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Abstract

The size and shape of the nucleus are tightly regulated, indicating the physiological significance of

proper nuclear morphology, yet the mechanisms and functions of nuclear size and shape

regulation remain poorly understood. Correlations between altered nuclear morphology and

certain disease states have long been observed, most notably many cancers are diagnosed and

staged based on graded increases in nuclear size. Here we review recent studies investigating the

mechanisms regulating nuclear size and shape, how mitotic events influence nuclear morphology,

and the role of nuclear size and shape in subnuclear chromatin organization and cancer

progression.

Introduction

Many structural components of the nucleus control nuclear size and shape. The nuclear

envelope (NE) is a double lipid bilayer consisting of the outer nuclear membrane (ONM),

continuous with the endoplasmic reticulum (ER), and inner nuclear membrane (INM). The

nuclear pore complex (NPC) embedded in the NE mediates nucleocytoplasmic transport.

The nucleoplasmic face of the INM is lined by the nuclear lamina, a meshwork of

intermediate lamin filaments that structurally supports the NE and mediates connections

with chromatin. Linker of nucleoskeleton and cytoskeleton (LINC) complexes connect the

nuclear lamina with the cytoskeleton through the NE, mediated by interactions between

INM SUN-domain proteins and ONM KASH-domain proteins (reviewed in [1,2]).

The nucleus is a dynamic organelle, particularly during mitosis in metazoans when the NE

breaks down to facilitate mitotic spindle assembly. Reassembly of the NE, nuclear lamina,

and NPCs occurs after chromosome segregation [1], and recent studies show that these post-

mitotic events are important in determining proper nuclear morphology in the subsequent

interphase. Yeast studies have also elucidated the regulation of nuclear size and shape,

however in contrast to the open mitosis of animal cells, many yeasts undergo a closed

mitosis that necessitates dramatic cell cycle regulated changes in nuclear morphology [3-6].
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Changes in nuclear size and shape are associated with cell differentiation, development, and

disease. Of note, nuclear morphology is frequently altered in cancer cells [7,8]. By and large

the physiological consequences of altered nuclear size and shape are not known but could

potentially impact chromatin organization and gene expression, particularly in the context of

tumor development and cancer progression. Therefore, it is important to understand the

mechanisms that regulate nuclear size and shape as well as the function of proper nuclear

morphology control.

In this review we focus on recent studies addressing mechanisms of nuclear size and shape

regulation, in particular the roles of nuclear structural elements, the cytoskeleton, membrane,

and the extracellular matrix (ECM). We then discuss how mitotic events impact nuclear

morphology and how nuclear size and shape might impact subnuclear structure and function.

We conclude with recent studies investigating the contributions of nuclear morphology to

cancer and some future directions.

Mechanisms of nuclear size regulation

Nucleocytoplasmic transport, nuclear structural components, and post-mitotic nuclear

assembly can all impact nuclear size. Although genome size scales with nuclear size across a

wide range of species, DNA content tends to be a less important contributor to nuclear size

regulation in a variety of experimental systems, primarily establishing a minimum nuclear

size (reviewed in [9-11]). Here we will integrate results from older studies with newer

findings on the roles of the nuclear lamina, LINC complexes, and NPCs in the regulation of

nuclear size (Table 1).

Several studies support a role for nuclear lamins in nuclear size regulation. In Xenopus egg

extracts, the lamin Ig-fold motif was required for post-mitotic lamina assembly and NE

growth [12], lamin B3 depletion resulted in small nuclei that failed to expand [13], and

ectopic addition of lamin B3 increased the rate of nuclear growth [14] (Fig. 1a). In tissue

culture cells and Xenopus oocytes, NE growth was promoted by the C-terminal domain from

B-type lamins, which contains a farnesylated CaaX motif required for lamin interaction with

the INM [15,16]. Lamin B overexpression in zebrafish embryos and tissue culture cells

resulted in extranuclear cisternae-like lamin/membrane arrays, dependent on farnesylation

[16]. Furthermore, in Arabidopsis thaliana, deletion of genes encoding lamin-like nuclear

matrix proteins, LITTLE NUCLEI 1/2, resulted in decreased nuclear size and altered nuclear

morphology [17].

