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Summary

The photoactivatable ribonucleoside enhanced cross-linking immunoprecipitation (PAR-CLIP)

has been increasingly used for the global mapping of RNA-protein interaction sites. There are two

key features of the PAR-CLIP experiments: The sequence read tags are likely to form an enriched

peak around each RNA-protein interaction site; and the cross-linking procedure is likely to

introduce a specific mutation in each sequence read tag at the interaction site. Several ad hoc

methods have been developed to identify the RNA-protein interaction sites using either sequence

read counts or mutation counts alone; however, rigorous statistical methods for analyzing PAR-

CLIP are still lacking. In this study, we propose an integrative model to establish a joint

distribution of observed read and mutation counts. To pinpoint the interaction sites at single base-

pair resolution, we developed a novel modeling approach that adopts non-homogeneous hidden

Markov models to incorporate the nucleotide sequence at each genomic location. Both simulation

studies and data application showed that our method outperforms the ad hoc methods, and

provides reliable inferences for the RNA-protein binding sites from PAR-CLIP data.
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1. Introduction

The past decades have witnessed new discoveries of roles for RNA, which has come to be

seen as a key player in gene regulation and cellular processes. RNA binding proteins

(RBPs), which bind to RNA through RNA recognition motifs, modulate RNA processing,

translation and functions, such as splicing, export, localization and stability. The functions

of some RBPs are essential, and could cause some remarkable phenotype changes. For

example, FUS protein (a member of FET family proteins) plays important roles in RNA

*jonghyun.yun@utsouthwestern.edu
**wang.tao@utsouthwestern.edu
***guanghua.xiao@utsouthwestern.edu

This paper has been submitted for consideration for publication in Biometrics

Supplementary Materials: Web appendices referenced in Sections 3-5 are available with the paper at the Biometrics website on Wiley
Online Library. The R code, an example dataset and the relevant documentation are accessible at the Quantitative Biomedical
Research Center software website (http://qbrc.swmed.edu/software/) under the PAR-CLIP HMM package.

NIH Public Access
Author Manuscript
Biometrics. Author manuscript; available in PMC 2014 June 17.

Published in final edited form as:
Biometrics. 2014 June ; 70(2): 430–440. doi:10.1111/biom.12147.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://qbrc.swmed.edu/software/


editing and human cancers (Hoell et al., 2011; Neumann et al., 2011). AGO (Argonaute)

proteins bind to small non-coding RNAs, such as siRNA and miRNA. They form an RNA-

induced silencing complex (RISC), which is essential for RNA and small RNA interactions.

Thus, the identification of RNA-RBP interactions is crucial to a systematic understanding of

transcription, translation and other biological processes within cells, but there are still many

unanswered questions (Licatalosi and Darnell, 2010; Sharp, 2009).

Recent developments in next-generation sequencing (NGS) technologies have resulted in

genome-wide mapping of RNA-RBP interactions. One of the most established methods for

genome-wide mapping of RNA-RBP binding sites is cross-linking immunoprecipitation

coupled with high-throughput sequencing (CLIP-seq) technique. The general procedures of

CLIP include covalently linking RNA with RBP, isolating the bound complex, removing the

protein and converting RNA to cDNA for sequencing. There are a few variants of CLIP-seq

that depend on the method being employed to cross-link RBP to RNA. The photoactivatable

ribonucleoside enhanced CLIP (PAR-CLIP, Hafner et al., 2010) is a type of CLIP-seq, and it

utilizes photoreactive analogs for incorporation into RNA at cross-linking sites. This cross-

linking step is likely to induce a nucleotide specific mutation at the site of contact. For

example, 4-thiouridine (4SU) introduces a thymine (T) to cytosine (C) mutation, while 6-

thioguanosine (6SG) introduces a guanosine (G) to adenosine (A) mutation. PAR-CLIP has

been successfully used for genome-wide identification of the RNA-RBP binding sites in

many studies (Hafner et al., 2010; Hoell et al., 2011; Jaskiewicz et al., 2012; Kishore et al.,

2011; Uniacke et al., 2012; Wen et al., 2011).

