bath at 37uC. Because of

cytotoxicity of DMSO, the samples were removed from the warm

water bath immediately upon thawing for centrifugation at 4uC at

7000 g for 15 minutes after which the supernatant was discarded.

The pellet was then resuspended in fresh medium, and 50% (v/v)

TT medium was added to the corresponding vials. After

resuspending, cultures were incubated for one h at room

temperature. Then the samples were centrifuged as described

above following pellet resuspension in 20 mL of their respective

media.

3. Activity Screening Setup
3.1. MOB biomass. A total liquid volume of 200 mL was

used to have sufficient amounts of methane and oxygen in the

headspace for a 96 h incubation in 1.15 L bottles. At the start of

each incubation, 20% (v/v) of methane (99.95% pure, Air

Liquide, Liège, Belgium) was added to the headspace of the

bottles. All cryoprotective conditions were incubated in duplicate

on both NMS medium (1 g L21 MgSO4?7H2O, 1 g L21 KNO3,

0.15 g L21 CaCl2?2H2O, 0.005 g L21 FeNaEDTA, 1.43 g L21

Na2HPO4?12H2O, 0.55 g L21 KH2PO4 and 0.1% (v/v) of trace

elements solution) with copper and dNMS medium (0.4 g

L21 MgSO4?7H2O, 0.4 g L21 KNO3, 0.06 g L21 CaCl2?2H2O

and 2.87 g L21 Na2HPO4?12H2O, 1.1 g L21 KH2PO4. Other

constituents are given for NMS). The trace elements solution is

described in Table S1, and contains 2.5 g L21 CuSO4?5H2O,

among other nutrients. The bottles were placed on a shaker

(120 rpm) for 48 h with daily sampling for cell dry weight (10 mL)

and headspace gas (2 mL).

Specific methane oxidation rate (MOR, mmol CH4 g21 VS

d21) was determined as the amount of methane consumed divided

by the average volatile solids (VS) concentration over the activity

test of 48 h, and was the key activity for MOB mixed culture.

3.2. OLAND biomass. The aerobic batch experiments for

AerAOB and NOB activity were performed in 250 mL erlen-

meyer flasks with 100 mL working volume, where 0.1 g L21 of

nitrogen added as NH4Cl and a buffering solution (1 g L21

NaHCO3, 3.4 g L21 KH2PO4 and 4.4 g L21 K2HPO4) were

supplied to the biomass (,0.2 g VSS per erlenmeyer). The flasks

were incubated on a shaker at 34uC while pH and dissolved

oxygen concentration were monitored: samples for ammonium,

nitrite and nitrate analyses were taken each 4 h. For the anoxic

batch tests (AnAOB activity), 120 mL serum flasks were used,

containing 80 mL of mixed liquor. Once the biomass (,0.2 g VSS

per flask) and a buffering solution (final concentrations 1 g

NaHCO3 and 0.04 g L21 KH2PO4) were added, the flasks were

closed with rubber stoppers and flushed with N2 gas (30 cycles of

800 mbar overpressure, 900 mbar underpressure). Then, flushed

substrate solutions containing NH4Cl and NaNO2 were added

(final concentrations 0.1 g L21 NH4-N and 0.1 g L21 NO2-N).

Figure 1. Timeline and sampling strategy of the cryopreservation setup. The time is shown in days. In red the activity tests are shown. The
freezing and thawing are shown in dark grey. DNA sampling was executed at t0, t1 and t3.

doi:10.1371/journal.pone.0099517.g001

Table 1. Cryoprotective agents (CPA) used in the crypreservation design.

Treatment designation CPA content

No CPA Distilled autoclaved tap water

DMSO Distilled autoclaved tap water and DMSO to a final concentration of 5% (v/v) DMSO

DMSO + TT TT medium (1% (w/v) trehalose, 0.3% (w/v) tryptic soy broth (TSB)) and DMSO to a final concentration of 5% (v/v) DMSO

doi:10.1371/journal.pone.0099517.t001
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Further incubation and sampling were performed as described for

the aerobic batch experiments. Due to a missing sampling point

(t1) and the pooling of the biomass, statistical analyses were not

completed for the community data acquired.

3.3. Fecal biomass. The fresh or preserved (after removal of

cryoprotectant medium) fecal sample was diluted (20%, w/v) and

homogenized with sterilized phosphate buffer (0.1 M, pH 7.0),

containing 1 g L21 sodium thioglycolate as the reducing agent.

The particulate material was removed by centrifugation (2 min,

500 g) and the supernatant of this pretreatment was used as an

inoculum for the batch tests.

Experiments were performed in 120 mL serum flasks flushed

with N2 (as described for the anoxic OLAND activity tests) with

basal medium [36]. Forty mL of basal medium and 10 mL of the

fecal inoculum were incubated at 37uC under continuous shaking

(120 rpm) for 36 h. The activity parameter that was evaluated for

the fecal community was short-chain fatty acid (SCFA) production.

The total SCFA concentration was calculated as the sum of

concentrations of acetate, propionate, butyrate, isobutyrate,

valerate, isovalerate, caproate and isocaproate.