The lamina-associated polypeptides (LAPs) establish connections between the lamins and

chromatin [18]. Addition of the nucleoplasmic chromatin-binding domain of human LAP2β

to Xenopus extract blocked nuclear lamina assembly, inhibited nuclear growth, and resulted

in a scalloped NE phenotype, demonstrating a role for LAP2 in postmitotic nuclear size

determination [19]. Additionally, LAP2 was mislocalized upon depletion of TPX2, an

important regulator of spindle assembly, resulting in dramatically smaller, but functional,

interphase nuclei [20] (Fig. 1b).

LINC complexes also contribute to the regulation of nuclear size. In HaCaT cells, F-actin

depolymerization resulted in small, highly dysmorphic nuclei, while microtubule
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depolymerization increased nuclear size. Notably, depolymerization of both cytoskeletal

components decreased nuclear size, suggesting that nuclear connections with the actin

cytoskeleton may be dominant [21]. These effects may be mediated through the actin-

binding domain (ABD) of the ONM KASH-domain protein nesprin-2. Expression of

nesprin-2ΔABD, the ABD alone, or the KASH domain alone increased nuclear area.

Conversely, expression of nesprin-2-mini, a fusion protein consisting of only the KASH

domain and ABD and lacking the large central spectrin-repeat rod domain, resulted in

reduced nuclear size [21,22] (Fig. 1c).

During normal interphase, nuclear volume and NPC number nearly double, however distinct

mechanisms seem to regulate these two processes because disruption of interphase NPC

assembly in HeLa cells by cyclin-dependent kinase inhibition negligibly affected nuclear

growth [23,24]. Nonetheless, altered NPC composition can affect nuclear size. In budding

yeast, a RSC chromatin remodeling complex mutant exhibited NPC mislocalization,

accumulation of nuclear membrane sheets, and altered nuclear morphology [25]. In Xenopus

egg extract, a dominant-negative fragment of the nucleoporin POM121 blocked NE growth

when added to intact nuclei [26], while depletion of Nup188 led to the formation of enlarged

nuclei with intact NPCs that exhibited increased import of INM proteins [27].

Mechanisms of nuclear shape regulation

Recent studies support previous research demonstrating that nuclear lamins modulate

nuclear shape [11,28,29]. During granulopoesis, neutrophils developing lobulated nuclei

increase expression of lamin B receptor (LBR) and downregulate lamin A. Reducing LBR in

neutrophil-differentiated HL-60 cells resulted in hypolobulated nuclei, while lamin A

overexpression caused both nuclear hypolobulation and impaired neutrophil migration

[30,31] (Fig. 1d). Cortical neurons in lamin B1 knock-out mice exhibited abnormally shaped

nuclei with blebs and irregular lamin B2 distribution, while lamin B2 deficiency resulted in

neurons with elongated nuclei accompanied by severe defects in brain development [32].

Abnormal nuclear shape and premature senescence of Ataxia telangiectasia cells were

rescued by reducing lamin B1 levels [33].

Diseases caused by mutations in nuclear lamin genes, collectively termed laminopathies, are

frequently associated with altered nuclear shape [34]. Lamin A mutations give rise to

muscular dystrophies, familial partial lipodystrophy, dilated cardiomyopathy, and

Hutchinson-Gilford progeria syndrome (HGPS). HGPS misshapen nuclei are caused by an

inappropriately farnesylated form of lamin A, called progerin, that improperly incorporates

into the lamina (Fig. 1e). Inhibition of farnesyltransferase or farnesylcysteine methylation

improved nuclear morphology and phenotypes of progeroid mice [35,36]. Similarly,

inhibiting prelamin A farnesylation significantly reduced nuclear shape abnormalities in