However, there are substantial challenges in analyzing PAR-CLIP data: (i) most genomic

locations contain only a small number of mapped reads, which are likely to be noise

resulting from unbound RNA to the target protein in sequencing samples; (ii) observed

mutations in reads may not only be induced by cross-linking to the target protein, but also by

sequencing errors (Zagordi et al., 2010) or single nucleotide polymorphisms (SNPs); and

(iii) it is thought that the interactions are triggered through some motifs of nucleotide

sequence structures. To overcome these challenges, a few methods that incorporate observed

mutation counts into models have been proposed. For example, the cross-linking-induced

mutation sites (CIMS) analysis was developed to identify the binding sites using mutation

information alone (Zhang et al., 2010). The PARalyzer (Corcoran et al., 2011) utilizes

kernel density estimations for mutations and non-mutations, and the wavClusteR (Sievers et

al., 2012) employs nonparametric mixture models for mutation-to-read ratios to identify the

binding sites. However, the underlying spatial dependence of genomic locations has not

been taken into account by those studies, and no methods have established a probability

model for joint distributions of observed read and mutation counts.

Spatial dependency in the read counts among neighboring locations has been observed in

chromatin immunoprecipitation combined with massively parallel DNA sequencing (ChIP-

seq) technique, which is designed to study protein-DNA interactions. Statistical methods

(Keles, 2007; Xu et al., 2008; Gelfond et al., 2009; Mo and Liang, 2010; Qin et al., 2010;

Mo, 2011) have been developed to account for the spatial correlations in ChIP-seq or ChIP-

chip data. By modeling the spatial correlations, those methods greatly improve performance

in identifying the protein-DNA binding sites from ChIP-seq data. However, compared to
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ChIP-seq data, PAR-CLIP data has two unique features: (1) it contains information about

cross-linking induced mutation count at each location, which can be used as a marker for the

protein-RNA interaction site; and (2) it can reach single-based pair resolution. No formal

statistical methods have been developed before now which utilize these two features in

PAR-CLIP data.

Here we propose Bayesian Hidden Markov models (HMMs, Rabiner, 1989) to account for

the spatial dependency structure of neighboring genomic locations on both read and

mutation counts. One of the novel characteristics in our model is to adopt non-homogeneous

HMMs whose transition probabilities rely on nucleotide sequences, in order to account for

the nucleotide-specific mutations in PAR-CLIP data. Incorporating the nucleotide sequence

information allows the integrative model that considers mutation and read counts jointly in

the HMM framework, which facilitates models to investigate the genome-wide spatial

association of the binding sites at single-base pair resolution. An unobservable stochastic

process that generates noise, read enrichment and mutation sites is translated into three

hidden states. The biological interpretation associated with the state space allows for the

development of suitable specifications for models and parameter space.

The results of both simulation studies and data application demonstrate that the proposed

method provides consistently reliable estimations of the binding sites, and we validate that

our model accurately captured the joint distribution of mutation and read counts in the data

application. Our approach provides objective decision rules based on posterior probabilities

of being binding sites for different genomic locations, which allows users without much

statistical knowledge to easily interpret the results.

The paper is organized as follows. In Section 2, we briefly describe the PAR-CLIP data by

Hoell et al. (2011) as a motivating example of this study. In Section 3, we specify the

proposed model, and elucidate simulation-based posterior inference of the given model.

Section 4 uses simulation studies to compare the prediction performances of our model with

wavClusteR, a leading method for analyzing PAR-CLIP data. In Section 5, we implement

our method on a published dataset, and the identified binding sites are supported by

evidence from RNA secondary structures.

2. A Motivating Example

FUS protein is a highly conserved RBP involved in cancer biology and other diseases. It is

abundant in cells and of great research interest for several reasons: (1) it is a fusion protein

formed after chromosomal translocations in human cancer cells (Crozat et al., 1993); (2) it

interacts with many nuclear hormone receptors and other important transcription factors

(Powers et al., 1998); and (3) it could bind to RNA as well as DNA, and plays many roles in

gene regulation (Wang et al., 2008). The binding targets of FUS protein were studied using

PAR-CLIP (Hoell et al., 2011). The study discovered that FUS clusters are likely to contain

secondary structures, suggesting that structural motifs may play an important role in protein-

RNA recognition. In this study, 4SU was used for cross-linking and induced T → C

mutations as the markers for the RNA-RBP binding sites. Hereafter, we use the term
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“mutation” only to refer to the characteristic mutation, which is T → C in this motivating

example.

