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Scientific knowledge changes rapidly, but the concepts
and methods of the conduct of research change more
slowly. To stimulate discussion of outmoded thinking
regarding the conduct of research, I list six misconcep-
tions about research that persist long after their flaws
have become apparent. The misconceptions are: 1)
There is a hierarchy of study designs; randomized trials
provide the greatest validity, followed by cohort studies,
with case–control studies being least reliable. 2) An
essential element for valid generalization is that the
study subjects constitute a representative sample of a
target population. 3) If a term that denotes the product
of two factors in a regression model is not statistically
significant, then there is no biologic interaction between
those factors. 4) When categorizing a continuous vari-
able, a reasonable scheme for choosing category cut-
points is to use percentile-defined boundaries, such as
quartiles or quintiles of the distribution. 5) One should
always report P values or confidence intervals that have
been adjusted for multiple comparisons. 6) Significance
testing is useful and important for the interpretation of
data. These misconceptions have been perpetuated in
journals, classrooms and textbooks. They persist be-
cause they represent intellectual shortcuts that avoid
more thoughtful approaches to research problems. I
hope that calling attention to these misconceptions will
spark the debates needed to shelve these outmoded
ideas for good.

KEY WORDS: study design; data interpretation; epidemiologic methods;

representativeness; evaluation of interaction; multiple comparisons;

percentile boundaries; statistical significance testing.

J Gen Intern Med 29(7):1060–4

DOI: 10.1007/s11606-013-2755-z

© The Author(s) 2014. This article is published with open access at

Springerlink.com

A surprising number of misconceptions persist in the
conduct of research involving human subjects. Some

persist despite teachings to the contrary, and some because
of teachings that should be to the contrary. To spark
discussion of these issues, I list here six persistent research
misconceptions, and offer a capsule summary of the
problems with each of them.

Misconception 1. There is a hierarchy of study designs;
randomized trials provide the greatest validity, followed by
cohort studies, with case–control studies being least reliable.

Randomized trials, though often considered the “gold
standard” of study types, are not perfect, even in concept.
Furthermore, the premise that the comparative validity of
study results can be inferred from the type of study is wrong.

Although some believe that evidence from a randomized
trial is as compelling as a logical proof, no empirical finding
can provide absolute certainty. If randomized trials were
perfect, how could they give divergent results? In fact, they
are subject to various errors.1 Obviously there is random
error, as one would expect from a study based on random
assignment. But there is also systematic error, or bias. For
example, randomized trials are usually analyzed using the
“intent to treat” principle, which compares the groups that
are initially assigned by randomization, regardless of any
subsequent non-adherence. Non-adherence results in under-
estimation of any treatment effect. This bias is usually
considered acceptable because it is outweighed by the
advantages achieved by random assignment. Underestima-
tion of effects, however, is not acceptable in a safety trial
aimed at uncovering adverse effects of the treatment.
Another important source of bias in a randomized trial
comes from errors in assessing the outcome, such as
undercounting of outcome events. Also, even if randomi-
zation provides a balance of risk factors between groups at
the start of the trial, with extended follow-up, the study
groups may become progressively imbalanced through
differential attrition or changes in risk factor distributions.
With long-term trials, the benefits of random assignment
may therefore fade with time.

In short, trials are far from perfect. Furthermore, both
cohort and case–control studies will yield valid results when
properly designed and carried out. Therefore, mindlessly
ascribing greater validity to a study based on a hierarchy of
designs2,3 is fallacious. For example, the relation between
cigarette smoking and lung cancer is well established, based
on findings from cohort and case–control studies. The
connection was never shown clearly in a randomized trial. It
is not easy to assign people randomly to smoke or not
smoke; however, when smoking cessation was studied as
part of a multi-pronged intervention in the randomized
Multiple Risk Factor Intervention Trial,4 those who were
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urged to cease smoking actually developed more lung
cancer than those who did not receive the cessation
encouragement. The results of the trial did not overthrow
the findings of the many cohort and case–control studies
conducted without randomization. Rather, the discrepancy
was ascribed to problems with the trial.

