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Abstract

Recent research reveals a link between individual differences in mathematics achievement and

performance on tasks that activate the approximate number system (ANS): a primitive cognitive

system shared by diverse animal species and by humans of all ages. Here we used a brief

experimental paradigm to test one causal hypothesis suggested by this relationship: activation of

the ANS may enhance children's performance of symbolic arithmetic. Over 2 experiments,

children who briefly practiced tasks that engaged primitive approximate numerical quantities

performed better on subsequent exact, symbolic arithmetic problems than did children given other

tasks involving comparison and manipulation of non-numerical magnitudes (brightness and

length). The practice effect appeared specific to mathematics, as no differences between groups

were observed on a comparable sentence completion task. These results move beyond

correlational research and provide evidence that the exercise of non-symbolic numerical processes

can enhance children's performance of symbolic mathematics.
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1. Introduction

Recent evidence suggests that symbolic mathematics arises, in part, from the reuse of a

phylogenetically ancient and ontogenetically primitive cognitive system for making

quantitative judgments and decisions: the approximate number system (ANS) (e.g. Dehaene,
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2005; Hubbard, Diester, Cantlon, Ansari, Opstal, & Troiani, 2008). To date, however, most

of the evidence suggesting a role for the ANS in symbolic mathematics is indirect, and the

mechanism(s) driving this relationship are not well understood (e.g. Budgen & Ansari, 2011;

Gilmore, McCarthy, & Spelke, 2010; Halberda, Mazzocco, & Feigenson, 2008; Libertus,

Feigenson, & Halberda, 2011; Libertus, Odic, & Halberda, in press; Halberda, Ly, Wilmer,

Naiman, & Germine, 2012; Lourenco, Bonny, Fernandez, & Rao, 2012; Holloway & Ansari,

2009; but see Price, Palmer, Battista, & Ansari, 2012; Lyons & Beilock, 2011, and

Sasanguie, Defever, Maertens, & Reynvoet, in press). We used an experimental procedure to

test the extent to which engaging the ANS causally enhances subsequent symbolic

arithmetic performance in children learning symbolic mathematics in school. By

systematically manipulating the content of experimental tasks and analyzing the resulting

effects, we also begin to clarify the specificity of the relationship between the ANS and

symbolic mathematics.

1.1 Primitive number representations

A wealth of research reveals that even infants can discriminate between arrays of visual

elements on the basis of number (e.g. Xu & Spelke, 2000; Xu, Spelke, & Goddard, 2005;

Brannon, 2002; Xu, 2003). This ability is present from birth, persists over the lifespan, and

is common to a wide variety of non-human animals (Izard, Sann, Spelke, & Steri, 2009;

Feigenson, Dehaene, & Spelke, 2004). Studies in infants, preschool children, and non-

human primates reveal that the ANS supports computations as diverse as numerical

discrimination, ordinal comparison, addition, and subtraction (Brannon & Terrace, 1998;

Cantlon & Brannon, 2006a, 2006b, 2007; McCrink & Wynn, 2004; Gilmore, McCarthy, &

Spelke, 2010). Nevertheless, the ANS represents number imprecisely: Precision in the

mental representations of number decreases as number increases, and comparison of two

numbers is possible only when they differ by a sufficient ratio (Halberda et al., 2008). The

signature ratio-dependent imprecision of the ANS stands in stark contrast to the exact

meaning and precision associated with the symbolic number system that is acquired in early

childhood and is used to learn and perform higher symbolic mathematical computations (for

reviews see Carey, 2009; Le Corre, Van de Walle, Brannon, & Carey, 2006; Le Corre &

Carey, 2007).

1.2 Links between the ANS and symbolic mathematics

Despite the differences between the approximate number system and later acquired symbolic

numbers and mathematics, three lines of evidence suggest a functional link between them.

First, tasks involving purely symbolic numbers and exact arithmetic reveal signatures of

non-symbolic, approximate number representations (see Piazza, 2010 for a review). For

example, when adults or older children are asked to determine which of two symbolic

numbers is larger, their performance depends on the numerical distance between the

numbers to be compared (e.g. Deheane & Akhavein, 1995; Dehaene, Deheane-Lambertz &

Cohen, 1998; Moyer & Landauer, 1967; Temple & Posner, 1998). Similarly, speed of

processing a symbolic number depends on its numerical distance from a covertly presented,

antecedent numerical prime (e.g. Van Opstal, Gevers, De Moor, & Verguts, 2008). Finally,

in adults and older children, overlapping parietal brain regions are activated during

processing of number in both symbolic and non-symbolic number formats, and these regions
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show similar release from adaptation to numerical changes independent of the format of

presentation (symbolic or non-symbolic) (see Piazza et al., 2007; Piazza, 2010 or Dehaene et

al., 2003 for reviews).

Second, individual differences in ANS acuity correlate with mathematics achievement

scores (e.g. Bugden & Ansari, 2011; DeWind & Brannon, 2012; Halberda, Mazzocco, &

Feigenson, 2008; Libertus, Feigenson, & Halberda, 2011; Libertus, Odic, & Halberda, in

press; Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Budgen & Ansari, 2011;

Lourenco, Bonny, Fernandez, & Rao, 2012; Gilmore, McCarthy, & Spelke, 2010; but see

Lyons & Beilock, 2011). Several studies show concurrent or retrospective correlations

between ANS acuity and mathematics achievement scores (e.g. Halberda et al., 2008;

Libertus et al., 2011; in press; Lourenco et al., 2012). For example, individual differences in

the acuity of approximate, non-symbolic number comparisons, tested at 14 years, were

significantly associated with past mathematics achievement scores as far back as

kindergarten (Halberda, Mazzocco & Feigenson, 2008). In these correlational studies, it is

unclear whether individual differences in ANS acuity play a causal role in creating

individual differences in mathematics development, whether symbolic mathematics

development causes changes in ANS acuity (e.g. Piazza, Pica, Izard, Spelke, & Dehaene, in

press), or whether a third, mediating factor, such as differences in the facility of operations

on number symbols (e.g. Lyons & Beilock, 2011) or differences in aspects of executive

function (e.g., Gilmore, Attridge, Clayton, Cragg, Johnson, Marlow, Simms, & Inglis, 2013;

Fuhs & McNeil, 2013) explain the relationship. Other studies show that individual

differences in ANS acuity predict future mathematics achievement even after controlling for

variables like general intelligence, verbal abilities, and age (e.g. Gilmore, McCarthy, &

Spelke, 2010; Libertus, Feigenson, & Halberda, 2013; Mazzocco, Feigenson, & Halberda,

2011) and even when non-symbolic numerical processing is measured in infancy (Starr,

Libertus, & Brannon, in press). These studies, however, do not show that individual

differences in ANS acuity cause the later changes in mathematics performance, because both

the earlier differences in ANS acuity and the later differences in school mathematics

learning could depend on one or more additional common factors.