We downloaded the raw data generated by Hoell et al. (2011) from DRASearch (study

number SRP003889). In this study, stable Flp-In T-REx HEK293 cell line with a stable and

an inducible expression of Flag-HA-tagged protein was generated. Cell lines were grown for

12 to 16 hours in 4SU-supplemented medium and cross-linked RNAs were recovered from

SDS-PAGE-purified FET protein immunoprecipitates. Then the converted cDNA libraries

were sequenced by Solexa. Sequencing reads from the stable and inducible libraries were

combined.

We preprocessed the raw reads using several steps. First, sequenced reads were aligned and

mapped to corresponding genome sequences. Then, duplicates were defined as reads that

map to the same chromosome, strand, start and end sites. Among duplicated reads, only one

read with the maximum number of observed mutations was kept. Regions retaining at least

two overlapped reads were formed into clusters, as in Khorshid et al. (2011). Then, our data

was composed of read and mutation counts at each genomic location within the clusters.

The graphical representation of the data is shown in Figure 1. Within the shown region,

distributions of read counts can be approximately divided into unenriched and enriched

regions. For the genomic locations with deep coverage of reads, the mutation/read ratios can

be used as indicators of the binding sites. In the PAR-CLIP analysis, therefore, the genomic

locations with high mutation/read ratios within read-enriched regions show strong evidence

of being RBP binding sites. However, non-binding sites can have mutation counts due to

random sequencing errors. Because the rate of these background random sequencing errors

is not location specific, is much lower than the cross-linking induced mutation rate, and is

unknown a priori, we developed Bayesian HMM models to separate the cross-linking

induced mutations from the random sequencing errors based on the posterior probabilities.

As mentioned in Section 1, the key feature of PAR-CLIP is experimentally induced T → C

mutations. Modeling the spatial association over genomic locations is impossible without

incorporating the nucleotide sequence. In subsequent sections, we describe statistical models

for the identification of the binding sites through modeling the spatial dependence structures.

3. Statistical Models

After the preprocessing of the PAR-CLIP data, we can derive the read count Xij, mutation

count Mij, and nucleotide Nij ∈ {A, C, G, T} at each genomic location i = 1, …, nj within

each region j = 1, …, J. In this study, we develop statistical models to pinpoint the RNA-

RBP binding sites at single base-pair resolution.

3.1 Hidden Markov Models

The read enrichment tends to appear in contiguous genomic locations. The mutation sites are

covered by consecutive enriched sites, and it is thought that the mutation sites may not be at

the boundary of enriched regions, because neighborhoods of the mutation sites would also

be involved in the RNA-RBP interaction, and hence covered by many reads.
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To take account of such spatial dependence structure, we adopt a HMM with a Markov

latent variable Iij spanning three states as follows:

Genomic locations can receive mutation counts only if the underlying nucleotide is T. This

property leads to non-homogeneous Markov transition probabilities relying on Nij at

transition sites, so we use the nucleotide sequences {Nij} as covariates in the HMM to take

heterogeneities in both likelihoods and state dynamics into consideration. A graphical

representation of the dependence structure of non-homogeneous HMMs is shown in Figure

2. Given that regions are not in close proximity to one another, we assume that independent

Markov chains are initiated in each region j.

Two Markov transition matrices K = (KT, KN) describe stochastic transition behaviors of

Ii+1j relying on previous state Iij and the nucleotide information at (i + 1, j) where the

transition occurs. Let κT,rs denote the transition probability from r to s given that Ni+1j = T

and let κN,rs denote the transition probability from r to s given that Ni+1j = A, C, or G

Given that true mutation sites cannot be on the boundaries of enriched regions, transitions

between states 1 and 3 are prohibited. Also, the transition probabilities from state 1 to any

states are assumed to be homogenous regardless of given one-step-ahead nucleotides. That

is, κ1s := κT,1s = κN,1s. The two transition matrices satisfying the assumptions above are

presented as follows:

For each row of the transition matrices, we choose independent Dirichlet priors with

negligibly small hyperparameters. Let φT := (φT1, φT2, φT3) and φN := (φN1, φN2, 0) denote

distributions of initial states whose nucleotides are T and {A, C, G}, respectively. The initial

distribution φ := {φT, φN} is assumed to be independent of the transition kernels, so we put

independent Dirichlet priors on φ. Details on the Dirichlet prior specification is given in

Web Appendix A.
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3.2 Likelihoods

Let Yij := (Xij, Mij) denote a pair of read and mutation counts. Observations Y = {Yij} are

conditionally independent given I = {Iij} and N = {Nij}, and the joint density of Y can be

decomposed into two parts.

for some set of parameters θ.