In another high-profile example, results from large cohort
studies5,6 indicated that risk of coronary heart disease was
reduced among postmenopausal hormone users, but later
results from two randomized trials indicated either no
association or an increased risk.7,8 The reaction in the
scientific community and the popular press9 was to discredit
the results from the cohort studies, presuming that they had
been refuted by the randomized trials. Many continue to
believe that interpretation, but in an elegant reanalysis,
Hernan et al.10 showed that the study populations in the
cohort studies and the randomized trials were different, and
that the effects of postmenopausal hormone use varied
greatly according to age and time since menopause. When
studies were restricted to new users of hormones, Hernan et
al. showed that differences in the distribution of age and
time since menopause could explain all of the apparent
discrepancies. Although it is common to ascribe such
discrepancies to inherent weaknesses of the nonexperimen-
tal studies, it is simplistic to assign validity based on a
presumed hierarchy of study types.11

Similarly, discrepancies between cohort studies and case–
control studies should not be explained away superficially
by a presumed validity advantage for cohort studies over
case–control studies. Properly designed case–control studies
will produce the same results as properly designed cohort
studies. When conflicts arise, they could stem from
problems in either or both types of study. Although case–
control studies have long been disparaged as being
backwards versions of cohort studies, starting from disease
and tracing back to possible causes, epidemiologists today
understand case–control studies to be conceptually identical
to cohort studies, apart from an efficiency gain that comes
from sampling the denominators rather than conducting a
complete census. Indeed, the efficiency gain may allow
more resources for exposure assessment or case validation
in case–control studies, resulting in less bias than in
corresponding cohort studies of the same relation.

Those who view case–control studies as backwards
versions of cohort studies sometimes make the false
analogy that the controls should closely resemble the cases,
except that they lack the case-defining disease. In fact, the
control group in a case–control study is intended to be a
sample of the population denominator that gives rise to the
cases, a substitute for the full denominators obtained in a
cohort study. Thus, the control group should resemble the
entire study population, rather than the cases.12,13 When
properly designed, case–control studies can achieve the
same excellent validity as properly designed cohort studies,

whereas a poorly designed trial can be unreliable. The
type of study should not be taken as a guide to a study’s
validity.

Misconception 2. An essential element of making valid
generalizations from a study is that the study subjects
constitute a representative sample of a target population.

This misconception is tied to the view that scientific
generalization involves the mechanical extrapolation of
results from a sample to its source population. But that
describes statistical generalization; scientific generalization
is different: it is the process of constructing a correct
statement about the way nature works.

Scientific generalization is the ultimate goal of scientific
inquiry, but a prerequisite is designing a study that has
internal validity, which is enhanced by keeping all
disturbing variables constant. When have we heard of
animal researchers who seek a statistically representative
sample of animals? Instead, their operating principle is
nearly the opposite of seeking representativeness. Thus,
biologists studying mice prefer to study mice that are
homogeneous with respect to genes and environment, and
that differ only in respect to the experimentally manipulated
variable. Unlike the statistical generalization of opinion
polls or survey sampling, which merely calls for extrapo-
lation from sample to source population, scientific general-
ization proceeds by informed guesses, but only from the
secure platform of a valid study. Consequently, studies are
stronger if they limit variability of confounding factors, as
opposed to seeking representativeness. Doll and Hill14

studied the mortality of male British physicians in relation
to their smoking habits. Their findings were considered
broadly generalizable despite the fact that their study
population was unrepresentative of the general population
of tobacco users with regard to sex, race, ethnicity, social
class, nationality and many other variables.

When there is a legitimate question about whether an
overall association varies by subgroup of some third
variable, such as age or ethnic group, it may be necessary
to include people drawn from a broad range of values of
that third variable, but even then it is counterproductive for
the study population to be representative of the source
population for that variable. The goal in that case would be
to include study subjects distributed evenly across the
range, or in a distribution that enhances overall study
efficiency. A sample that is representative of the source
population will be suboptimal.15,16

Misconception 3. If a term that denotes the product of
two factors in a regression model is not statistically
significant, then there is no biologic interaction between
those factors.

“Biologic” is meant here broadly, to encompass biochem-
ical, psychological, behavioral and physical interactions. The
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problem is that interaction is usually evaluated through
regression models, in which the product term addresses
statistical interaction rather than biologic interaction.

Biologic interaction refers to two or more causes acting
in the same mechanism, with effects that are mutually
dependent. It describes a state of nature. If basic effects are
measured as changes in disease risk, synergistic (i.e.
positive) biologic interaction is present when the joint
effect of two causal factors is more than the sum of their
effects acting separately.17 In contrast, statistical interaction
does not describe nature; it describes a mathematical model.
It is typically assessed with a product term for two variables
in a regression model. Its magnitude depends on the choice
of measures and scale of measurement. Statistical interac-
tion implies only that the basic functional form of a specific
mathematical model is not an apt description of the relation
among variables. Two factors that show biologic interaction
may or may not exhibit statistical interaction, depending on
the model used.