Third, recent work suggests that practice with or training of the ANS, either alone or

together with training of symbolic numbers, leads to gains in symbolic mathematics

performance (Park & Brannon, 2013; Räsänen, Salminen, Wilson, Aunio, & Dehaene, 2009;

Wilson, Dehaene, Dubois, & Fayol, 2009; Wilson, Dehaene, Pinel, Revkin, Cohen, &

Cohen, 2006; Wilson, Revkin, Cohen, Cohen, & Dehaene, 2006). One line of work showed

that children who practiced a variety of symbolic number skills related to the ANS,

including games involving approximate numerical comparisons, verbal counting, and

mapping numbers to space, showed improvement on symbolic number tasks (Räsänen et al.,

2009; Wilson et al., 2006a, 2006b, 2009). From this work, however, it is unclear which

aspects of the training--targeted practice with the ANS, explicit practice mapping the ANS

to symbols, symbolic number practice alone, or something else--contributed to the observed

gains. More recently, Park and Brannon (2013) showed that several days of training on a

non-symbolic approximate numerical addition task led to improvements in ANS acuity and

symbolic mathematics performance in adults. Individual differences in ANS acuity change,

although modest, correlated with individual differences in change on the symbolic
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arithmetic measures. Similar improvements were not seen in control groups with no training

task, in a non-numerical, factual knowledge-training task, or in adults who practiced a

symbolic number ordering task. These results provide the strongest evidence to date of a

causal and specialized relationship between the ANS and symbolic mathematics. However,

it is unclear whether such training depends on a mature mapping between the symbolic

number system and the ANS or whether such training would also improve symbolic

mathematics in children who are still acquiring mathematics skill and ANS precision. It is

also unclear whether engagement of the ANS, the cognitive operations involved (including

comparison and addition), magnitude representations in general, or something else

contributed to the improvements in symbolic arithmetic.

1.3 Theories of the relationship between the ANS and mathematics

Several theories have been proposed to explain the link between the ANS and symbolic

mathematics. One view is that symbolic mathematics depends specifically on the ANS (e.g.

Barth et al., 2005; 2006; 2008; Dehaene, 1997; Gilmore et al., 2010; Nieder & Dehaene,

2009; Park & Brannon, 2013). In addition to the correlational studies and training studies

cited above, further research consistent with this position comes from neuropsychological

and trans-cranial magnetic stimulation research showing that damage or impairment of

parietal brain regions thought to underlie the ANS alters the ability to performance symbolic

numerical computations (e.g. Cappelletti, Barth, Fregni, Spelke, & Pascual-Leone, 2007; see

Dehaene, Piazza, Pinel, & Cohen, 2003 for a review). Similarly, individuals with

dyscalculia, a mathematics-specific learning disability, also show poor ANS acuity (e.g.

Butterworth, 2010; Piazza, Facoetti, Trussardi, Berteletti, Conte, Lucangeli, Dehaene, &

Zorzi, 2010; Price, Hollaway, Rasanen, Vesterinen, & Ansari, 2007).

Alternatively, the relationship between performance on tasks involving the ANS and on tests

of symbolic mathematics may reflect a broader underlying relationship between symbolic

mathematics and magnitude representations (see Lourenco et al., 2012). On this view, a

generalized magnitude system underlies the representation of all magnitudes regardless of

dimension (physical size, number, duration, etc.) (for reviews see Walsh, 2003 or Lourenco

& Longo, 2011). The hypothesis of a generalized magnitude system is supported by

evidence showing overlap at the behavioral, cortical, and neuronal level between magnitude

domains (e.g. Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003; Henik & Tzelgov, 1982;

Lourenco & Longo, 2010; Lourenco & Longo, 2011; Tudusciuc & Nieder, 2007). Thus,

individual differences in the generalized magnitude system (which includes number), rather

than the ANS specifically, may be linked with individual differences in symbolic

mathematics. Some evidence for this position comes from research with children showing

that spatial magnitudes promote earlier understanding of higher numerical concepts (e.g.

Mix et al., 1999; Gunderson, Ramirez, Beilock, & Levine, 2012). Other evidence with adults

shows individual differences in both discrimination of spatial extent and discrimination of

number correlate with higher mathematics performance (Lourenco, Bonny, Fernandez, &

Rao, 2012). However, further analysis of these results revealed that differences in spatial

discrimination were uniquely associated with performance in the domain of geometry,

whereas differences in numerical discrimination were uniquely associated with performance
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of symbolic arithmetic, suggesting a more specific possible role for the ANS in

mathematical reasoning (Lourenco et al., 2012).

On a third family of views, the relationship between the symbolic and non-symbolic number

is mediated by other general cognitive operations or abilities common to both tasks (see

Gilmore, Attridge, Clayton, Cragg, Johnson, Marlow, Simms, & Inglis, 2013; Lyons &

Beilock, 2009, 2011; Hollaway & Ansari, 2008; Fuhs & McNeil, 2013). Several recent

studies, for example, provide evidence that the relationship between number comparison and

mathematics achievement could be explained by variation in general inhibitory ability,

rather than ANS acuity (Fuhs & McNeil, 2013; Gilmore et al., 2013). Other studies have

found that domain-general cognitive operations, like the ability to compare one quantity to

another, account for a significant portion of individual variation on non-symbolic number

tasks (Hollaway & Ansari, 2008). In one study, for example, the relationship between

performance on a symbolic and a non-symbolic numerical task was mediated by symbol-

ordering operations (Lyons & Beilock, 2009). These studies suggest that the relationship

between the ANS and mathematics may be mediated by more general-purpose cognitive

operations, such as ordering, comparison, or addition, common to both symbolic and non-

symbolic tasks, or more domain general cognitive abilities such as inhibitory or executive

control.

In sum, previous work shows clear correlations between performance on tasks that involve

the ANS and symbolic mathematics performance (e.g. Gilmore et al., 2010; Halberda et al.,

2008; Libertus et al., 2011; Lourenco et al., 2012) and some evidence of a causal

relationship between ANS training and symbolic mathematics performance in adults (Park

& Brannon, 2013). However, the mechanisms responsible for this relationship remain

unclear and are highly debated. Furthermore, it is unclear from previous research if symbolic

mathematics is dependent on the ANS in children, without years of associations between the

symbolic and non-symbolic systems. We addressed these questions by assigning children to

participate in one of several training conditions, each aimed at engaging a particular

mechanism hypothesized to explain the relationship between the ANS and mathematics, and

then subsequently tested the groups on exact, symbolic arithmetic performance. If the ANS

contributes to the cognitive mechanisms responsible for symbolic arithmetic in children,

then engaging the ANS may enhance children's subsequent symbolic arithmetic

performance.

2. Experiment 1

Children participated in one of four training conditions: a non-symbolic numerical addition

task, a line-length (or area) addition task, a non-symbolic number comparison task, or a

brightness comparison task (see Figure 1). Each condition targeted the engagement of a

particular non-symbolic magnitude skill hypothesized to play a role in symbolic

mathematics. In all these conditions, children practiced adding or comparing approximate,

non-symbolic magnitudes. During and immediately after the training task, children were

asked to complete a symbolic addition test worksheet to assess the effects of the training

task on the speed and accuracy of symbolic mathematics. Finally, at the end of the

experiment, children's approximate numerical acuity was measured (Halberda et al., 2008).
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2.1.1 Non-symbolic numerical addition

One condition involved numerical addition of non-symbolic dot arrays (see Barth et al.,

2005; 2006; Gilmore et al., 2010). In this condition, children were asked to estimate the

numerical sum of two sequentially presented arrays of dots (addends) and judge whether an

outcome array was more or less numerous than the actual sum (see Figure 1a). Previous

research has shown that performance on this task correlates with mathematics achievement

scores in young elementary school children (see Gilmore, McCarthy, & Spelke, 2010).