To obtain the conditional density for the read count Xij, we begin with the assumption that

Xij|(λs, Iij = s) follows a Poisson distribution with mean λs, as this has been widely adopted

in the literature. However, recent studies (Anders and Huber, 2010; Uren et al., 2012) have

pointed out that more flexible models than Poisson mixtures would be appropriate to capture

the overdispersion of read-count distributions.

Here, we expand the Possion model by introducing probabilities ωs that genomic locations

in state s are involved in RNA-RBP interactions. The ωs can be viewed as a parameter

which governs the reads-generating mechanism at sites in states s through the stochastic

relation to λs. We assume λs has a exponential distribution with mean ωs(1 − ωs)−1. To take

account of the heterogeneity within ωs, we assume ωs follows a beta distribution. That is,

where Ba(·, ·) denotes a beta distribution.

We follow the parametrization suggested by Weinberg and Gladen (1986), which involves a

mean parameter μs = as · ηs and a shape parameter ηs = (as + bs)−1. The shape parameter ηs

= 0 implies that there is no heterogeneity in ωs. Then, by removing the conditioning on ωs

from the density p(Xij|ωs, Iij = s) over the beta distribution, we obtain the beta geometric

(BG) density.

where B(·, ·) is the beta function. The BG distribution converges to the geometric

distribution with a mean μs as ηs → 0. We find the mixture BG distribution fits the real data

very well because of its capability of controlling tail thickness. The model assessment based

on the posterior predictive distribution is shown in Section 5.2. Readers can find more

details about the BG in Weinberg and Gladen (1986) and Wang (2011). Also, comparisons

of likelihoods for modeling Xij are available in Web Appendix G and H.
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Genomic locations receiving small read counts are of little or no interest to researchers,

since noise strengths dominate signal strengths in those locations. Considering those sites

would dramatically increase the computation complexity, especially under the HMM

framework, but provide very little gain in statistical inferences. So, we discard observations

whose read counts ≤ c for some truncation point c. The truncated data consists of a set of

observations such that {(Xij, Mij)|(i, j) ∈ Rc}, where Rc := {(i, j)|Xij ≤ c}. Given that the data

do not contain regions having no read-overlaps, the truncation cutoff c needs to be ≥ 1.

Users may choose the smallest c that makes the analysis feasible within acceptable

computational time limits. The left truncation is reflected on the likelihood of Xij by shifting

the BG to the right by c + 1.

In PAR-CLIP, mutations cannot be observed on a few positions in both read ends due to the

preprocessing steps (the reads with mutations around the reads end are not mapped to the

genome by the aligner). A few non-mutation sites (Iij = 1 or 2) receive mutation counts

while a majority of non-mutation sites receive zero mutations. To avoid underestimating

noise strengths, we propose to use the zero inflated binomial for the mutation counts.

For each (i, j) ∈ Rc, let πs denote the zero inflated probability which describes the

probability that zero mutation counts (Mij = 0) comes from a non-mutation state, and ps

denote the probability that a single read count yields a mutation when the location is in a

binomial state. Noting that nonzero mutation counts can be observed only on T sites, we

assume that the conditional distribution of Mij given Nij, Xij, πs, ps, Iij = s is

where ZIB(Xij, πs, ps) denotes the zero inflated binomial distribution. That is,

Let  denote a set of parameters in the likelihood. For (i, j) ∈ Rc, the

joint distribution of read and mutation counts given Nij's and Iij's can be written as
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3.3 Priors

Since the three states have clear biological interpretations, we incorporate the biological

knowledge into the priors, and in the interim we choose flexible priors to allow Bayesian

learning. The parameters are restricted to be in the constrained parameter space Cθ to meet

the biological interpretation of three hidden states.

First, the read-count distributions are identical in the enriched locations, which implies μ2 =

μ3 and η2 = η3. Second, the first moment of BGc(μs, ηs) is an increasing function of s ∈ {1,

2}. Third, η1 = 0, which yields the geometric distribution for read counts in enriched regions

instead of the BG. The second and third constraints ensure that the read-count distribution

for unenriched regions to be concentrated on small values, whereas the read counts on

enriched regions can be less dense on small values. That is, BGc(Xij|μ1, η1) > BGc(Xij|μ2, η2)

for some small Xij. Fourth, the signal strength on mutation sites would be greater than the

noise strength. That is,

(1)

Last, the zero inflated probability for mutation sites is assumed to be 0. Combining all

constraints above, we have

(2)

where μ1,s denotes the first moment of BG(μs, ηs).