Product terms in regression models have units that can
defy interpretation. If one variable is fat consumption,
measured in grams per day, and another variable is pack-
years of cigarettes smoked, what is the interpretation of a
variable that has units of grams/day multiplied by pack-
years? The challenge of interpreting such product term
coefficients has fostered a focus on the p value accompa-
nying the coefficient, rather than the magnitude of the
coefficient itself. Focusing on the pvalue, or on whether the
coefficient of a product term is statistically significant, only
worsens the problem of mistaking statistical interaction for
biologic interaction (see misconception 6). A more mean-
ingful assessment of interaction would be to focus on the
proportion of cases of a disease that one could attribute to
biologic interaction.17,18

Consider a simple example from the TREAT trial (Trial to
Reduce Cardiovascular Events with Aranesp Therapy),19

which evaluated the risk of stroke among 4,038 patients with
diabetes mellitus, chronic kidney disease, and anemia ran-
domized to receive darbepoetin alfa or placebo. Among
patients without a history of stroke, the risk of stroke during
the study period was 2 % among patients receiving placebo
and 4 % among patients receiving darbepoeitin alfa. Among
patients with a history of stroke, the corresponding risks were
4 % and 12 %. The authors noted that the risk increase was
greater for darbepoeitin alfa among those with a history of
stroke, but they dismissed this interaction because the product
term in a logistic regression model was not statistically
significant. The increased risk attributable to darbepoeitin alfa
was 2 % in the patients without a history of stroke and 8 %
among patients with a history of stroke, indicating strong
biologic interaction between darbepoeitin alfa and history of
stroke. If the risks were merely additive, the risk would be 6 %
among those with both risk factors, instead of the actual 12 %.
Thus, half of the risk among those with both risk factors

appears attributable to biologic interaction, despite the
authors’ claim that there was no interaction.

Misconception 4. When categorizing a continuous variable,
a reasonable scheme for choosing category cut-points is to
use percentile-defined boundaries, such as quartiles or
quintiles of the distribution.

There are two reasons why using percentiles is a poor
method for choosing category boundaries. First, these bound-
aries may not correspond to the parts of the distribution where
biologically meaningful changes occur. Suppose you were
conducting a study of vitamin C intake and scurvy risk in the
U.S. If you decided to categorize vitamin C intake by quintiles,
you would find that the entire relation between vitamin C
consumption and scurvy was confined to the lowest quintile,
and within that category, to only a small proportion of people
who were outliers in their low vitamin C intake. 10 mg/day of
vitamin C can prevent scurvy, but those consuming less than
that represent a fraction of 1 % of the population in the U. S.20

Using percentile-based categories wouldmake it impossible to
find the effect of inadequate vitamin C intake on scurvy risk,
because all intake above 10 mg/d is essentially equivalent. If
we routinely use percentile cut-points, we may not know if we
are facing the same problem as we would face in the study of
vitamin C and scurvy. Amore effective alternative would be to
begin with many narrow categories, merging neighboring
categories until meaningful breaks in risk become evident.

The second problem with percentile-based categories is the
difficulty in comparing results across studies, because catego-
ries across studies using percentile category boundaries are
unlikely to correspond. This problem can be averted by
expressing boundary points in terms of the natural units of the
variable (such as mg/d for vitamin C intake). It is also useful to
report within-category means or medians.

Misconception 5. One should always report P values or
confidence intervals that have been adjusted for multiple
comparisons.

Traditional adjustments for multiple comparisons involve
inflating the P value or the width of a confidence interval
according to the number of comparisons conducted. If one
is analyzing biological data that are replete with actual
associations, the premise for traditional adjustments is
shaky and the adjustments are difficult to defend. The
concern for multiple comparisons stems from fear of finding
falsely significant findings (type I errors in the lingo of
statistics). In misconception 6, we discuss the problems
with using statistical significance testing for data analysis in
the first place. But before considering those problems, let us
consider the rationale for adjusting reported results for
multiple comparisons.

Despite the fact that a single significance test is intended
to have a 5 % probability (at the conventionally used level)
of being significant when the null hypothesis is true, and
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therefore multiple tests when properly carried out should
each have this property, there is a concern that when
making multiple tests, the probability of a spurious result is
increased. Of course, as the number of tests increases, the
probability that one or more of them would be falsely
positive increases, but that is only because many tests are
being conducted. Adjustments for multiple comparisons
will reduce these type I errors, but they do so at the expense
of increasing type II errors, which are nonsignificant test
results in the presence of a real association. When observed
associations are all the result of chance, type I errors can
occur, but type II errors cannot occur. Conversely, when the
observed associations all reflect actual relationships, type II
errors can occur, but type I errors cannot. Thus, the context
of any analysis has fundamental implications regarding the
interpretation of the data. In particular, it is absurd to make
adjustments that reduce type I errors at the expense of
increasing type II errors without some evaluation of the
estimated relative cost and frequency of each type of error.