Furthermore, a recent training experiment with adults showed that practice with this task

improved symbolic arithmetic (Park & Brannon, 2013). In addition to requiring the

engagement of the ANS, this task may require transformational operations at the core of

symbolic arithmetic concepts, making it an ideal task to engage cognitive mechanisms in

common with those used for symbolic mathematics (Barth et al., 2005; Gilmore et al.,

2010). If the ANS and/or the arithmetic operations involved in non-symbolic addition

overlap with those used in symbolic arithmetic, then we might observe enhanced

performance on symbolic addition in children who first practice non-symbolic addition

compared to children who practice tasks involving other quantities or other operations.

2.1.2 Line length addition

The second condition involved addition of line lengths (i.e. spatial extent). This condition

was equal to the non-symbolic numerical condition in terms of timing, difficulty, and

cognitive demands, but involved the addition of spatial magnitudes rather than numerical

magnitudes (see Figure 1b). This condition was motivated by the generalized magnitude

system hypothesis (Lourenco & Longo, 2001; Walsh, 2003), as well as by recent findings of

a relationship between spatial magnitude representation and achievement in mathematics

(Lourenco et al., 2012). If generalized magnitude representations drive the link between

symbolic mathematics and performance on tasks involving the ANS, then practice adding

lines (non-symbolic addition of lengths) may enhance subsequent symbolic arithmetic as

much as practice adding arrays of dots (non-symbolic addition of numbers).

2.1.3 Non-symbolic numerical comparison

A third condition involved approximate, non-symbolic numerical comparison. In this

condition, subjects saw two sequentially presented arrays of dots and had to judge whether

the second array was more or less numerous than the first (see Figure 1c). As reviewed

above, emerging work suggests that the ability to compare arrays of objects on the basis of

number correlates with mathematics achievement scores in a variety of contexts (e.g.

Budgen & Ansari, 2011; Halberda et al., 2008; Lourenco et al., 2012). If the ANS alone

plays a functional role in symbolic arithmetic, rather than co-activation of the ANS and

cognitive arithmetic computations as in the non-symbolic numerical addition condition, then

performance on symbolic arithmetic problems may be enhanced in children who previously

engaged the ANS through comparison or addition, relative to children who receive other the

non-numerical training conditions.
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2.1.4 Brightness comparison

A fourth condition involved comparing the brightness magnitude of two objects (see Figure

1d). Cognitive and neural overlap between representations of numerical magnitudes and

brightness magnitudes has been highly debated (see Walsh, 2003; Lourenco & Longo,

2011). Some evidence suggests brightness to be included with space and number in the

generalized magnitude system (e.g. Cohen Kadosh & Henik, 2006), whereas other evidence

suggests it may be distinct (e.g. Pinel, Piazza, Le Bihan, & Dehaene, 2004). If previously

observed associations between the ANS and symbolic mathematics development are due to

commonalities in processing and comparing magnitudes in general, then no differences

should be observed in symbolic arithmetic performance between the children in any of the

training conditions. On the other hand, if approximate number or length representations play

a functional role in symbolic arithmetic, then better performance may be seen in conditions

where the ANS or length is engaged than in cases where brightness is engaged.

2.2 Material and Methods

2.2.1. Participants—Participants were 96 first grade children from the greater Boston

area (44 females, M age = 6 years 327 days, SD = 79 days, range: 6 years 150 days - 7 years

237 days). Twenty-four children were assigned to each condition. An additional 21 children

were eliminated from the study for failure to complete all the training sets and at least one

test set of the experiment (16), not following directions regarding the sequence of tasks (1),

or because of an experimenter error in the procedure (4). All children and their parents gave

written consent before participation in the study and were offered $5 for travel

reimbursement and a small appreciation gift (toy or t-shirt).

2.2.2. Displays and tasks—Training games were computer-animated, non-symbolic

addition or comparison problems (Barth et al., 2005; Barth et al., 2006; McCrink & Wynn,

2004). All problems started with a rectangular occulder in the middle of the screen (see

Figure 1). For the non-symbolic numerical addition condition, one dot array appeared to the

left of the occluder (addend 1) and moved quickly behind it, a second dot array (addend 2)

appeared to the right of the occluder and moved similarly behind it, and then the occluder

disappeared to reveal a collection of dots (foil) that was numerically larger or smaller than

the sum (test) (see Figure 1a). Children indicated by button-press whether the test array

(foil) was more or less numerous than the total number of items that had moved behind the

occulder (sum). Numerical arrays were controlled for intensive and extensive parameters

(see S2 for details). In addition, we implemented a number of design features shown by

other researchers to discourage symbolic number strategies (Barth et al., 2008; Ballinger &

Barth, 2007; Gilmore et al., 2007). Specifically, we used relatively large addends (7-40 dots,

average 17 dots) that were unable to be enumerated exactly under the time constraints of the

experiment and whose sums were unlikely to be previously memorized by the child

participants (average sum/outcome = 34 dots; range for sum/outcomes = 16-56 dots)

(Details regarding timing of events can be found in Figure 1 and supplementary materials

S2).

For the line addition condition, one line segment appeared to the left of the occluder (addend

1) and moved quickly behind it, another line segment (addend 2) appeared to the right of the
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occluder and moved similarly behind it, and then the occluder disappeared to reveal the third

line segment (test) that was taller or shorter than the sum of the first two segments (see

Figure 1b). Children indicated by button-press whether the test segment was more or less tall

than the sum of the first two segments that had moved behind the occulder. The ratio of sum

to foil and the timing of events were held constant with the numerical addition condition.

For the number comparison condition, one dot array appeared either to the left or right of the

occluder and moved behind it. After a delay, the occluder was removed to reveal a test array

(see Figure 1c and S1 for details). Children were asked to judge whether the test array was

more or less numerous than the initial array (see Figure 1c). The numerical values for the

first and second array matched those used for the sum and foil in the numerical addition

condition. Timing of dot array presence, movement, and occlusion was equal to that of the

numerical addition training condition.

For the brightness comparison condition, an oval-shaped form appeared behind and to the

sides of the occluder, shrank to fit behind the occluder first from the left and then from the

right, and then the occluder disappeared to reveal the form in the shape of a circle at a

different level of brightness (see Figure 1d). Children indicated by button-press whether the

circle had increased or decreased in brightness. Trial timing and total trial duration was

similar to the numerical addition and line length addition conditions.

Training tasks were conducted on a laptop computer and programmed using E-prime

software (Psychological Software Tools, Pittsburgh, PA), which recorded reaction time and

accuracy. The animated problems were presented in the context of game to maintain

children's attention (see S2 for more details on the game context). The experimenter was not

blind to condition, as she had to instruct children on the introductory trials and continually

monitor progress. After each problem a “bing” sound indicated a correct answer and “bong”

sound indicated an incorrect answer, the meaning of which was described in the initial

practice problems.

Symbolic arithmetic test problems were presented on 4 sheets of paper and completed with a

pencil. The time to complete each page of symbolic addition problems was recorded by the

experimenter with a stopwatch, and accuracy was calculated after the testing session by

assigning 1 point for each correct answer. Reliability of the experimenter's timing

measurements were confirmed in a random sample of 16 subjects by an independent coder

using offline video recordings of the sessions (r = .99, p < .001).