HGPS patient fibroblasts [37]. Strikingly, reducing levels of the INM protein Sun1 in

laminopathy mouse models and HGPS patient cells rescued defects in nuclear shape and

cellular senescence [38], as did inhibition of the mTOR pathway which reduced progerin

levels and nuclear blebbing, detected by a novel automated and high-throughput image

analysis method that quantifies NE curvature [39,40].
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NE components other than the lamina also influence nuclear shape [11,28]. Mutations in

budding yeast nucleoporins that cause NPC clustering are frequently associated with altered

nuclear shape [41,42]. Deletion of yeast proteins Mlp1p and Mlp2p, structural components

of the NPC basket thought to link and properly distribute neighboring NPCs, led to

increased NPC mobility and clustering and the formation of fragile, misshapen nuclei that

frequently exhibited NE blebs [43]. Arabidopsis thaliana expresses a plant-specific

nucleoporin, Nup136, a functional homolog of vertebrate Nup153. Nup136 overexpression

increased nuclear size and elongation in many tissues, whereas reducing Nup136 expression

resulted in smaller, more spherical nuclei [44,45] (Fig. 1f). Arabidopsis also expresses LINC

complex proteins that regulate nuclear shape. Knockdown of AtSUN1 and AtSUN2

produced round nuclei in root hairs, compared to highly elongated wild-type nuclei [46].

Furthermore, Arabidopsis WIPs, plant-specific KASH-domain proteins, interact with

SUN1/2 proteins, and disrupting these interactions reduced nuclear elongation [47].

Recent studies highlight an important role for perinuclear actin caps in controlling nuclear

shape and positioning [48]. The multi-lobed, elongated nuclei of embryonic stem cells lack a

perinuclear actin cap. During differentiation, these nuclei were observed to take on a more

smooth, rounded morphology concomitantly with the appearance of a perinuclear actin cap,

which wrapped around the nuclear surface making contacts across the NE with lamin A/C

through LINC complex proteins [49] (Fig. 1g). Intriguingly, in mouse models of progeria

and muscular dystrophy, the perinuclear actin cap was disrupted or absent and nuclei

assumed deformed shapes [50].

There is growing evidence that physical properties of the ECM modulate nuclear shape. The

actin-myosin cytoskeleton transmits mechanical force from focal adhesions at the cell

membrane/ECM junction to nuclear LINC complexes and the lamina (reviewed in [29]), and

the actin cytoskeleton was also shown to be important in coordinating nuclear shape with

cell shape [51]. Rigidity of the substrate on which NIH 3T3 cells were grown modulated

nuclear shape, such that soft substrates produced cells with round nuclei while stiff

substrates led to flattened nuclei [52]. Dermal fibroblasts from laminopathy patients

exhibited round nuclei on soft substrates but misshapen or ruptured nuclei on stiff substrates

[53] (Fig. 1h). Intriguing interactions between lamin A levels, ECM stiffness, and cell

differentiation have also recently emerged [54], as well as a novel role for keratin filaments

in regulating nuclear shape [55]. Taken together, nuclear shape is determined by structural

elements of the nucleus (Table 1), cytoplasmic and extracellular structures, and cytoskeletal

tension transduced from the ECM. In the case of disease, weakened nuclei may contribute to

abnormal nuclear morphology.

Cell cycle events that influence nuclear morphology

Events that occur during mitosis are important in establishing normal interphase nuclear

morphology [1]. Depletion of microtubule-binding ER proteins REEP3/4 caused

inappropriate ER accumulation on metaphase chromosomes, leading to NE defects during

interphase [56] (Fig. 2a). In addition to clearance of ER membrane from metaphase

chromosomes, mitotic microtubule dynamics also influence interphase nuclear morphology.

In Xenopus egg extract, chromatin-binding protein Dppa2 inhibits post-mitotic microtubule
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polymerization, and depletion of Dppa2 led to the formation of small, misshapen nuclei with

decreased nuclear lamin and NPC assembly. Strikingly, these nuclear morphology defects

could be rescued by ectopically depolymerizing microtubules, suggesting that precisely

tuned microtubule dynamics are required for proper nuclear assembly [57] (Fig. 2b). Also

important for establishing correct nuclear shape are interactions between chromatin-bound

BAF and LEM family INM proteins that mediate nuclear assembly (Fig. 1). LEM4 depletion

or mutation caused misshapen, multi-lobed nuclei in C. elegans [58] (Fig. 2c), and in

Schizosaccharomyces japonicus, the conserved LEM-domain protein Man1 was required for

equal partitioning of nuclear membrane and NPCs to daughter nuclei [59]. During the closed

mitoses of many yeasts, spindle pole bodies inserted into the NE drive intranuclear spindle

formation. Elongation of the internally-forming spindle profoundly alters nuclear shape, as

the intact nucleus expands along the mother-daughter axis prior to cytokinesis [3-6].