4. Physicochemical Analyses
4.1. Biomass quantification. Specific activity, biomass

concentration was assessed as cell dry weight based on a

determination of total (suspended) solids (T(S)S) and volatile

suspended solids (V(S)S) according to Greenberg et al. [37].

4.2. Headspace gas composition. At the startup and before

every liquid sampling event, gas samples were taken and gas

pressure was measured using a tensiometer (Infield 7 with T1Kc

sensor head, UMS, München, Germany). Two mL of headspace

sample was transferred to and injected on a Compact GC (Global

Analyzer Solutions, Breda, The Netherlands) equipped with one

channel having a thermal conductivity detector (TCD) following a

Porabond pre-column attached to a Molsieve SA column. This

allowed for accurate determination of the concentration of O2, N2,

CH4 and CO2 in the headspace of the cultivation reactors [2].

4.3. Ammonium, nitrite, nitrate and SCFA

analyses. Dissolved ammonium concentrations were deter-

mined by a direct colorimetrical method with the Nessler reagent

at 425 nm [37]. Nitrate and nitrite concentrations were analyzed

using an ion chromatograph (IC 761 Compact IC, Metrohm,

Herisau, Switzerland) equipped with an electrochemical conduc-

tivity detector following a Metrosep A Supp 5–150 column

(Metrohm, Herisau, Switzerland) and a Metrosep A Supp 4/5

guard column (Metrohm, Herisau, Switzerland). The mobile

phase was 3.2 mM Na2CO3, 1.0 mM NaHCO3 and 5 volume

percent acetone at a flow rate of 0.7 mL min21. Volatile fatty

acids were analyzed as described previously [38].

5. Microbial Identification and Quantification
To identify the mixed bacterial community constituents,

Illumina 16S rRNA gene sequencing was performed. DNA was

extracted using the FastDNA SPIN kit for soil (MP Biomedicals,

Brussels, Belgium) according to the instructions of the manufac-

turer for the MOB and OLAND samples and by using the CTAB

method [39] for the human fecal material samples.

The preparative amplification, gel purification and equimolar

pooling for Illumina amplicon sequencing was performed as

described before [40]. Unidirectional Illumina amplicon sequenc-

ing was executed with 16S rRNA gene primers for the V5–V6

hypervariable regions as described before [41].

A total of 544568, 83754 and 170617 sequence reads were

obtained for the 20 MOB samples, 4 OLAND samples and 9 fecal

microbiome samples, respectively. A quality filter program that

runs a sliding window of 10% of the read length over the read and

calculates the local average score based on the Phred quality scores

of the fastq file, trimmed 39-ends of the reads that fall below a

quality score of 15 (http://bioinformatics.ucdavis.edu/index.php/

Trim.pl). Only reads of a minimum of 149 nt in length (29 nt of

primer and barcode sequence and 120 nt of 16S rRNA gene

sequence) were further analyzed. All truncated reads that had an

N character in their sequence, any mismatches within primers and

barcodes or more than 10 homopolymer stretches were discarded.

All sequences from each sample present in the different libraries

were split into different files according to their unique barcode.

A representative read was further considered if a) it was present

in at least one sample in a relative abundance .1% of the total

sequences of that sample or b) was present in at least 2% of

samples at a relative abundance .0.1% or c) present in at least 5%

of samples. Phylotype representatives were then generated by

clustering at 98% similarity (1 mismatch) using the mothur

pre.cluster program [42]. This reduced the number of represen-

tative reads to a computational manageable level without

curtailing the fine scale community composition [40]. The final

sequences used for this study are available as supplemental

material (Datasets S1 through S3).

Additionally, for the MOB mixed community, a diagnostic

microarray analysis targeting the pmoA gene (a gene encoding for

the methane monooxygenase, a key enzyme in methane oxidation)

was performed as described in detail previously [43–45]. The

probe identification was given previously [45].

6. Data Processing and Visualization
All statistical data analyses and graphing of community

structure were performed with the statistical software R, version

3.0.2. for Windows (http://www.r-project.org) [46]. Multiple

comparisons were executed using the Kruskal-Wallis rank sum

test from the R base package stats. If the null hypothesis of equality

of location parameters of each group distribution was rejected,

nonparametric relative contrast effects [47] were estimated to

assess significant differences between groups with Tukey contrasts,

unless stated otherwise. Graphing of the functionality data was

performed using SigmaPlot for Windows version 12.0 (Systat

software, Inc.).

Phylogenetic trees were constructed after sequence alignment

using mothur, version 1.31.2 [42]. Alignments were made using

the align. seqs command with the reference Silva alignment

provided on the mothur website (http://www.mothur.org/wiki/

Silva_reference_files). RAxML [48] was used to construct a

majority rule bootstrap consensus tree with the GTR+GAMMA

substitution model. One thousand bootstrap iterations were

executed using the parallelization offered in the Pthreads-based

version of RAxML [49]. The Newick-formatted output tree was

subsequently loaded into iTol (http://itol.embl.de) for data

visualization [50]. Classification of sequences was executed with

the mothur implementation of the naı̈ve Bayesian classifier [51]

with a threshold of 0.65 with either RDP release 9 [52] reference

taxonomy or the Greengenes reference taxonomy suggested by

Werner and colleagues [53], without trimming to the sequencing

region. Unless stated otherwise, the sequence count data were

randomly subsampled to the sequence count of the sample with

the lowest sequence count for each of the mixed communities

separately. Rarefaction curves show that at this cutoff all samples

were sequenced deep enough to cover biodiversity (Figure S8).