Finally, after training and test problems were completed, the ANS acuity of each participant

was assessed by means of an approximate number comparison task using the Panamath

computer game (see Halberda, Mazzocco, & Feigenson, 2008 for details). In this task,

children saw a collection of yellow dots, associated with a yellow cartoon character, and a

collection of blue dots, associated with a blue cartoon character, simultaneously presented

on a computer screen for 2 seconds. Children were asked to choose the more numerous array

(blue or yellow) by pressing a corresponding colored button (blue or yellow). Arrays ranged

from 4-15 dots and included numerical comparisons at 6:5, 4:3, 3:2, and 2:1 ratios. Based on

accuracy at each ratio, the Panamath software generated a psychophysical model of
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performance and an estimate of numerical acuity (a Weber fraction). Details regarding the

freely available software, the task, or the calculation of a Weber fraction can be found at

www.panamath.org.

2.2.3. Design and Procedure—Participants were assigned quasi-randomly to

experimental conditions, equating for gender and age, and, as best as possible for time of

testing relative to the school year (see S2 for details). Over the experiment, children

completed 2 sets of training trials (60 problems total), 4 sets of symbolic addition test

problems (40 problems total), and an approximate, non-symbolic numerical acuity task

(actual problems appear in supplementary materials S1).

Symbolic arithmetic problems were interleaved with the experimental task in an attempt to

ensure participants gave equal care to all problems. After completing 8 practice trials, all

participants were given the first 50 trials of their assigned non-symbolic training task,

followed by 20 symbolic arithmetic test problems presented on two sheets of paper: 10 very

easy problems on the first sheet and 10 moderately easy problems on the second sheet. After

a brief break (if desired), participants received 10 more training trials, followed by 20 more

exact symbolic addition problems: 10 somewhat more difficult problems on the third sheet

and 10 moderately difficult problems on the last sheet (see S1 for all problems used).

Finally, children completed 60 trials of the test of approximate numerical acuity.

2.2.4. Analysis—ANOVAs were used to compare the different training groups on age and

approximate numerical acuity. Training task performance was analyzed by separate mixed-

factor ANOVAs on average reaction time and accuracy with the within-subjects factors of

Ratio (2 levels), Time (first half vs. second half), and the between-subjects factor of

Training Condition (4 levels: numerical addition, line addition, number comparison,

brightness comparison). Test performance (speed and accuracy) was computed by averaging

responses across completed test sets. A majority of children, 71, completed all four test

problem sets, 16 children completed 3 out of 4 test problem sets, 7 children completed 2 out

of 4 problem sets, and 2 children completed only 1 problem set. Missing problem sets

appeared to be distributed equally among experimental conditions (see S2 for details). Test

performance was analyzed using ANOVAs on average time to complete test sets (speed) and

accuracy, with the between-subjects factor of Training Condition (4 levels). Main effects or

interactions with Training Condition were followed up with post-hoc pairwise comparisons

using t-tests.

2.3 Results

2.3.1. Participant factors—The children in the different conditions did not differ in

average age (F (3, 95) = 1.697, p = .173: numerical addition, M= 6 years, 311 days, SD = 73

days; line addition M = 6 years 311 days, SD = 77 days; numerical comparison M = 6 years

355 days, SD = 67 days; brightness comparison M = 6 years, 332 days, SD = 94 days) or

approximate numerical acuity (F (3, 95) = 0.766, p = .516: numerical addition M = .17, SD

= .11; line addition M = .21, SD = .12; numerical comparison M = .18, SD = .08; brightness

comparison M = .17 , SD = .08).
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2.3.2 Training task performance—The analysis of the average reaction time during

each training task revealed main effects of Ratio (F (1, 92)= 4.197, p <. 05, ηp
2 = .044),

Time (F (1, 92) = 19.385, p < .001, ηp
2 = .174), and Experimental Condition (F (3, 92)=

7.222, p <. 001, ηp
2 =. 191), and an interaction between Ratio and Time (F (1, 92) = 5.078, p

< .05, ηp
2 = .052). Regardless of condition, subjects were faster on the second half compared

to the first half of the training trials (F (1, 95) = 19.297, p < .001) (see Figure 2). Further

analysis of the interaction between Ratio and Time revealed ratio differences averaged

across all conditions emerged only on the second half of training problems (t (95) = −3.054,

p < .005), with longer average response times to problems involving close ratios compared

to problems involving far ratios (see Figure 3). Further post hoc analysis of the main effect

of Training Condition on speed revealed significantly faster performance on the brightness

comparison task compared to all other tasks (brightness vs. numerical addition: t (46) =

−4.750, p < .001; brightness vs. line addition: t (46) = −2.919, p < .01; brightness vs. number

comparison: t (46) = −3.312, p < .005) (numerical addition: M = 1951 msec., SD = 284

msec., Range = 1416-2542 msec.; line addition: M = 1826 msec., SD 346 msec., 1140-2764

msec.; number comparison: M = 1835 msec., SD = 294 msec., Range = 1111-2313 msec.;

brightness comparison: M = 1555 msec., SD = 292, Range = 895-2040 msec.) (see Figure

2). No other significant differences were seen in speed of the different tasks (all other ps > .

17).

On the measure of training task accuracy, the analysis revealed main effects of Ratio (F (1,

92)= 57.859, p < .001, ηp
2 = .386) and Training Condition (F (3, 92) = 14.764, p <. 001, ηp

2

=. 325) (Figure 2). No main effects of Time or interactions between factors were observed

(see Figure 2). Participants were less accurate on problems involving closer ratios,

regardless of the experimental task. In addition, post hoc pairwise comparisons of accuracy

revealed that subjects in the brightness condition were more accurate than all other groups

(brightness vs. numerical addition: t (46) = 4.546, p < .001; brightness vs. line addition: t

(46) = 7.530, p < .001; brightness vs. number comparison: t (46) = 5.723, p < .001), and the

numerical comparison group was more accurate than the line addition group (line addition

vs. number comparison: t (46) = −2.436, p < .05) (see Figure 2). However, neither the line

addition group nor the numerical comparison group differed significantly from the

numerical addition group in accuracy (numerical addition vs. line addition: t (46) = 1.596, p

= .117; numerical addition vs. numerical comparison: t (46) = −.440, p = .662).

In sum, the analysis of performance on the four tasks of numerical addition, line length

addition, numerical comparison, and brightness comparison suggests that subjects improved

in speed in a ratio-dependent manner over the course of each task, independent of the actual

training condition. Furthermore, those completing the brightness comparison task performed

better than those in the other groups: they were both faster and more accurate. On the other

hand, no differences on any of the performance measures were observed between the

numerical addition group and the numerical comparison group or between the numerical

addition group and the line-length addition group.

2.3.3. Exact symbolic arithmetic test performance—The analysis of the average

time taken by children to complete each page of the written arithmetic test problems

revealed a main effect of Training Condition (F (3,92) = 3.366, p < .05) (see Figure 4).
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Pairwise post hoc analysis revealed that children in the numerical addition and numerical

comparison conditions completed symbolic arithmetic problems faster than children in the

non-numerical conditions (numerical addition vs. brightness comparison: t (46) = −2.176, p

< .05; numerical addition vs. line addition: t (46) = −2.030, p < .05; brightness vs. number

comparison: t (46) = 2.527, p < .05; line addition vs. number comparison: t (46) = 2.327, p

< .05) (see Figure 4). No differences in speed on symbolic arithmetic tests were observed

between non-numerical conditions (brightness comparison vs. line addition: t (46) = .049, p

= .961) or between numerical conditions (numerical addition vs. number comparison: t (46)

= .032, p = .975) (Figure 4).