The regulation of phospholipid biosynthesis is important in maintaining normal nuclear

structure and dynamics. In fission yeast, a temperature-sensitive RanGEF mutant exhibited

asymmetric cell divisions, reduced post-mitotic nuclear growth, and frequent NE breakage,

phenotypes that could be rescued by slowing spindle elongation, increasing proliferation of

ER membrane, or increasing the relative proportion of ER sheets [60]. In budding yeast,

expression of a dominant negative SUN-domain protein, Mps3, led to over-proliferation of

the INM that could be rescued by altering lipid homeostasis [61]. Upregulating lipid

biosynthesis in yeast led to ER and NE membrane proliferation and the formation of

misshapen nuclei in which the NE expanded specifically in the region adjacent to the

nucleolus, forming a structure termed a "flare" [28,62,63]. More irregular nuclear shapes

were observed if endosome to late Golgi trafficking was also disrupted, but a normal

nuclear/cell volume ratio was maintained [64]. Mitotic delay induced similar nucleolar flares

that could be rescued by inhibition of phospholipid synthesis [65], and ER-NE lipid

partitioning controlled NE assembly and growth in higher eukaryotes as well [66,67]. In C.

elegans, downregulation of lipin homolog LPIN-1 altered ER composition, NE breakdown,

chromosome segregation, and nuclear morphology [68]. Mutations affecting trafficking

through the ER-Golgi intermediate compartment also affected NE structure, disrupting

transport of NE proteins and nucleoporins [69].

During interphase different mechanisms promote the maintenance of proper nuclear

morphology. Inappropriate condensin II activity in interphase, caused by depletion of the

ubiquitin ligase SCFSlimb, resulted in chromatin compaction and deformed, ruffled nuclei

[70] (Fig. 2d). Early in development in some fish and amphibian embryos, post-mitotic NE

assembly is initiated around individual chromosomes, forming structures called karyomeres

that eventually fuse to form an intact nucleus. The zebrafish protein brambleberry was

shown to be required for fusion of karyomeres into a mononucleus and for the regulation of

normal nuclear morphology in early development [71] (Fig. 2e).

Nuclear morphology, chromatin organization, and gene expression

An important function of nuclear architecture is to organize chromatin and regulate gene

expression. Some factors that structure and modify chromatin also influence nuclear

morphology and size. Whether nuclear size directly impacts subnuclear function remains an
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open question. Recent studies have quantified chromatin positioning and gene expression

during development and differentiation, processes associated with changes in nuclear size

(reviewed in [72,73]), and modeling studies suggest that nuclear volume could drive

chromatin organization [74,75].

In immortalized mammary epithelial cells, knockdown of a chromatin-remodeling enzyme,

BRG1, resulted in nuclear periphery grooves [76]. During neuronal cell maturation, the

chromatin-associated protein MeCP2 was required for normal developmental nuclear growth

and gene transcription [77]. RNAi of soybean GmFWL1 resulted in decreased nuclear size,

likely due to altered heterochromatization [78]. During C. elegans embryogenesis,

reductions in nuclear size were shown to correlate with increased mitotic chromosome

condensation [79] and interphase genome reorganization resulting in activated genes shifting

towards the nuclear lumen and silenced genes localizing to the NE [80]. Interestingly,

increasing the size of Xenopus embryonic nuclei did not result in increased mitotic

chromosome length or width [81]. During T-cell activation, both actin-mediated nuclear

elongation and activation of signaling intermediates were required to alter gene expression

[82].

Changes in histone modifications have also been linked to nuclear size and shape. Bone

marrow mesenchymal stem cells placed under mechanical strain by microtopographic

patterning exhibited elongated nuclei and increased histone acetylation and gene

transcription [83,84]. During myotube formation in human primary myoblasts, nuclei

became smaller and more flattened, accompanied by altered histone modifications,

chromatin remodeling, and gene expression silencing [85]. In mouse myoblasts, increased

histone H3 acetylation correlated with increased nuclear size and F-actin cytoskeleton

content [86], which has been shown to be required in large nuclei to stabilize subnuclear

organization against gravitational forces [87]. Null mutations in the mouse cannabinoid

receptor type 1 resulted in spermatozoa with elongated nuclei, reduced histone retention, and

poor chromatin quality, which could be rescued by estrogen treatment [88].