When means are reported, they are always reported as mean 6

standard deviation (m6s) and the number of replicates (n) is given

between brackets. Multiple comparisons were made using

nonparametric relative contrast effects [54] with Tukey contrasts

Cryopreservation of Microbial Consortia
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and a logit asymptotic approximation as implemented in the R

package nparcomp (http://cran.r-project.org/web/packages/

nparcomp/index.html), unless otherwise stated.

Results

For each of the three mixed communities the impact of the

addition of a CPA during cryopreservation is outlined below. First

specific activity recovery of a key activity of the mixed culture is

given, followed by the results of the recovery of OTUs directly

contributing to the chosen key activity (functional community

members) after which the recovery of every single OTU,

regardless of classification as a functional community member, is

evaluated for their presence or absence at each time point and

condition of the experimental design (Figure 1). Finally the

changes in community structure are evaluated using the abun-

dance-based Jaccard index.

1. Methanotrophic Community (MOB)
Two cultivation media (NMS and dNMS) were evaluated with

the MOB mixed culture. The key specific activity (MOR) was

comparable to the original activity, when a CPA was added prior

to cryopreservation (Figure 2A), on both media. When no CPA

was added, the average specific activity over 48 h was significantly

lower than the original activity on both media (p,0.0001). The

largest activity recovery was obtained when only DMSO was

added as a CPA both with NMS (147.262.6%) and dNMS

(156.1610.1%), which exceeded the original activity. When

DMSO+TT was used as a CPA, the original specific activity

was obtained on NMS (96.4610.7%) and dNMS (116.5620%).

Both on NMS and dNMS with DMSO+TT as a CPA the specific

activity was not significantly different from the initial activity

(p = 1).

All OTUs classified as methanotrophic Proteobacteria (57 out of

117 OTUs) were classified into two MOB families: either

Methylococcaceae (Gammaproteobacteria or type I MOB) or Methylocys-

taceae (Alphaproteobacteria or type II MOB). Also one OTU was

classified as a non-proteobacterial MOB, part of the Verrucomicrobia

phylum, namely Candidatus Methylacidiphilum. While the Methy-

lococcaceae family was an abundant community constituent (up to

46% of all sequences of the inoculum), the Methylocystaceae and

Candidatus Methylacidiphilum were less abundant (Figure S4,

Figure S7). All of these methanotrophic taxa were detected in the

mixed culture before and after cryopreservation, irrespective of the

added CPA (Figure S4). However, the relative abundances of the

MOB OTUs among all experimental conditions simultaneously

(t0, t1 and t3) were significantly different for each MOB family (p,

0.0001). More specifically, the relative abundance of Methylococca-

ceae within dNMS pre (t1) and dNMS DMSO (t3) did not

significantly differ from the inoculum (t0, p = 1). There was also no

significant difference in Methylococcaceae relative abundance be-

tween the dNMS pre (t1) and dNMS samples at t3 with DMSO

and DMSO+TT (p = 1). However, on NMS, all conditions at t3
differed significantly from t0 and t1, regardless of CPA addition

(p,0.0001). There were no significant differences in relative

abundance of Methylocystaceae between t3 and the initial inoculum

(t0, p = 1), although the NMS samples showed a significant

difference between t3 and t1 in samples with CPA addition (p,

0.0001). No significant differences (p = 1) were found in the

relative abundance of Candidatus Methylacidiphilum between t0 on t3
only when DMSO was used as a CPA and incubation was

performed on NMS. Between t1 and t3 on NMS no significant

differences were found when DMSO+TT or no CPA was used

Figure 2. Functionality recovery after cryopreservation. Error
bars represent error-propagated standard errors A) the MOB commu-
nity on NMS and dNMS cultivation medium. The activity recovery was

Cryopreservation of Microbial Consortia
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(p = 1). On dNMS, DMSO+TT maintains the relative abundance

between t1 and t3 (p = 1).

The main constituents of the mixed MOB culture were from the

Methylophilaceae, Flavobacteriaceae, Methylococcaceae, Comamonadaceae,

Verrucomicrobiaceae, Chitinophagaceae and Enterobacteriaceae families

(Figure S1). Differences in relative abundance of individual

community members were apparent however; only 21% of OTUs

(representing only 2.5% of total sequence counts) were not

detected in at least one of the experimental conditions (Figure 3).