The analysis of performance accuracy on the symbolic arithmetic test revealed a marginally

significant main effect of Training Condition (F (3,92) = 2.598, p = .057). However, post

hoc pairwise comparisons revealed that the only pair of groups showing a difference in

accuracy was the line-length addition group and the numerical comparison group pair, with

the numerical comparison group subsequently performing more accurately on the symbolic

arithmetic problems (t (46) = −2.576, p < .05) (see Figure 4).

2.3.4. Further analyses—An alternative account of the differing effects of the different

training conditions on arithmetic tests appeals not to their differences in content but the

extent to which they presented problems that were challenging or engaging. Two aspects of

the findings presented above cast doubt on such an account. First, differences in training

task performance did not consistently predict the effects of the different training conditions

on subsequent test problems. For example, reaction time and accuracy on training problems

were not different from each other in the numerical addition and line-length addition

conditions, yet those in the numerical addition condition performed significantly faster on

subsequent test problems compared to those in the line-length addition condition. Second,

no differences were observed in the extent of learning on the different training tasks (i.e., the

change in performance from the first half to the second half of the session), suggesting that

participants where equally engaged or attentive in their given task. Nevertheless, additional

analyses were undertaken to address this alternative account further. We tested for the

practice effect after controlling for effects of training task reaction time and accuracy. The

critical main effect of Training Condition on speed remained significant even after effects of

training task reaction time (F (3, 91) = 8.680, p < .001) and accuracy (F (3, 91) = 4.285, p

< .01) were accounted for as covariates. Thus, Training Condition had an effect on the time

it took participants to complete exact symbolic addition problems that cannot be explained

by differences in performance, attention to, or engagement with the different training tasks.

2.4. Discussion

The findings of Experiment 1 provide evidence that the ANS plays a functional role in

symbolic arithmetic. Children who practiced either a non-symbolic approximate numerical

comparison or numerical addition task were faster to complete subsequent exact, symbolic

addition test problems than were children who performed comparable tasks involving non-

numerical magnitudes (length, brightness). While one of these training tasks was easier than

the others (brightness comparison), our results do not appear to be due to differences in the

general difficulty of the training tasks in which the different groups of children engaged,
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because differential test performance was seen between numerical and non-numerical tasks

of equal difficulty (e.g. line-length addition and numerical addition), and because entering

performance on the four training tasks as a covariate over all tasks did not eliminate the

critical main effect of training condition. Our results also do not appear to depend on

differential levels of learning during the training phase, as we observed that participants

improved in speed over time on the initial experimental task regardless of condition.

We also observed two established signatures of the ANS in performance on the two training

tasks involving numerical magnitudes. First, reaction time was a function of the ratio

between the two numbers to be compared (sum vs. foil or first array vs. second array) (Barth

et al., 2005; 2008; Izard & Dehaene, 2008; Pica et al., 2004). Second, no significant

differences were observed in performance between the numerical comparison and the

numerical addition tasks (Barth et al., 2007; Gilmore et al., 2007). These results provide

strong evidence that subjects used the ANS to solve experimental tasks involving non-

symbolic numerical magnitude.

Our experimental design and analyses provide evidence against several alternative

hypotheses related to the relationship between the ANS and symbolic arithmetic. First, is

does not appear from our data that a generalized magnitude system (Walsh, 2003), rather

than a number-specific system (Dehaene, 1997), explains the relationship between the ANS

and symbolic arithmetic (Lourenco et al., 2012), as the experimental conditions that

involved non-numerical magnitudes did not lead to better subsequent performance compared

to the experimental conditions involving non-symbolic numerical magnitudes. Second, it

does not appear that common cognitive operations inherent in symbolic and non-symbolic

tasks (Lyons & Beilock, 2009; Hollaway & Ansari, 2008), rather than the ANS in particular,

are responsible for correlations between the ANS and symbolic mathematics, as participants

showed enhanced performance on symbolic arithmetic after practicing comparison or

addition of numerical magnitudes but not after practicing tasks involving the same cognitive

operations (ordering, comparison, and/or addition) over non-numerical magnitudes. In a

similar vein, a deflationary account that our results can be explained as an easier arithmetic

exercise “warming-up” or priming more difficult symbolic arithmetic (e.g. Fuchs et al., in

press) does not hold, as practicing non-symbolic numerical comparison worked equally as

well as practicing addition to improve subsequent symbolic arithmetic.

Our findings also provide some evidence against the claim that the inhibitory demands of

tasks involving the ANS drive correlations with symbolic mathematics (Fuhs & McNeil,

2013; Gilmore et al., 2013). It is possible, as some have argued, that non-symbolic

numerical tasks engage executive function (EF) to a greater extent than do non-symbolic

spatial or brightness tasks, because they require children to inhibit responses to continuous

variables that are anti-correlated with number on some trials in order to respond correctly.

Under this view, greater commonalities in EF engagement between the numerical training

tasks and the symbolic arithmetic test, rather than specific overlap in the ANS and symbolic

mathematics, might explain better subsequent symbolic arithmetic performance in the

numerical training groups compared to the non-numerical training groups. For several

reasons, this is not likely the case in our dataset. First, unlike previous studies reporting that

the relationship between the ANS and symbolic mathematics is mediated by inhibitory
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control (Fuhs & McNeil, 2013; Gilmore et al., 2013), we used stimulus controls where

continuous properties could not be reliably used to solve the tasks because they were not

systematically related to the answer. The non-numerical continuous properties of each

numerical array within each trial and between trials in our study were randomly chosen, in

contrast to previous work where non-numerical properties of each numerical arrays within a

problem were reliability and systematically related to the answer on a given trial (either all

positively or all negatively correlated with number, although the direction of the relationship

was manipulated across problems). Second, if the numerical tasks required substantially

more inhibitory processes than other non-numerical tasks, this would likely be reflected in

behavioral performance. However, the approximate numerical addition task was no harder

than the line addition task, suggesting no substantial differences in the inhibitory control

required, yet significant differences were observed in subsequent symbolic addition test

performance. Third, exercising executive function appears to deplete rather than enhance

performance on subsequent tasks also involving EF (Baumeister, Bratslavsky, Muraven, &

Tice, 1998; Powell & Carey, under review; Schmeichel, 2007; Hagger, Wood, Stiff, &

Chatzisarantis, 2010; Hofmann, Schmeichel, & Baddeley, 2012). Given the temporal

structure of our experiment, with ANS training and symbolic mathematics testing occurring

in immediate succession, a common role for EF in both tasks would be predicted to lead to

impairment rather than to enhancement of symbolic arithmetic performance.

Some may also argue that visuo-spatial working memory is differentially engaged between

numerical and non-numerical training tasks and could mediate the observed relationship

between approximate numerical training tasks and symbolic math performance. Most of the

arguments provided against the idea of inhibitory control mediating the effect, apply equally

well against a differential working memory account. Specifically, substantial differences in

working memory between training conditions should have been evident in training task

performance, but equal performance was observed between the numerical conditions and the

non-numerical line length addition condition, for example. Also, contrary to the obtained

test results, it is likely that a training task that taxed the working memory system would lead

to worse rather than better performance on a subsequent task. Finally, the numerical addition

task clearly should tax working memory more than the numerical comparison task, yet these

two tasks had equal effects on children's subsequent symbolic arithmetic performance.