According to Zhang and Darnell (2011), the mutation-read ratio over 0.2 can be translated as

evidence of the binding site. The small δ is chosen to insure the separability of error and true

mutation probabilities. From extensive numeric studies, we found that choosing ε = 0.2 and

δ = 0.01 typically provides stable posterior inference for small c ≤ 3. However, for large c ≥

4 the posterior inference is not sensitive on the choice of ε and δ, and we often replace the

constraint in (1) with {p1, p2 < p3}.

We choose independent Gaussian priors on logit  and logηs, and independent

beta priors on ps and πs. Together with the constrained parameter space, we have

where N(·|ν, σ) denotes the normal density with a mean ν and a standard deviation σ, and

1Cθ(θ) is an indicator function that gives 1 if θ ∈ Cθ; 0 otherwise.
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3.4 Posterior Inference

The Viterbi algorithm (Viterbi, 1967) can be implemented to estimate the most likely state

sequences conditional on parameter estimated by the EM algorithm. However, there are

needs for controlling the testing power to obtain higher confidence RNA-RBP binding sites.

The false discovery rate (FDR, Benjamini and Hochberg, 1995) is commonly used for this

purpose, which requires implementation of computationally intensive algorithms like the

MCMC. Although the MCMC needs long computation times, additional computational costs

are negligible compared to a few months of efforts required to generate and process the

PAR-CLIP data.

Here we describe the simulation-based posterior inference for the proposed model. For the

particle approximation of the posterior distribution, we draw samples from p(θ, I, K, φ, Z|N,

Y) by employing the Metropolis within Gibbs sampler with the auxiliary variable Z. The full

conditional distributions can be obtained as follows.

Given that ps and πs cannot be factorized in the ZIB part, we introduce unobserved random

variables {Zij} to T sites, in order to achieve a computationally effective posterior sampler.

This procedure is commonly known as data augmentation. The auxiliary variable Zij is

defined on every T site, and Zij = 1 if zero mutation counts are generated from the zero state;

otherwise Zij = 0. The conditional probability of Zij = 1 given Xij, Mij, pIij, πIij is (see Hall

(2000) for more details)

(3)

Together with the auxiliary variables Z = {Zij}, the conditional posterior distribution of θ

can be written as follows.

(4)

(5)
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(6)

where nz=i,s denotes the number zij = i among locations satisfying Iij = s and Nij = T. It is

easy to sample from (4), and the rejection sampling is used to draw particles from (5), but

there is no clear way to sample from (6). Thus, we implement the Metropolis algorithm to

obtain samples from (6), which is described in Web Appendix B.

The conditional distribution of hidden states I is

and the direct sampling from the above density is done by the forward-backward Gibbs

sampler (FB Gibbs, Scott, 2002) as shown in Web Appendix C. Because we define the

initial distributions φ to be independent of K, the posterior samples of K and φ can be drawn

directly from Dirichlet distributions as described in Web Appendix D. For each MCMC

iteration, we draw samples from the full conditional distribution described above. Then, the

posterior probability of the mutation site pij = P(Iij = 3|Y) is estimated as the average

number of times that the MCMC sample  visits state 3 for some index set D. That is,

4. Simulation Studies

In this section, we compare performances of our method with the wavClusteR on detecting

the mutation site in the artificial data whose mutation counts are generated from the model

established in the wavClusteR. All observations are simulated in Simulation Study 1, and

real data with possible binding regions are used while regions with no binding sites are

simulated in Simulation Study 2.

The wavClusteR (Sievers et al., 2012) provides the decision rule as a function of the

mutation-to-read ratio Mij/Xij. A key assumption in the wavClusteR is that distributions of

the ratios for the non-experimental induced mutations and 11 other types of substitutions

(A→ G, T→ C, and so on) are approximately identical. They propose a nonparametric

mixture modeling to filter out the non-experimental component from the mixture

distribution of the ratios, and estimate the posterior density that describes which mutation-

to-read ratios are more likely to be generated by the experimental component. Throughout

this section, we use the term “substitution” to refer to the 11 types of substitutions other than

the characteristic mutation (T → C).
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4.1 Simulation Study 1

To simulate the artificial data, our model is used to generate the hidden state Iij and read

count Xij, and the modeling assumption in the wavClusteR is used to generate mutations Mij

and other types of substitutions. The number of regions is set to be 400, and each region has

30 genomic locations. For 100 independent experiments, sampling distributions of

parameters are chosen to mimic the empirical distribution obtained from the dataset in

Section 5. The underlying nucleotides at each genomic location are independently drawn

from {A, C, G, T} with probabilities {0.3, 0.2, 0.1, 0.4}. Initial distributions and transition

matrices are chosen to generate 100 mutation sites on average. We generate read counts

from BG5 distribution, and the same truncation cutoff c = 5 is used in the wavClusteR.