Cryopreservation was associated with greater community

dissimilarities on NMS, regardless of the addition of a CPA

(Figure 6A). Nonetheless, these dissimilarities (t0–t3) were not

significantly different from the community dissimilarity of the first

activity test (t0–t1, p = 0.12). With dNMS, the differences were

significant (p = 0.01). More specifically, the dissimilarity with the

inoculum was lower when a CPA was added. This dissimilarity

was within the range of the dissimilarity of the pre-freezing activity

test (t0–t1) when DMSO was used as a CPA (Figure 6C). The

community dissimilarities in the reference (t0–t1), DMSO (t1–t3)

and DMSO+TT (t1–t3) samples were not significantly different

(pref-DMSO = 0.99, pref-DMSO+TT = 0.50, pDMSO-DMSO+TT = 0.57)

while the dissimilarities between the reference and the samples

with no CPA did significantly differ (p,0.0001).

Overall, partial constrained correspondence analysis (pCCA)

showed that the global community structure of samples at t3 with

an added CPA is closer to the inoculum (t0) and results after the

first incubation (t1) and significantly (p = 0.01) correlates with an

increased recovery of MOR (Figure S9). This analysis ‘partials’ out

the effect of the medium and allows to observe only the effect of

CPA addition.

2. Oland Mixed Community
The functional autotrophic microorganisms in OLAND include

AerAOB and AnAOB (Figure 2B). AerAOB had an complete

specific activity recovery when DMSO+TT was used as a CPA

(94.469.6%, p = 1) whilst only 71.069.9% was obtained without

addition of CPA and only 65.1610.4% was obtained when

DMSO without TT was used as a CPA. AnAOB activity was

recovered up to 36.168.6% with DMSO+TT as a CPA and up to

25.067.7% with only DMSO as a CPA. The initial specific

activity was not recovered without CPA addition (0.7610.4%).

Finally NOB activity was best retained when no CPA was added

(92.4620.3%, p = 0.95) whilst only 53.1611.6% or 47.4611.7%

was recovered with DMSO and DMSO+TT, respectively.

All OTUs that could be classified as AerAOB were represen-

tatives of the Nitrosomonadaceae family, more specifically Nitrosomonas

sp. The AnAOB-OTUs were represented by the Brocadiaceae

family, and more specifically by Candidatus Brocadia sp. NOB were

representatives of Nitrospiraceae family, more specifically Nitrospira

sp. Overall, the conditions where DMSO+TT was added as a

CPA allowed for the best recovery after cryopreservation of all of

the OLAND ‘‘functional’’ partners. The differences in relative

abundance between no CPA and DMSO were rather minute

(Figure S5).

The main constituents of the OLAND mixed community were

representatives of the Comamonadaceae, Flavobacteriaceae, Nitrosomona-

daceae, Rhodocylaceae and OD1 incertae sedis families as well as the

Bacteroidetes order (Figure S2). Overall, most OTUs occurred in

each condition irrespective of CPA addition, and only 15% of

OTUs (representing 5.3% of total sequences) were not detected in

at least one of the experimental conditions (Figure 4). Most of the

OTUs that did not occur in every condition required the addition

of a CPA to persist after cryopreservation. In the samples where a

CPA was added, global community dissimilarity to the inoculum

was lower, regardless of the type of CPA used (Figure 6B).

3. Fecal Microbiome
The overall SCFA concentration profile remained nearly

identical (Permutation Hotelling T2 p-value: 0.69) between t1
and t3 (Figure 2C), although the total concentration was

significantly lower (p,0.0001). Initial metabolic activity was

reduced to 50.163.9% if no CPA was employed, and to

52.561.4% with DMSO or to at 51.961.9% with DMSO+TT

(p = 0.58). This decrease in total SCFA levels primarily originated

from a decrease in acetate from 25.460.7 mM (n = 2) to

10.260.7 mM (n = 4) without CPA (p,0.0001), 11.260.6 mM

(n = 3) on DMSO (p,0.0001) and 11.160.8 mM (n = 4) on

DMSO+TT (p,0.0001). Compared to the initial levels

(4.9860.01 mM (n = 2)) propionate levels were highest without

CPA addition (70.562.8%, 3.560.1 mM (n = 4)) and only slightly

lower with DMSO (69.165.7%, 3.460.3 mM (n = 3), p = 0.51) or

DMSO+TT (67.363.5%, 3.460.2 mM (n = 4), p = 0.87). Finally,

the concentration of butyrate was highest with DMSO+TT

(1.860.2 mM (n = 4)), which was 42.065.5% of the initial

4.260.07 mM (n = 2) while DMSO and no CPA resulted in

1.760.2 mM (n = 3) and 1.760.2 mM (n = 4), respectively.

The most abundant microorganisms in the fecal microbiome

were representatives of the Lachnospiraceae, Bacteroidaceae,

Ruminococcacae, Enterococcaceae, Enterobacteriaceae, Verruco-

microbiaceae, Bifidobacteriaceae and Clostridiales Family XI.

Incertae sedis families (Figure S3). A total of 18 different families,

with documented associations with the fermentative metabolism in

the gut, were investigated for their relative abundance before and

after cryopreservation (Figure S6). Variable results were obtained

in the different taxonomic groups (Table S2). Similar to the MOB

and OLAND mixed community, most OTUs from the fecal

microbiome remained present in all experimental stages and

conditions, irrespective of CPA addition (Figure 5). Of all observed

OTUs, 29% (representing 8.5% of total sequences) were not

detected in at least one of the experimental conditions (pre-

freezing, post-freezing with or without CPA). This percentage

excludes the OTU presence in the fecal inoculum due to the

drastic change of the community upon first cultivation. Addition of

CPA during cryopreservation of the fecal biomass was necessary to

maintain comparable community dissimilarities to the reference

activity test (Figure 6D), but differences in community dissimilarity

between the conditions with and without CPA were not significant

(p = 0.24).