If scientists were put to work studying random numbers
instead of biologic data, all the significant results they
reported would represent type I errors, and adjustments for
multiple comparisons would make sense; some skeptics
believe that studies of genome-wide association scans may
approximate this situation.21 But when scientists are
studying biological relations rather than random numbers,
the premise that type I errors are the major concern may be
wrong.22 A more rigorous evaluation of the need for
multiplicity adjustments would begin with an assessment
of the tenability of the thesis that the data are essentially
random numbers. If one is studying experiments on psychic
phenomena, skepticism about the results might lend support
to multiplicity adjustments. If one is studying physiologic
effects of pharmaceutical agents, real associations are to be
expected and the adjustments are more difficult to defend.
Studying single nucleotide polymorphisms in relation to a
given disease might be a middle ground. One approach to
this issue that is theoretically more defensible is a Bayesian
approach, which assigns prior credibility to various levels
of association and adjusts by using Bayes’ theorem to
calculate posterior credibility.23,24

Misconception 6. Significance testing is useful and impor-
tant for the interpretation of data.

Significance testing has led to far more misunderstanding
and misinterpretation than clarity in interpreting study
results.25–28 A significance test is a degraded version of
the P value, a statistic that blends precision with effect size,
thus confusing two essential aspects of data interpretation.
Measuring effect size and its precision as separate tasks is a
more direct and clearer approach to data interpretation.

For research studies that aim to measure associations, and
infer whether they reflect causal connections, focusing on
the magnitude of these associations ought to be the primary

goal: estimation of effects is decidedly preferable to
statistical testing. Ideally, a study estimates the magnitude
of the effect size, and analyzes the possible errors that might
have distorted it. Systematic errors such as confounding
from measured factors can be dealt with through analytic
methods; other systematic errors, such as the effects of
measurement error or selection bias, can be addressed
through sensitivity analyses (also known as bias analysis).
Random error is typically expressed through confidence
intervals, giving a range of parameter values that are
consistent with the data to a specified level.

It is unfortunate that a confidence interval, from which both
an estimate of effect size and its measurement precision can be
drawn, is typically used merely to judge whether it contains
the null value or not, thus converting it to a significance test.
Significance tests are a poor classification scheme for study
results; strong effects may be incorrectly interpreted as null
findings because authors fallaciously interpret lack of statis-
tical significance to imply lack of effect, or weak effects may
be incorrectly interpreted as important because they are
statistically significant. Rather than be used as surrogate
significance tests, confidence intervals ought to be interpreted
as quantitative measures indicating magnitude of effect size
and degree of precision, with little attention paid to the precise
location of the boundaries of the confidence interval. This
advice is backed by the Uniform Requirements for Manu-
scripts Submitted to Biomedical Journals, but nevertheless
often overlooked even by reviewers and editors whose
journals support the requirements.29

Many misconceptions derive from reliance on statistical
significance testing. The focus on the statistical significance
of interaction terms instead of measuring interaction, as
discussed above, is one example. The evaluation of dose–
response trends simply by declaring that there is or is not a
significant trend, rather than expressing the magnitude and
ideally the shape of that trend, is another. Yet another is the
advice sometimes offered to calculate the power of a study
when reporting results, especially if those results are not
statistically significant. Reporting the power of a study as
part of the results is called “post-hoc” power calculation.30

Power calculations are based on a hypothesis about the
level of association that is to be distinguished from a null
association, but when the study results are on hand, there is
no longer any need to hypothesize about the magnitude of
the association, because you now have an estimate of it. A
confidence interval for the estimated association conveys all
the relevant information; nothing further is to be gained
from a power calculation.

The unfortunate consequence of the focus on statistical
significance testing has been to foster a dichotomous view
of relationships that are better assessed in quantitative
terms. This distinction is more than a nicety. Every day
there are important, regrettable and avoidable misinterpre-
tations of data that results from the confusing fog of
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statistical significance testing. Most of these errors could be
avoided if the focus were shifted from statistical testing to
estimation.

CONCLUSION

Why do such important misconceptions about research
persist? To a large extent these misconceptions represent
substitutes for more thoughtful and difficult tasks. It is simpler
to resolve a discrepancy between a trial and a nonexperimental
study in favor of the trial, without undertaking the laborious
analysis that Hernan et al. did.10 It is easy to declare that a
result is not statistically significant, falsely implying that there
is no indication of an association, rather than to consider
quantitatively the range of associations that the data actually
support. These misconceptions involve taking the low road,
but when that road is crowded with others taking the same
path, there may be little reason to question the route. Indeed,
these misconceptions are often perpetuated in journals,
classrooms and textbooks. I believe that the best prospect for
improvement is to raise consciousness about the issues, with
reasoned debate. Max Planck once said, “A new scientific
truth does not triumph by convincing its opponents and
making them see the light, but rather because its opponents
eventually die, and a new generation grows up that is familiar
with it.”31 To the extent that this cynical view is correct, we
can expect to see outmoded concepts fade away slowly at best.
I hope that calling attention to these misconceptions will spark
the needed debates and be a catalyst for change.
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