The wavClusteR assumes heterogeneous mutation probabilities within states. Following the

assumption, we generate mutation counts from

where πs ∼ Ba(50, 50) for s = 1, 2 and π3 = 0, and we draw random mutation probabilities

ps,ij at each i, j as follows.

Substitutions are generated on non-mutation sites whose observed mutation is zero.

Substitution counts are sampled from ZIB(Xij, πs, ps,ij), and substitution types are chosen

with equally likely probabilities given the nucleotide information. To be clear, these

substitutions are used only in the wavClusteR, not in our method. Since we use identical

distributions to generate substitutions and non-experimental induced mutations, the

wavClusteR is expected to perform well in identifying mutation sites.

In our method, every hyperparameter except those for the BG is chosen as 0.01 to lessen its

impact on the posterior inference. Hyperparameters for the beta geometric are chosen to

have a mean 0 and a standard deviation 10100. Posterior samples are drawn from the full

conditional distribution in Section 3. For the simulation studies, we replace the constraint in

(1) with {p1, p2 < p3}, since posterior samples are not sensitive to the choice of ∊ and δ in

our setting.

The simulations are coded in R and run on a Linux machine with a 2.66 GHz processor. The

MCMC sequences of our method quickly reach approximate convergence within 500

iterations, so we simulate MCMC sequences with the length of 2,000, and burn in the first

halves. The smoothed Receiver Operating Characteristic (ROC) curves are presented in

Figure S2 in Web Appendix F. To provide more distinguishable ROC curves, true and false

positive rates are computed based only on locations which receive at least one mutation

count. The wavClusteR quickly picks up many false positives as the number of positives
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increases, and it fails to find some true positives at cutoffs near 0. Meanwhile, our method

picks up almost all true positives at very small false positive rates.

The area under the ROC curve (AUC) can be used to compare the two methods. The average

AUC of the HMM, the wavClusteR and the AUC difference between the two methods

(AUCHMM − AUCWCR) over 100 experiments are 0.9643 (s.e. 0.0014), 0.8292 (s.e. 0.0052)

and 0.1351 (s.e. 0.0053), respectively. The p-value of the Wilcoxon rank test with an one-

sided alternative is less then 0.0001. Overall, our method outperforms the wavClusteR, and

our model works well under the slight model mis-specification over the non-parametric

mixture model.

4.2 Simulation Study 2

FMRP is a RNA-binding protein, and lack of FMRP results in human cognition and

premature ovarian insufficiency. The identification of the RNA targets of FMRP was studied

previously by Ascano et al. (2012), and a large scale simulation study is carried out here

based on their dataset.

Enriched regions containing both motifs ACT[TG] and [AT]GGA with strong mutation

signals are likely to include true binding sites. On these regions, locations with mutation-

read ratios ≥ (0.4, 0.5) are assumed to be true binding sites. For each of the ratio cut-offs,

1,572 and 988 regions fulfill the criterion, and we randomly choose 500 of these regions for

each experiment. On average, 630 and 590 binding sites are contained in artificial datasets,

and 4,500 regions of length 40 are generated under the identical probability rules used in

Section 4.1. The average AUC of the HMM, the wavClusteR and difference of AUCs

between the two methods are presented in Table 1. The average AUC difference shows that

our method identifies binding sites more effectively in the realistic signal strengths.

Since the wavClusteR utilizes nonparametric density estimations, its classification may not

be as precise as ours when the truncated sample size is not large enough. Generally, the

wavClusteR suggests choosing a high truncation cutoff c ≈ 20 for precise estimates of

mutation-to-read ratios, which results in discarding many observations. To compensate this

problem, Sievers et al. (2012) proposed another stage for the prediction, which is not

considered here in our simulation studies.