Overall, constrained correspondence analysis (CCA) showed

that the global community structure of samples with an added

CPA at t3 is moderately closer to the samples after the first

incubation (t1). No significant correlations with VFA production

were found with marginal effects permutation tests however with

the percentage of specific MOR (mmol CH4 g21 VS d21) from the pre-
freezing activity test (t0 to t1) that was obtained in each experimental
condition in the post-freezing activity test (t2 to t3) B) The different
functional members in the OLAND community. The activity recovery
was the percentage of specific activity (mg N g21 VSS d21) for either
aerobic or anaerobic ammonium oxidation (AOB and AnAOB) or nitrite
oxidation (NOB), from the pre-freezing activity test (t0 to t1) that was
obtained in each experimental condition in the post-freezing activity
test (t2 to t3) C) short chain fatty acid production by the fecal
microbiome. The activity recovery was the percentage of SCFA
produced in the pre-freezing activity test (t0 to t1) that was obtained
in each experimental condition in the post-freezing activity test (t2 to
t3). Total SCFA, acetate, propionate and butyrate were measured.
doi:10.1371/journal.pone.0099517.g002
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sequential effects a significant correlation was found with an

increased recovery of acetic acid production (Figure S10).

Discussion

The aim of this research was to evaluate a cryopreservation

design allowing availability of a functionally and structurally

reproducible inoculum for scientific and technological applica-

tions. A satisfactory recovery of specific activity of the three

bacterial mixed communities studied was achieved. A critical

evaluation of the community structure and differences in relative

abundances or membership of the community constituents

confirmed community stability, thus guaranteeing functionalities

in future performance in distinct set-ups.

1. Addition of a CPA Enhances Fast Activity Recovery of
Autotroph-driven Consortia

Previous work on pure cultures of fastidious bacteria, such as

AnAOB [20], AerAOB [19], NOB [21] and MOB [18] has shown

that these bacteria require addition of the appropriate CPA for

survival during cryopreservation [16]. This was indeed confirmed

with the MOB mixed culture and the AnAOB and AerAOB (with

DMSO+TT) in the OLAND mixed community. Gel-entrapped

AerAOB and NOB (denitrifying sludge) were previously shown to

have better preservation in the absence of a CPA [26]. However

neither DMSO nor DMSO+TT were evaluated for the gel-

entrapped sludge. Also, in the current study, OLAND biomass was

not gel entrapped but part of a RBC biofilm. In contrast to the

findings on gel entrapped AerAOB, addition of a CPA (DMSO+

Figure 3. Phylogenetic tree of OTU consensus sequences in the MOB samples. Sequences were aligned using the mothur implementation
of the NAST algorithm with the Silva v102 reference alignment. RAxML was used to construct an extended majority rule bootstrap consensus tree
with the GTR + GAMMA substitution model and 1000 bootstrap iterations. This bootstrap consensus tree was visualized using iTol. The colored bars
represent treatment-wise means (n = 2 except for inoculum n = 1 and NMS pre n = 3) of the log transformed absolute abundances with the log
transformation as suggested by Anderson and colleagues [74] with base 10. Before transformation the samples were rarefied to the lowest sequence
count after removal of anomalous sample NMS1. Red arrows indicate OTUs classified as methanotrophic bacteria. Black arrows point out OTUs that
were not detected in specific experimental conditions. Classification was done based upon the Greengenes taxonomy (adapted to mothur from [53])
with the naı̈ve Bayesian classifier implemented in mothur (Wang algorithm).
doi:10.1371/journal.pone.0099517.g003
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TT) enabled AerAOB recovery comparable to the initial activity

in this experiment. The increase in activity recovery on DMSO+
TT and the reduced recovery on DMSO alone corroborate with

earlier findings for Nitrosomonas spp. [19] for preservation at 2

80uC. No pre-preservation growth was executed with TT medium,

which is known to enhance activity recovery of certain Nitrosomonas

spp. [19]. Earlier findings for AnAOB showed that addition of TT

along with DMSO without any pre-incubation enhanced recovery

over DMSO without TT [20]. These findings aid in elucidating

the overall impact of the time point of carbon addition to the

preservation medium, which remain poorly understood.

The findings for NOB corroborate with earlier findings for gel

entrapped NOB, since their best activity recovery was realized

without CPA, as well as with more recent findings, where nearly

all NOB strains resuscitated well after cryopreservation without

addition of a CPA [21]. Furthermore, it has been shown that the

optimal DMSO concentration for cryopreservation of certain

NOB is 10% (v/v) whereas in the current study only 5% DMSO

was evaluated [21].