Nevertheless, further research should investigate the role of EF and working memory more

directly in children's ANS practice and symbolic arithmetic performance.

Finally, our results run contrary to the suggestion that non-symbolic numerical addition is a

better task for improving symbolic mathematics than numerical comparison (Gilmore et al.,

2010; Park & Brannon, 2013), at least under conditions of brief exercise and immediate

testing. In our experiment, practice of numerical comparison and numerical addition

produced similar effects.

The scope of the observed practice effect, however, remains unclear. One possibility is that

the practice effect is specific to the domain of number or mathematics. Alternatively,

engaging the ANS may have more general effects on motivation, reasoning, or cognition

that would translate to an entirely different cognitive task outside the domain of number or
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magnitude. In a second experiment, we tested this hypothesis by extending the rationale and

method of Experiment 1 to include a cognitive test in the domain of reading.

3. Experiment 2

To investigate whether engagement of the ANS enhances subsequent cognitive performance

more generally, we compared the effects of one numerical and one non-numerical training

task from Experiment 1 on children's performance within and outside the domain of

mathematics. Specifically, we developed a new test of exact symbolic addition and a reading

test involving sentence completion. Like the addition test, the reading test was presented on

paper and required that children evaluate a statement and write in a missing item to complete

the statement. In contrast to the addition test, the statement consisted not of a mathematical

equation but of a sentence, and the item to be supplied was not a number (to be written in

Arabic notation) but a word. Crucially, the sentence completion task did not contain

magnitude judgments or operations thought common to symbolic arithmetic. If the number

practice effect observed in the above studies is specific to mathematics, then exercise of the

non-symbolic approximate addition task should enhance performance on the symbolic

arithmetic problems but not on the sentence completion problems. On the other hand, if

more general motivational or cognitive factors explain the effect observed in Experiment 1,

then improved performance might be observed on both the symbolic mathematics problems

and the sentence completion problems in the group of children who practiced numerical

addition, relative to children who practiced brightness comparison.

A further motivation for Experiment 2 was to investigate whether practicing non-symbolic

numerical addition could yield benefits in accuracy as well as speed. In Experiment 1, we

presented children with relatively easy symbolic addition problems that generated little

variability in accuracy. In Experiment 2, in contrast, we presented children with more

difficult arithmetic problems in an attempt to generate more variability in accuracy. We

reasoned that if practicing non-symbolic addition can enhance accuracy as well as speed,

then these changes in method might lead to an effect on accuracy in addition to, or instead

of, the effect on speed.

3.1. Materials and Methods

3.1.1. Participants—Forty-eight first grade children (24 females, M age = 7 years 200

days, SD = 93 days) were included in the final dataset. An additional 12 children

participated in the study but were excluded from analysis for not completing the training

session (7), reported developmental/language delays (2), not being a native English speaker

(1), taking an extremely long time to complete the study (1), and because age did not allow

appropriate counterbalancing between groups (1).

3.1.2. Procedure & Design—The interleaved experimental-test procedure was modified

from that of Experiment 1 to obtain a more consistent amount of test data across all subjects.

Over the course of the entire experiment, children completed 60 training problems, 20

symbolic arithmetic problems, and 20 sentence completion problems in an interleaved

fashion. Specifically, each participant performed 24 trials of their assigned training task

(either non-symbolic approximate addition or brightness comparison) and was then given 10
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sentence completion problems or 10 exact, symbolic addition problems. Children then

received 12 more trials of their assigned training task followed by 10 more symbolic

addition or 10 more sentence completion problems (see S1 for actual problems). The same

procedure (12 training problems followed by 10 test problems) was repeated twice more

except those who completed mathematics problems during the first half were given sentence

completion problems during this second block of testing and visa versa. The order of

symbolic arithmetic and sentence test problems was counterbalanced across children and

gender. With these changes, all children who completed the training trials (requisite for

inclusion of data in Experiment 1) also completed all the test trials. Thus, there were no

missing test data in this experiment.

3.1.3. Displays and tasks—Non-symbolic training problems were a randomly chosen

subset of those used in Experiment 1 for the non-symbolic numerical addition and brightness

comparison conditions, and included equal numbers of close and far ratios (see Figure 1 &

S1). The exact, symbolic addition test items consisted of new and old problems from the

previous experiments (see S1). Critically, we only reused test problems from previous test

sets that were challenging to children, as evidenced by their error rates: only problems from

Experiment 1 that had been incorrectly answered by at least one child were included. New

problems were created to be equal or more difficult than the old problems. Sentence

completion problems (see S1) were developed from basic vocabulary word lists for 1st-4th

grade. Each sentence included a blank with the first letter of a word that would serve to form

a meaningful, complete sentence. Children's task was to use the context of the sentence so as

to supply a word, beginning with the given first letter, which created a meaningful sentence.

Correctly answered blanks filled with a vocabulary word that created a meaningful sentence

were scored as 1 (see S2 for accuracy scoring details). Scoring procedures were the same as

those in Experiment 1 for non-symbolic training and symbolic test problems. Reliability

between the original experimenter's speed measurements on the test sets and an independent

coder, calculated for 8 randomly chosen subjects, was high (r = .999, p < .001). Inferential

analyses were the same as in Experiment 1 except that the factor of Experimental Condition

only included two levels (non-symbolic numerical addition/brightness comparison) and the

analysis of symbolic test performance included an additional within-subjects factor of Test

Type (symbolic addition vs. sentence completion).

3.2. Results

3.2.1. Participant characteristics—Children in the numerical addition and brightness

comparison conditions did not differ in mean age (non-symbolic addition: M age = 7 years

204 days, SD = 88 days; brightness: M age = 7 years 196 days, SD = 100 days)(F (1, 47) = .

089, p = .766) or in approximate number acuity (non-symbolic addition: M= .18, SD = .07;

brightness comparison task: M= .17, SD =. 07) (F (1, 46)= .092, p = .763).

3.2.2. Training task performance—Main effects of Ratio (F (1, 46) = 27.395, p < .001,

ηp
2 = .373), Time (F (1, 46) = 39.263, p < .001, ηp

2 = .460), and Training Condition (F (1,

46) = 42.916, p < .001, ηp
2 = .483), and an interaction between Time and Training Condition

(F (1, 46) = 16.892, p < .001, ηp
2 = .269) were observed on average reaction time (numerical

addition: M = 1883 msec., SD = 332 msec., Range = 1278-2516 msec.; brightness
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comparison: M = 1318 msec., SD = 261 msec., Range = 861-1913 msec.). Participants were

slower at answering problems involving close ratios. Participants in the brightness training

condition responded faster than those in the numerical addition condition. Post hoc analysis

revealed that the interaction between Training Condition and Time resulted from a larger

difference between the two training conditions during the first half of the training trials (F

(1, 46) = 72.811, p < .001) than during the second half of the training trials (F (1, 46) =

13.452, p < .005)(see Figure 5).