Osmotic stress is known to induce global changes in gene expression. Articular

chondrocytes under hyper-osmotic conditions showed increased nucleocytoplasmic

transport, decreased nuclear size, and a more convoluted NE morphology. Conversely, under

hypo-osmotic stress, nuclei swelled, assuming a smooth spherical shape limited by NE

stiffness, with no effect on nucleocytoplasmic transport [89,90]. Osmotic stress may be a

useful system for elucidating the relationship between nuclear morphology and gene

expression [91].

Some structural components of the NE that regulate nuclear size have also been shown to

affect chromatin structure. During Drosophila embryogenesis, the NE protein Kugelkern

and dynamic microtubules were necessary to maintain normal NE morphology and

chromatin dynamics and to activate zygotic gene transcription [92,93]. During

differentiation of human embryonic stem cells, increased expression of lamin A/C and

emerin were associated with increased nuclear size, the appearance of nuclear invaginations

or lobes, and large-scale chromatin reorganization [94]. Overexpression of budding yeast

Esc1, a NE protein with roles in chromatin organization and gene expression, led to NE
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extensions into the cytoplasm [95]. In Arabidopsis thaliana, seed germination increased

expression of lamin-like nuclear matrix proteins, resulting in independently regulated

nuclear growth and chromatin decondensation [96].

Nuclear morphology in cancer

Nuclear size differs between normal and cancer cells, and nuclear atypia is a common

diagnostic and prognostic marker [7,8]. In lung cancer cells and adenocarcinomas, increased

p53 expression and decreased expression of p16INK4A, a regulator of Rb, correlated with

increased nuclear size and chromatin density as well as distortion of the NE [97]. In

mucinous ovarian cancer, LINE1 DNA hypomethylation and increased nuclear area

correlated with greater cell proliferation rates, aneuploidy, and reduced survival probability

[98]. Lamin A was identified as a potential new biomarker for prostate cancer progression,

which is associated with altered nuclear size, shape, and heterochromatin organization.

Compared to benign samples, lamin A was downregulated in low grade tumors and

upregulated in high grade tumors [99,100]. Tumor regression in response to treatment of

breast cancer with anti-estrogen therapy was associated with decreased nuclear size in tumor

cells, suggesting that reductions in nuclear size might be used to assess treatment efficacy

[101].

Micronuclei, extranuclear structures generated by chromosome missegregation during

mitosis, are common in cancer cells and may be degraded by nucleophagy [102].

Micronuclei were observed to generate extensively fragmented chromosomes that could be

distributed to daughter nuclei, potentially contributing to chromosomal rearrangements and

aneuploidy associated with cancer progression [103]. Micronuclear disruption, triggered by

NE collapse and lamina disorganization, was frequently observed in cancer cells and may

represent a general characteristic of genomic instability useful in diagnosis or prognosis

[104,105] (Fig. 2f). Nuclear blebs are also common pathological features in cancers and

laminopathies. Modeling studies indicated that separation of lamin fibers within the

meshwork of the lamina is required for bleb formation, suggesting a possible approach to

preventing these NE deformations in disease [106,107].

Recent diagnostic advances relevant to altered nuclear size in cancer have been reported.

High grade urothelial carcinomas exhibited increased nuclear size, relative to low grade

cases, that correlated with increased numbers of centromeres, detected by FISH using

centromere enumeration probes (CEPs). Such CEPs may be applied to diagnosis of bladder

carcinomas [108]. Tomographic imaging performed on fibrocystic and malignant mammary

epithelial cells revealed abnormal nuclear shape, increased nuclear volume, greater numbers

of nucleoli, and increased chromatin density and clumping, compared to normal cells [109].