Previous research on cryopreservation of the entire OLAND

consortium at 220uC showed that AnAOB activity recovery failed

[22]. To our knowledge, the current work is the first report of a

successful AnAOB activity recovery after cryopreservation of the

Figure 4. Phylogenetic tree of OTU consensus sequences in the OLAND samples. Sequences were aligned using the mothur
implementation of the NAST algorithm with the Silva v102 reference alignment. RAxML was used to construct an extended majority rule bootstrap
consensus tree with the GTR + GAMMA substitution model and 1000 bootstrap iterations. This bootstrap consensus tree was visualized using iTol.
The colored bars represent log transformed absolute abundances with the log transformation as suggested by Anderson and colleagues [74] with
base 10. Before transformation the samples were rarefied to the lowest sequence count. Black arrows point out OTUs that have a differential presence
among experimental conditions. Classification was done based upon the Greengenes taxonomy (adapted to mothur from [53]) with the naı̈ve
Bayesian classifier implemented in mothur (Wang algorithm).
doi:10.1371/journal.pone.0099517.g004
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OLAND mixed community, however previous reports of cryo-

preservation of both aggregated and single-cell highly enriched

AnAOB cultures exist [20].

For the fecal biomass, the SCFA production is a result of the

saccharolytic metabolism of several cross-feeding heterotrophic

bacteria in the community. Because of the high community

diversity, the non-fastidious nature of heterotrophic bacteria and

the rich nutritional background from where this mixed culture

originated, the biomass seemed to be more ‘robust’ to cryopres-

ervation. This was clearly demonstrated by the fact that addition

of a CPA did not markedly improve activity recovery. The finding

that a heterotrophic microbial consortium was not aided in fast

recovery by the addition of a CPA is in contrast with earlier

findings [24] for methanol-fed denitrifying biomass.

2. Preserving Community Structure
It has been established that different preservation conditions (i.e.

a different CPA) influence the success of cryopreservation with a

great variability among pure cultures on a species- or even strain-

level [55]. In the case of the mixed methanotrophic community,

both the effects of cryopreservation on the key ecosystem drivers

(the MOB) as well as the peripheral heterotrophic community

[32,56–59] are of interest. Concerning the autotrophic mixed

community drivers, type I and type II MOB show distinct

Figure 5. Phylogenetic tree of OTU consensus sequences in the fecal material samples. Sequences were aligned using the mothur
implementation of the NAST algorithm with the Silva v102 reference alignment. RAxML was used to construct an extended majority rule bootstrap
consensus tree with the GTR + GAMMA substitution model and 1000 bootstrap iterations. This bootstrap consensus tree was visualized using iTol.
The colored bars represent treatment-wise means (n = 2 except for fecal inoculum n = 1) of the log transformed absolute abundances with the log
transformation as suggested by Anderson and colleagues [74] with base 10. Before transformation the samples were rarefied to the lowest sequence
count. Classification was done based upon the Greengenes taxonomy (adapted to mothur from [53]) with the naı̈ve Bayesian classifier implemented
in mothur (Wang algorithm). Black arrows indicate OTUs with differential abundance among the experimental conditions.
doi:10.1371/journal.pone.0099517.g005
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ecophysiological features [56] and have been suggested to possess

different life strategies [60]. Hence, to allow a mixed methano-

trophic culture to perform in a broad range of circumstances,

representatives of both type I and type II MOB should be

preserved during cryopreservation. Both type I and type II MOB

were recovered after cryopreservation. Methylocystaceae (type II

MOB) did not require addition of a CPA to maintain relative

abundances in the mixed culture. As our analyses were DNA-

based, it is possible that the detected type II MOB are part of the

microbial seed bank in the reactor (as previously demonstrated for

soils [61,62]). Type II MOB are known to have more persistent

resting cells than type I MOB [63]; hence, the addition of a CPA

does not influence their cryopreservation. This is in agreement

with the diagnostic microarray results where the least changes in

MOB diversity occurred when no CPA was added (the micro-

array was only run on the NMS samples) and where Methylocystis

sp. (strain M or related) was reduced in relative abundance when

no CPA was added (Figure S7).

It has been shown that methanotrophs support heterotrophic

bacteria by supplying the carbon-source for methanotrophic

mixed culture. Little is known about the interactions between

the methanotrophs and heterotrophs [57]. Nonetheless, these

interactions are very specific [32,57,64,65] and allow for

adaptability to a broad range of conditions [32]. Because of the

importance of these interactions [30,66,67], investigation of the

total community structure before and after cryopreservation was

performed within the scope of this study. Although, a differential

impact was seen on 21% of the MOB community, this was not

linked to phylogeny, even at the genus level. For instance, most

OTUs classified as Methylotenera occurred in every experimental

condition, while others were enriched after cryopreservation, and

even others required addition of a CPA for cryopreservation on

dNMS. Furthermore, OTUs belonging to Devosia, Methylobacillus,

Rubrivivax required a CPA for cryopreservation on NMS. All

manipulations were performed at 4uC to avoid DMSO cytotox-

icity and, while some OTUs did not survive when DMSO alone

Figure 6. Average abundance-based Jaccard (Ružička) distances between experimental stages and conditions. The distances are
displayed for MOB biomass cultivated on NMS (A), dNMS (C), OLAND biomass (B) and fecal biomass (D). The reference represents the distance
between t0 and t1 whilst the other bars represent the distance between t0 and the several conditions at t3. Error bars (for MOB and fecal samples)
represent standard deviations (n = 4 in A, n = 6 for reference in C and 4 for the other means, n = 4 in D). No reference is available for the OLAND
biomass because time point t1 was not assessed using Illumina.
doi:10.1371/journal.pone.0099517.g006
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was used as a CPA, no single taxonomic group was found to be

more sensitive than others.