5. Application to identify FUS protein binding sites

We implemented our method to analyze the FUS PAR-CLIP data in Section 2 and compared

the performance of our method with the wavClusteR. The R package wavClusteR is used for

this application. The truncation point c is 5, and regions whose lengths are less than 6 are

discarded. Hyperparameters are chosen to be 0.01 for conjugate priors and a mean 0 and a

standard deviation 10100 for beta geometric parts as in Section 4.

5.1 Model checking and model diagnostics

The Gelman-Rubin statistics (Gelman and Rubin, 1992) are computed to check the MCMC

convergence based on three chains with 20,000 samples initialized at different starting

values. For the parallel chains of a scalar estimand, the statistic compares the between-chain
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variance with the within-chain variance as a proportion. Values significantly above 1

indicate that the chains do not escape the influence of initial values, and that more samples

need to be simulated to improve the inference of the target distribution.

For all parameters in θ, the statistics are between 1 and 1.02. To summarize the convergence

of joint density, we also compute the Gelman-Rubin statistic based on the log-posterior

density log p(Y|θ(t), I(t), N), and we obtain 1. The acceptance ratio for proposed samples in

the Metropolis algorithm is 0.72 for state 1, and 0.62 for state 2. Trace plots for each

parameter are given in Figure S1 in Web Appendix E. The three chains mix well and they

quickly reach the approximate convergence.

Assessing the plausibility of our model is carried out by computing the posterior predictive

p-value. Let Yrep denote the replicated observation generated from the posterior predictive

distribution p(Yrep|Y), and let T(Y, θ, I, N) := log p(Y|θ, I, N). The p-value PT is defined as

the probability that the replicated data could be as extreme as, or more extreme than, the

observed data as follows:

The p-value can be viewed as the measure to assess the discrepancies between the model

and data. More details about the posterior predictive checking (PPC) are given in Gelman et

al. (1996).

We estimate PT using MCMC samples {[Yrep](t), θ(t), I(t)}, and [Yrep](t) is drawn from p(Y|

θ(t), I(t), N). Figure 3 shows simulated paired values of T(Y, θ, I, N) and T(Yrep, θ, I, N)

based on the second half of the 20,000 MCMC samples. The estimated p-value is 0.1694,

which suggests that the discrepancies between our model and the data are not significant.

The PPC we performed in this section demonstrates that our modeling approach can be used

to understand the mechanism to generate the read and mutation counts in PAR-CLIP.

5.2 Results

The sequencing reads are aligned to the hg19 reference genome, resulting in 4,296,458

mapped reads. The sequencing depth is relatively smaller than expected in typical CLIP-seq

studies, and saturation is not reached according to the authors' own calculation in Hoell et al.

(2011). The identification of RNA-RBP binding sites is made by applying different values

of cutoff τ on the posterior mean of pij. The FDR for each τ can be estimated from posterior

probabilities pij (Newton et al., 2004) by

Table 2 summarizes numbers of binding sites identified by our method at different cutoffs. It

shows that our approach identifies a reasonable number of high confidence binding sites
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with low FDR, which is beneficial to biologists who have limited resources to perform the

experimental validation of RNA-RBP binding sites.

Figure 4 shows the secondary structure containing one of the binding sites identified by our

method. This site is in the top 26 binding sites identified by our method, but not in the top 26

identified by the wavClusteR. The secondary structure where the identified binding site

resides is at the small loop of the secondary structure. The similar substructure resembling

the small stem and loop in the figure is considered to be the binding motif in Hoell et al.

(2011).

Our method identifies 36 binding sites with posterior probabilities > 0.99 and 45 binding

sites with posterior probabilities > 0.95, whereas all sites received posterior probabilities <

0.8 in the wavClusteR. Further validation of the binding sites identified by the HMM

approach is presented in Web Appendix I. We used the gene expression data from (Han et

al., 2012), in which a novel chemical essay coupled with RNA-seq technique was used to

study the FUS binding sites. In their study, FUS protein, together with its RNA binding

targets, was precipitated upon exposure of lysates to the b-isox chemical. The read count

ratios of RNA transcript in knockdown vs. control conditions were measured for all RNAs.

For RNA targets of FUS, their ratios are likely to be less than 1. The validation demonstrates

that our method leads to RNA targets with small expression ratios, which is consistent with

what we expected from the biological knowledge.

6. Discussions

We developed a model-based approach to detect RNA-RBP binding sites in PAR-CLIP. Our

method integrates models to identify enriched regions and high-confidence binding sites into

one rigorous statistical model. An advantage of our integrative modeling is that the posterior

probability of being a binding site is estimated based on data with less information loss, as

compared with two-stage modeling approaches. This facilitates more accurate statistical

inference, so our method would provide more reliable binding sites based on the FDR.