Main effects of Ratio (F (1, 46) = 58.255, p < .001, ηp
2 = .559), Time (F (1, 46) = 9.559, p

< .005, ηp
2 = .172), Training Condition (F (1, 46) = 40.443, p < .001, ηp

2 = .468), and an

interaction between Ratio and Training Condition (F (1, 46) = 6.915, p < .05, ηp
2 = .131) on

accuracy were observed (see Figure 5). Subjects were more accurate on the second half of

problems compared to the first half of problems regardless of task, suggesting a general

effect of practice in both conditions (Figure 5). Post hoc analysis revealed that participants

in the brightness condition were more accurate than those in the non-symbolic numerical

addition condition, participants were less accurate on closer ratio problems regardless of

condition, and the interaction resulted from a larger difference between training conditions

on the harder ratio problems (F (1, 46) = 37.318, p < .001) compared to the easier ratio

problems (F (1, 46) = 19.332, p < .001)

3.2.3. Symbolic addition and sentence completion test performance—The

analysis of test performance speed revealed a main effect of Test Type (F (1, 46) = 4.269, p

< .05, ηp
2 = .085)(see Figure 6). Sentence completion problem sets were completed faster

than symbolic addition problem sets. There was no main effect of Training Condition on the

speed of children's performance. The analysis of test performance accuracy revealed main

effects of Training Condition (F (1, 46) = 4.840, p < .05, ηp
2 = .095), and an interaction

between Test Type and Training Condition (F (1, 46) = 5.234, p < .05, ηp
2 = .102) (see

Figure 6). Post hoc independent samples t-tests revealed that the children who received the

non-symbolic, numerical addition task were more accurate on symbolic mathematics

problems than those who received the brightness comparison task (t (46) = −2.814, p < .01),

whereas there was no difference between the two groups on the test of sentence completion

test problems (t (46) = −.480, p = .633) (see Figure 6). Additional analyses revealed test

order had no main effect or interaction with Test Type or Training Condition on accuracy

(all ps > .39) (see S2 for analysis details).

3.2.4 Further analyses—An alternative account of the finding that children performed

more accurately on the symbolic mathematics test after practicing non-symbolic numerical

addition (Experiments 1 & 2) is that participants were engaging symbolic number

representations jointly with ANS representations in the numerical addition training task.

Thus, the symbolic number representations may have primed symbolic arithmetic, and the

role of the ANS representations may simply have been to activate number symbols. If this

account were correct, then one would expect that direct presentation of symbolic numbers

also would enhance subsequent symbolic addition performance. This prediction can be

tested by comparing children's performance on the second set of symbolic addition test

problems, relative to the first set of problems, in the children who were given the non-
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numerical training task of brightness comparison. Accordingly, we compared the

performance of children on the two sets of numerical addition problems in an analysis with

Test Set (1st or 2nd) and Training Condition (Numerical Addition vs. Brightness

Comparison). This analysis revealed a main effect of Test Set on speed and accuracy but no

interactions with Training Condition (speed: Test Set = F (1, 46) = 7.427, p < .01; Test Set X

Training Condition = F (1, 46) = .016, p > .90)(accuracy: Test Set = F (1, 46) = 21.454, p < .

001; Test Set X Training Condition = F (1, 46) = .265, p > .60). Examination of the means

for each test set for each training condition revealed that performance declined rather than

improved during the second set of test problems (see Figure 7), suggesting that engaging

symbolic arithmetic did not improve subsequent symbolic arithmetic under the brief

parameters of our experiment. These findings also suggest that the engagement of symbolic

number representations does not likely explain advantages in the training conditions

involving numerical magnitudes, relative to those involving non-numerical magnitudes. If

practicing the ANS task had enhanced children's symbolic arithmetic performance because it

led to activation of numerical symbols, then practicing the symbolic addition task also

should have produced such an enhancement.

3.3 Discussion—Children who first practiced a non-symbolic approximate addition task

subsequently performed more accurately on exact, symbolic addition problems than did

children who practiced a control task involving brightness magnitude comparison. Their

greater accuracy was achieved with no loss in speed. The benefits of ANS engagement were

limited to performance on problems in the domain of mathematics, as children trained on

non-symbolic addition performed more accurately only on the test of exact, symbolic

addition, not the sentence completion test. Thus, the observed effects are likely explained by

a specialized relationship between the ANS and symbolic mathematics, rather than by

mediating factors such as effects of practice on children's general motivation or cognitive

engagement, as such mechanisms would likely generalize to enhanced performance on

cognitive tasks more broadly (including the sentence completion task). Finally, it appears

that simply activating symbolic number representations in our brief paradigm is not

sufficient to prime better performance on subsequent symbolic addition, as the presentation

of symbolic numbers on the first symbolic addition test led to no enhancement of

performance on the second symbolic addition test. These findings suggest that the present

effects of the ANS on symbolic arithmetic do not simply depend on co-activation of

symbolic number representations.

4. General Discussion

Two experiments provide evidence that brief practice on a non-symbolic approximate

numerical task enhances the performance of 6-7 year old children on a subsequent test of

exact, symbolic arithmetic. The pattern of data obtained across the different conditions

indicates that these results are not due to engagement of a generalized magnitude system,

engagement of common cognitive operations (such as comparison or addition), or difficulty

differences between the training tasks. Rather, our data provide evidence that symbolic

arithmetic draws on at least some overlapping cognitive and/or neural structures used to

represent approximate number. The pattern of data obtained across two different test

conditions in Experiment 2, indicates that the enhancing effects of approximate number
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representations are limited to the domain of symbolic mathematics or number, as

comparable enhancements were not observed in children's performance of the sentence

completion task. This dissociation also provides evidence that participants who practiced

approximate number tasks were not simply more motivated, focused, or engaged than those

assigned to a training task involving other quantities or variables, and that numerical

comparisons did not prime general cognitive abilities to a greater extent than did other tasks.

Our data also argue against symbolic number representations underlying the observed effect.

First, based on observed performance, it appears that children used the ANS to solve the

non-symbolic addition and comparison training tasks. This claim is supported by evidence

of two well-established signatures of the ANS in our data: the ratio effect and the equality of

comparison and addition performance (Barth et al., 2005; 2008; Gilmore et al., 2007; Izard

& Dehaene, 2008; Pica et al., 2004). Children were slower and less accurate on problems

where the actual answer and outcome were closer in ratio compared to problems where the

ratio between answer and outcome were more distant. Children also showed equal

performance on numerical comparison and addition. In contrast, if exact symbolic

comparison and addition strategies had been used, numerical comparison should have been

easier than numerical addition, as the comparison involves only two numbers, not

combining two numbers to compare to a third. Moreover, no children were observed to use

verbal counting or called out verbal numbers during the task; if such strategies were being

used, they were being done covertly. Second, the design of the task employed established

procedures to discourage the use of symbolic numbers to answer the questions (see Ballinger

& Barth, 2007; Barth et al., 2006; 2008). We presented the numerical arrays too quickly to

be enumerated exactly (1 second) and we used large numbers (average sum/outcome = 34;

range for sum/outcomes = 16-56; average addend = 17; range for addends 7-40) to

discourage rapid identification, serial enumeration, or memorized answers to addition

problems. Third, previous work suggests that this type of task can be performed without

symbolic arithmetic knowledge (preschool children: Gilmore et al., 2007; monkeys: Cantlon

& Brannon, 2007) and the use of a symbolic number strategy does not facilitate performance

(e.g. Barth et al., 2008; Ballinger & Barth, 2007; Gilmore et al., 2007). Fourth, Park &

Brannon (2013) showed that training on a task involving ordering symbolic number does not

lead to as significant gains in symbolic arithmetic as a training task engaging the ANS.