The autotrophic drivers in the OLAND community consist of

relatively small part of the total community, accounting for about

43–61% of the total bacteria in a RBC biofilm and 58–74% in a

granule [68,69]. For an OLAND RBC biofilm, AerAOB, AnAOB

and NOB were present at 10–28%, 33% and ,5% of total cells,

respectively, as determined by FISH [68]. In the current study, 6%

of the total community could be classified as AerAOB, 10% as

AnAOB and 0.1% as NOB. The comparatively low percentage of

AnAOB might be due to underrepresentation of the Planctomycetes

phylum in the current 16S rRNA gene sequence databases [70] or,

until recently, the lack of a proper PCR protocol for the phylum

[71]. Interestingly, even though NOB have a higher relative

abundance with DMSO+TT after cryopreservation, their activity

recovery was the lowest. This might result from a competition for

nitrite with AnAOB that have the best activity recovery when

DMSO+TT was used as a CPA. The increased activity recovery of

AnAOB could result from the effect of DMSO on the

phospholipid bilayer [72] of intracytoplasmatic membranes which

contain the key enzymes for ammonium oxidation [19]. Besides

the autotrophic functional community members, filamentous

bacteria from the phylum Bacteriodetes and bacteria belonging to

the phylum Actinobacteria were described [69] in the OLAND

biomass. However, not much is known about the role of the

peripheral heterotrophic community in the OLAND community.

The current OLAND community shows presence of both

Actinobacteria and Bacteroidetes. Only one genus required CPA

addition for every representative to be cryopreserved: Leptonema.

Some, but not all, unclassified Rhizobiales required the addition of

TT to DMSO whereas this addition was a prerequisite for the

recovery of the sole representative of the Bdellovibrionales order. All

representatives of Geosporobacter thermotalea, Thauera, Anaerovorax,

Methylomonas, Peptinophilus, Bacteroides and Desulfovibrio were enriched

after cryopreservation. The only representative of the Veillonella

genus occurs only after cryopreservation with a CPA. Apart from

the peripheral heterotrophic community, peripheral autotrophs

such as MOB were also detected in OLAND biomass [45], and

could mitigate methane emissions from the OLAND WWTP.

Type I MOB were detected in all conditions after cryopreservation

up to 0.05% of relative abundance in the conditions where DMSO

and DMSO+TT were added.

In the fecal community, many different taxonomic families were

implicated in the SCFA production. Because of the high diversity

and number of representatives in most taxonomic levels, no clear

influence of cryopreservation on taxonomic group representation

in the fecal microbiome was discerned. The only existing study on

cryopreservation of vertebrate fecal biomass shows that addition of

a CPA aided in recovery of the growth of bacterial cells [73].

Some OTUs (8% (MOB, OLAND) to 15% (Fecal community))

were not detected at t0 but do occur at t1 or t3. The most probable

explanation is a very low sequence count of these OTUs in the

initial inoculum which might have been either processed out in

OTU binning or ‘‘rarefied out’’ when subsampling to lowest

sample sequence count.

In contrast to the investigation of individual (taxonomic)

community changes, the assessment of overall community

structure is a more robust approach to uncover community

structure. This approach has a greater ecological and methodo-

logical relevance as it aims at quantifying the global community

changes rather than relying upon classification and taxonomy. It is

clear that the Jaccard dissimilarity was less when a CPA was added

during cryopreservation for each of the evaluated microbial

cultures. Constrained canonical correspondence analysis integrates

both functionality and community structure data. This analysis

supports the conclusions from the comparison of Jaccard

dissimilarities.

Conclusion and Perspectives

A cryopreservation protocol for mixed microbial cultures was

evaluated over three months with three different bacterial mixed

cultures. The use of DMSO + trehalose and tryptic soy broth as a

CPA consistently gave the best success rate although the

cryopreservative was not necessary to obtain adequate cryopres-

ervation of fecal material. The functionality recovery in a three-

month cryopreservation experiment was previously shown to be

similar in longer duration experiments (6–12 months [18]).

From an ecological point of view, even with CPA addition, not

all OTUs were preserved. However, no significant differences in

overall community structure were found. Although a perfect

preservation of community structure was not obtained, one might

question the importance of a single OTU in the community

structure.

From a biotechnological point of view, CPA addition was

necessary for fast and reproducible activity recovery. Only with

the fecal material, optimization of the method is necessary. Overall

a reproducible storage method was found where addition of

DMSO+TT as a CPA outperforms the limited state-of-the art

preservation techniques for mixed microbial cultures. As adequate

activity recovery can be obtained without introduction of an

extended lag phase, undoubtedly this methodology will boost the

use of mixed cultures in biotechnological applications.