Digital image analysis performed on melanocytic lesions comparing 62 features, including

nuclear area, shape, and texture, allowed for effective differentiation of melanoma stages

and subtypes [110]. Taken together, automated quantitative 3D nuclear morphometry could

be useful as a novel diagnostic tool. These and future advancements in the analysis of digital

histological images promise to improve diagnosis and provide for more individualized

therapeutic interventions.
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Conclusions

Some common mechanistic themes in the regulation of nuclear morphology are beginning to

emerge. NE structural components, especially nuclear lamins, lamin-associated and lamin-

like proteins, LINC complex proteins, and NPCs, are frequently involved, as is regulated

nuclear import of these components. Perinuclear elements also influence nuclear

morphology, such as ER structure and mechanical forces transduced by the actin and

microtubule cytoskeletons, sometimes through ECM associations. In many systems, DNA

amount appears to not be a primary determinant of nuclear size, while chromatin structure

and modification can affect nuclear morphology. It is also becoming evident that mitotic

events determine interphase nuclear morphology, where clearance of ER and microtubules

from chromosomes and proper lipid homeostasis are important.

Open questions remain regarding the functional significance of nuclear morphology and

how steady-state nuclear morphology is determined. The regulation of nuclear size and

shape may be intimately linked, for instance it was recently proposed that changes in nuclear

shape that maintain a constant karyoplasmic ratio may in fact be manifestations of altered

nuclear size [28,64]. Although factors that influence nuclear size and shape are known, an

integrated model of the mechanisms controlling nuclear morphology has yet to emerge, and

upstream regulatory determinants and/or signals of nuclear size regulation remain to be

identified. Emerging technologies, such as microfluidics [111], cell encapsulation [112],

advances in microscopy [113], and 3D cell culture systems [114], broaden the possibilities

for studying mechanisms of organelle scaling. In one recent example, microfluidic devices

were used to encapsulate mitotic Xenopus extract within microdroplets of defined and

tunable size, demonstrating how cytoplasmic volume contributes to mitotic spindle length

scaling [115,116] and offering evidence for limiting-component models of organelle size

regulation [117-119]. Similar approaches may be applied to study mechanisms regulating

nuclear size and shape. Coupled with emerging technologies, Xenopus has been, and will

continue to be, a powerful system to investigate intrinsic mechanisms of organelle size

regulation [120].

Higher order chromatin organization is usually perturbed in cancers and can affect mutation

frequencies [121,122], but the cause and effect relationships between increased nuclear size

and altered subnuclear organization remain to be elucidated. One hypothesis is that nuclear

size directly affects chromatin organization and gene expression. Enlarged nuclei are often

observed in cells adjacent to a tumor, and these cells appear otherwise normal by histology.

An explanation for this “field effect” is that genetic alterations leading to cancer occur in a

stepwise fashion and cells in the field around the tumor represent a clonal population arising

from an early genetic change that was a precursor to carcinogenesis [123]. By this model,

precancerous alterations in nuclear size might disrupt chromatin positioning, thereby

influencing transcriptional profiles and priming cancer development or promoting additional

genetic alterations that contribute to cancer progression.

Development, differentiation, and disease progression are associated with changes in nuclear

size, nuclear morphology, chromatin organization, and gene expression. Determining how

these parameters relate to one another can now be accomplished using new techniques for
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mapping global chromatin organization coupled with massively parallel sequencing

technologies (reviewed in [72,73,124]). Elucidating how developmentally regulated changes

in nuclear size affect gene expression will help to clarify the relationship between aberrant

nuclear morphology and diverse disease states such as cancer, progeria and other

laminopathies, and neuronal disorders [77,125]. Answering fundamental questions about

nuclear size and shape regulation promises to provide novel approaches to disease diagnosis,

prevention, and treatment.
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Figure 1. Mechanisms of nuclear size and shape regulation
The central diagram depicts the major cellular components involved in regulating nuclear

morphology. The blue boxes around the edge depict specific examples where mechanisms

determining nuclear size and/or shape have been identified. (a) In Xenopus egg extracts,

lamin B3 (LB3) depletion reduces nuclear size [13], while supplementing extract with LB3

increases the rate of NE expansion [14]. (b) Mislocalization of LAP2 or addition of a

dominant negative fragment of LAP2 to Xenopus egg extract inhibits nuclear growth

[19,20]. (c) Expression of nesprin-2 lacking the ABD increases nuclear size, while

expression of nesprin-2-mini decreases nuclear size [21,22]. (d) Altered LBR and lamin A