Main innovations of our framework are to adopt non-homogeneous HMMs and to employ

BG distributions. Nucleotide specific mutation inductions are the key feature of PAR-CLIP

data, and non-homogeneous HMMs successfully incorporate nucleotide sequences to

investigate the spatial association among genomic locations. HMMs equipped with negative

binomial emission distributions have been used to fit read count distributions in sequencing

data. However, the PAR-CLIP data have empirical read count distributions with a

dramatically decreasing density at small read counts and a heavy tail with slowly vanishing

densities at large read counts, and such a shape is difficult to capture by the mixture of

negative binomials. As demonstrated by the Bayesian posterior predictive checking on the

real dataset, our modeling approach employing the BG successfully captures the read count

distribution in PAR-CLIP.

One may be able to adopt other types of priors, but the computational efficiency obtained by

the Dirichlet priors is an attractive characteristic under the Bayesian HMM of PAR-CLIP

whose sample size can be a few million at least. Also, the Dirichlet priors have been widely

adopted for studies in similar contexts. For example, modeling the copy number variation
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(Guha et al., 2008), genomic sequence and ChIP-Chip (Gelfond et al., 2009) and gene

expression and sequence data (Xie et al., 2010). For the computational efficiency, we choose

priors to have conjugate functional forms if possible while keeping hyperparameters

minimally informative. The amount of information in hyperparameters is negligible in

comparison to the numbers of sites (a few million), which is flexible enough to allow the

Bayesian learning.

A large number of unenriched locations will be discarded for some large c, which makes the

Bayesian learning less efficient in separating enriched regions from unenriched regions.

Although the rank order of high-confidence binding sites is not sensitive to the choice of c ∈

[1,6], a large number of sites with unstable mutation-read ratios are introduced with small c

≤ 3, which makes the inference of ps sensitive to the choice of ∊. To achieve accurate

estimates of FDRs, users may choose the smallest c ≥ 4 that makes the analysis feasible

within acceptable computational time limits.

The proposed method is tailored for the PAR-CLIP analysis, but our framework can be

adapted to analyze other types of sequencing data with experiment-induced mutations. For

example, the multinomial likelihood with random mutation probabilities can be considered

to incorporate position-specific error rates into our model for the analysis of deletions,

insertions, and substitutions in the high-throughput sequencing of RNA isolated by cross-

linking immunoprecipitation (HITS-CLIP, Licatalosi et al., 2008).

In summary, this article presents the first successful attempt at integrative statistical

modeling of mutation and read counts regarding the spatial dependence structure with the

incorporation of nucleotide sequences. The high interpretability of our model leads to

interesting biological insights, and introduces the method of non-homogeneous hidden

Markov modeling and the beta geometric distribution into a new area of applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration of the data construction. Observed mutations (1st line) and reads (2nd line) for

each genomic location are given with the locations' nucleotide sequence (3rd line) in the

bottom of a bar plot. This figure appears in color in the electronic version of this article.
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Figure 2.
Graphical representation of the non-homogenous HMM, where {Yij} is the observable

process, {Iij} is the Markov chain, and {Nij} is the nucleotide sequence (covariates).

Independent Markov chains with identical transition rules are equipped for each region j.
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Figure 3.
A scatter plot of log-posterior densities for the observed and replicated data. Based on the

last 10,000 MCMC draws, the p-value is 0.1694. An identical line (y = x) is presented as a

dashed line.
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Figure 4.
The secondary structure of the RNA-RBP binding site identified by our method. This figure

appears in color in the electronic version of this article.
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Table 1

The average AUCs and standard errors of the HMM, the wavClusteR and differences between the two

methods (Δ).

HMM Δ wavClusteR

p ≥ 0.4 .9926 (.00009) .0078 (.00023) .9848 (.00020)

p ≥ 0.5 .9931 (.00010) .0096 (.00024) .9835 (.00020)
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Table 2

Numbers of sites identified by our method with different cut-offs τ on posterior prediction probabilities.

# of sites τ FDR

26 1.000 ≈ 0

34 0.999 0.00007

35 0.995 0.00016

36 0.990 0.00037

37 0.975 0.00099

39 0.970 0.00244

40 0.965 0.00319

45 0.960 0.00694
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