Supporting Information

Figure S1 Relative abundances of taxa in the MOB
samples. The top-8 taxa are displayed. The RDP classifier,

reference set and taxonomy were used. The deepest possible

classification is given up to the family level. The dataset was

rarefied to the sample with the lowest sequence count after

removal of the anomalous samples (data not shown). Relative

abundances were calculated on a sample-wise basis after summing

the sequence counts of the OTUs that could be classified on the

family level.

(TIF)

Figure S2 Relative abundances of taxa in the OLAND
samples. The top-7 taxa are displayed. The RDP classifier,

reference set and taxonomy were used. The deepest possible

classification is given up to the family level. The dataset was

rarefied to the sample with the lowest sequence count. Relative

abundances were calculated on a sample-wise basis.

(TIF)

Figure S3 Relative abundances of taxa in the fecal
biomass samples. The top-8 taxa are displayed. The RDP

classifier, reference set and taxonomy were used. The deepest

possible classification is given up to the family level. The dataset

was rarefied to the sample with the lowest sequence count.

Relative abundances were calculated on a sample-wise basis.

(TIF)

Figure S4 Relative abundance of methanotrophic fam-
ilies within the rarefied dataset. Bar heights represent means

of duplicate (Inoculum and all post samples) or triplicate (pre

samples) reactors. Error bars represent the respective standard

deviations. Bars with equal letters are not significantly different at

the 95% significance level.

(TIF)
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Figure S5 Relative abundance of relevant families for
the OLAND process within the rarefied dataset.
(TIF)

Figure S6 Relative abundance of relevant families for
the SCFA production within the fecal community within
the rarefied dataset. Classification was done with the SILVA

v111 database and the SINA aligner. Axes are not constant. The

error bars represent the standard deviation of biological duplicate

incubations. The fecal inoculum is displayed, as a reference (n = 1).

(TIFF)

Figure S7 MOB diversity microarray results.
(PDF)

Figure S8 Rarefaction curves. Colors represent sample type

as used in the phylogenetic trees. A) MOB rarefaction. Samples 1

& 2: inoculum (t0); 3 & 4 NMS t1; 5–7 dNMS t1; 8 & 9: No CPA

NMS; 10 & 11 No CPA dNMS; 12 & 13: DMSO NMS; 14 &

15 DMSO dNMS; 16 & 17 DMSO+TT NMS; 18 & 19 DMSO+
TT dNMS. The rarefied dataset was subsampled at 16591

sequences per sample. B) for the OLAND biomass. Pooled

samples: 1: t0, 2: No CPA, 3: DNMSO, 4: DMSO+TT. The

rarefied dataset was subsampled at 17647 sequences per sample.

C) for the fecal microbiome. 1 & 2: t1; 3 & 4: No CPA; 5 & 6:

DMSO; 7 & 8: DMSO+TT; 9: fecal inoculum (t0). The rarefied

dataset was subsampled at 12440 sequences per sample.

(TIF)

Figure S9 Partial Constrained Correspondence Analysis
((p)CCA) ordination graph for the MOB community. The

analysis was constrained (26% of total inertia) on the MOR

(p = 0.01) and conditioned (2% of total inertia) on media (NMS/

dNMS). The red arrow represents increasing MOR. Shapes with a

dark color represent samples incubated with NMS whilst shapes

with a light color represent samples incubated on dNMS. The

green triangles correspond to the samples cryopreserved without

CPA (t3). Orange/gold circles represent samples cryopreserved

with DMSO+TT (t3). Purple diamonds represent samples

cryopreserved with only DMSO as a CPA (t3). Blue circles

represent samples after the reference activity test (t1) and red

squares represent the original inoculum (t0). Clusters of samples

are highlighted. The distance between individual samples was

calculated based upon the abundance-based Jaccard index.

(TIF)

Figure S10 Constrained Correspondence Analysis
(CCA) ordination graph for the fecal community. The

fecal inoculum was removed from the analysis. The analysis was

constrained (81% of total inertia) on the concentrations of acetic

acid (p = 0.02), propionic acid (p = 0.37) and butyric acid

(p = 0.76). The red arrows represent increasing SCFA concentra-

tions. The green triangles correspond to the samples cryopreserved

without CPA (t3). Orange/gold circles represent samples cryopre-

served with DMSO+TT (t3). Purple diamonds represent samples

cryopreserved with only DMSO as a CPA (t3). Blue circles

represent samples after the reference activity test (t1) and The

distance between individual samples was calculated based upon

the abundance-based Jaccard index.

(TIF)

Table S1 Composition of the trace element solution for
NMS and dNMS.

(DOCX)

Table S2 Results of cryopreservation of 18 bacterial
families from the fecal biomass implicated in SCFA
production.

(DOCX)

Dataset S1 Sequences and their counts in the MOB
samples.

(XLSX)

Dataset S2 Sequences and their counts in the OLAND
samples.

(XLSX)

Dataset S3 Sequences and their counts in the Fecal
samples.

(XLSX)
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