Consistent with their findings, the participants in both conditions of Experiment 2 engaged

symbolic numbers during the first block of symbolic addition test problems, but this

engagement did not yield improvements on the second set of test problems. In fact, subjects

in Experiment 2 performed worse on the second set of symbolic addition problems,

regardless of training condition. These findings cast doubt on the possibility that symbolic

number engagement over non-symbolic numerical arrays, rather than the ANS itself, drives

the observed enhancements seen in the numerical training conditions of our experiments.

While we cannot entirely rule out the possibility that symbolic number representations were

co-activated with ANS representations, our results, our design, and previous research all

suggest that the ANS rather than symbolic number representations was used to solve the

tasks and likely drives the observed effect. Future research using the method of Experiment

2 with different symbolic tests as outcome measures may add further insight into this issue.
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In sum, the present findings move beyond the findings of correlational studies (Halberda,

Mazzocco & Feigenson, 2008; Mundy & Gilmore, 2009; Gilmore, McCarthy, Spelke, 2010;

Mazzocco, Feigenson & Halberda, 2011; Libertus, Feigenson, & Halberda, 2011) and build

on recent training experiments (Park & Brannon, 2013) to provide experimental evidence

that exercising the primitive system of approximate number representation can enhance both

the speed and the accuracy of children's performance of symbolic mathematics. However,

the results also raise a number of questions regarding the nature of this effect.

First, the developmental origins of the relationship between the ANS and symbolic number

remain unclear. ANS acuity is associated with facility at symbolic mathematics across the

lifespan, from infants (Starr et al., in press) to preschool children (Halberda, et al., 2008) to

octogenerians (Halberda, Ly, Wilmer, Naiman, & Germine, 2012). Experimental studies in

children (current study) and adults (Park & Brannon, 2013) seem to suggest that practice or

training with the ANS enhances symbolic mathematics. Our results show that the functional

and causal link between ANS activation and symbolic arithmetic performance does not

require a lengthy history of education in symbolic mathematics, as it occurs in children who

are only in their second year of formal schooling and participants in most previous studies

have had at least some working knowledge of symbolic number and formed initial mappings

between symbolic number representations and the ANS. It is unclear if earlier interventions

(such as those in infants or toddlers) centered on engaging and exercising the ANS, would

lead to better mathematics outcomes later in life. It also is unclear if later interventions, on

participants whose manipulations of number systems are fully automatic (e.g. Bugden &

Ansari, 2011; Girelli, Lucangeli, & Butterworth, 2000), would show the same immediate

effects found in the present experiments. On one view, both initial learning and mature

performance of symbolic mathematical computations such as arithmetic depend on the ANS

(Dehaene & Cohen, 1997; Isaacs, Edmonds, Lucas, & Gadian, 2001; Lee, 2000; Levy, Reis,

& Grafman, 1999; Molko et al., 2003; Takayama, Sugishita, Akiguchi, & Kimura, 1994),

which plays an obligatory role in exact symbolic numerical representations and arithmetic

operations. On a different view, the ANS and symbolic number representations become

linked because they are repeatedly associated with one another over the course of children's

learning of number symbols; thus, the ANS plays a habitual rather than obligatory role in

symbolic mathematics performance (e.g. Lyons & Beilock, 2011; Sasanguie, De Smedt,

Defever, & Reynvoet, 2011). On a third view, symbolic mathematics performance may

depend on the ANS at early points in learning, but its influence may decline or become more

habitual once symbolic arithmetic skills are fully automatic. Future research using the same

training methods at different ages may adjudicate between these views.

A second open question concerns the symmetry or asymmetry of the causal relationship

between the symbolic and non-symbolic number systems. Although the present experiments

tested only for a relationship in one direction, and showed that exercising the ANS can

enhance symbolic number processing, it is possible that causal effects operate in the reverse

direction as well. Consistent with the latter possibility, the Munduruku of the Brazilian

Amazon provide suggestive evidence of an effect of symbolic number training on the acuity

of the ANS (Piazza, Pica, Izard, Spelke, & Dehaene, in press). The Munduruku language has

a limited numerical vocabulary and no formal symbolic number system. However, some

Munduruku have learned both the Portuguese numerical language, and some have studied
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symbolic arithmetic in school. Individual differences among the Munduruku in ANS acuity

are associated with both of these factors (Piazza et al., in press).

Finally, the depth and temporal extent of the effects of ANS activation on symbolic number

processing are not known. Recent work shows that extended, intense practice with the ANS

through an approximate addition task can change both ANS acuity and symbolic

mathematics ability and extent of ANS acuity change in individual participants correlates

with individual increases symbolic arithmetic (Park & Brannon, 2013). No significant

differences in ANS acuity were observed between children in the different training

conditions of our study, casting doubt on the possibility that the mechanism of symbolic

mathematics enhancement in our study was an ANS acuity change. Instead, it appears that

simply preceding symbolic arithmetic with focused engagement of the ANS was sufficient

to produce the effects on symbolic arithmetic. We speculate our effects arose through

engagement of common cognitive mechanisms in the two tasks. Because the present

research involved very brief practice and immediate testing, we do not know whether the

effects on symbolic arithmetic reported here are momentary or enduring. Future work should

contrast the extent and duration of symbolic mathematics outcomes after tasks involving

engagement of, compared to change in, the ANS.

Regardless of the answers to these questions, our studies provide evidence for a causal

relationship between non-symbolic approximate number and exact, symbolic arithmetic by

children, and they move beyond previous work to delineate the specificity of this

relationship. The fact that a single session of practice on an approximate number task can

improve both the speed with which children solve easier symbolic mathematics problems,

and the accuracy with which they solve harder mathematics problems, raises important

possibilities for future educational research. In particular, it is possible that exercises

engaging the ANS will provide a way not only to speed up mathematics performance in an

immediately following test but also to boost performance of school mathematics in a more

enduring way. In light of the importance of mathematics both in the elementary school

curriculum and in diverse disciplines and professions, this possibility deserves to be tested.
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Highlights

Brief practice with an approximate number task enhances arithmetic in young children

Enhancements are specific to math, as they are not seen for a reading task

Approximate number capacities may be causally involved in exact arithmetic
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Figure 1.
Schematic depiction of training tasks. Stimulus events are organized horizontally from start

(top) to finish (bottom). The numbers indicate the duration of presentation. The horizontal

arrows indicate stimulus movement. The vertical arrows indicate the following event.
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Figure 2.
Average training task performance over time in Experiment 1. a) Average reaction time (in

milliseconds) for each condition. b) Average task accuracy (expressed as percent correct) for

each condition.
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Figure 3.
Effects of ratio on average training performance over time in Experiment 1.

Hyde et al. Page 28

Cognition. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Average symbolic arithmetic test performance in Experiment 1. a) Average speed of test

completion (in seconds) for each condition b) Average test accuracy (expressed as percent

correct) for each condition.
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Figure 5.
Average training task performance over time in Experiment 2. a) Average reaction time (in

milliseconds) for each condition. b) Average accuracy (expressed as percent correct) for

each condition.
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Figure 6.
Average arithmetic and sentence completion test performance in Experiment 2. a) Average

speed (in seconds) on each test type for each condition b) Average accuracy (expressed as

percent correct) on each test type or each condition.
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Figure 7.
Average symbolic arithmetic test performance over time in Experiment 2. a) Average speed

(expressed in seconds) on each test set for each condition. b) Average accuracy (expressed

as percent correct) on each test set for each condition.
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