(LA) expression in neutrophils affects nuclear lobulation [30,31]. (e) Progerin expression

leads to the formation of misshapen nuclei that can be rescued with farnesylation inhibitors

[34]. (f) Altered expression of Arabidopsis thaliana Nup136 affects both nuclear size and

elongation [44,45]. (g) Stem cell differentiation is associated with acquisition of a

perinuclear actin cap that regulates nuclear morphology through LINC and lamina

interactions [49]. (h) ECM stiffness modulates nuclear shape [53].
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Figure 2. Cell cycle events that influence nuclear morphology
(a) REEP3/4 are required to clear ER membrane from metaphase chromatin. Failure to do so

leads to intranuclear membrane invaginations extending into the interphase nucleus. Image

adapted with permission from [56]. (b) Post-mitotic suppression of microtubule (red)

polymerization by Dppa2 (green) is required for the formation of a nucleus with normal

morphology. Chromatin is shown in blue. Image adapted with permission from [57]. (c)

Depletion of LEM4 in C. elegans leads to misshapen, multi-lobed nuclei [58]. (d) Depletion

of the ubiquitin ligase SCFSlimb leads to increased condensin II activity in interphase,

chromatin compaction, and deformed nuclear morphology [70]. (e) The brambleberry

protein (red) is required for karyomere fusion during early zebrafish development. In the

absence of brambleberry (bmb) multiple micronuclei form. Image adapted with permission

from [71]. (f) The process of micronuclear formation and disruption is depicted. A

micronucleus forms around a lagging chromosome at the end of mitosis. During interphase,

disorganization of the nuclear lamina leads to NE collapse, chromatin compaction, and

intercalation of tubular ER. Image adapted with permission from [104].
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Table 1

Nuclear envelope structural elements that regulate nuclear morphology.

Protein Organism/
System

Function Alteration and nuclear phenotype

Lamin A/C Vertebrates Structural support to
the nucleus, roles in
DNA replication and
gene expression

Mutations in LMNA gene cause
diseases with misshaped nuclei [34-
40]

Lamin A/C Neutrophil-
differentiated
HL-60 cells

As above Overexpression causes
hypolobulated nuclei [30,31]

Lamin B1 Mammals
Cortical neurons

As above Deficiency causes misshaped nuclei,
nuclear blebs [32]

Lamin B2 As above As above Deficiency leads to elongated nuclei
[32]

Lamin B2 Zebrafish
embryo

As above Overexpression causes lobulated
nuclei with intranuclear membranes
[16]

Lamin B3 Xenopus egg
extract

As above Depletion decreases nuclear size [13]
Ectopic addition increases nuclear
size [14]

Lamin-like
nuclear
proteins

Arabidopsis
thaliana

Should have similar
functions to
vertebrate lamina

Deletions of LINC1/2 genes result in
smaller and more round nuclei [17]

LBR Neutrophil-
differentiated
HL-60 cells

Binds lamins and
chromatin

Depletion causes hypolobulated
nuclei [30,31]

Lap2β Xenopus
egg extract

Binds lamins and
chromatin

Addition of truncated Lap2β causes small scalloped nuclei [19]

LEM4 Caenorhabditis
elegans

Interacts with lamina
and chromatin

Depletion causes misshapen,
multilobed nuclei [58]

AtSun1/2 Arabidopsis
thaliana

Components of LINC
complex

Depletion causes nuclear rounding
[46]

AtWIPs Arabidopsis
thaliana

Plant specific KASH
domain proteins,
components of LINC
complex

Mutations that disrupt LINC
interactions cause nuclear rounding
[47]

Nesprin2 HaCaT cells KASH domain
protein; binds to actin
cytoskeleton and
SUN proteins; part of
LINC complex

Nes2ΔABD overexpression increases
nuclear size; Nes2-mini
overexpression decreases nuclear
size [21,22]

Pom121 Xenopus egg
extract

Nucleoporin,
structural component
of NPC

Addition of dominant negative
fragment blocks NE growth [26]

Nup188 Xenopus egg
extract

As above Depletion increases nuclear size [27]

AtNup136 Arabidopsis
thaliana

As above Overexpression increases nuclear
size and nuclear elongation;
Depletion decreases nuclear size and
causes nuclear rounding [44,45]
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