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Abstract

The enteric nervous system (ENS) is the largest subdivision of the peripheral nervous system and

forms a complex circuit of neurons and glia that controls the function of the gastrointestinal (GI)

tract. Within this circuit there are multiple subtypes of neurons and glia. Appropriate

differentiation of these various cell subtypes is vital for normal ENS and GI function. Studies of

the pediatric disorder Hirschprung’s Disease (HSCR) have provided a number of important

insights into the mechanisms and molecules involved in ENS development, however there are

numerous other GI disorders that potentially may result from defects in development/

differentiation of only a subset of ENS neurons or glia. Our understanding of the mechanisms and

molecules involved in this process is far from complete. Critically, it is unclear at what point the

fates of enteric neural crest cells (ENCCs) become committed to a specific subtype cell fate and

how these cell fate choices are made. We will review our current understanding of ENS

differentiation and highlight key questions that need to be addressed in order to gain a more

complete understanding of this biological process.
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Introduction

The enteric nervous system (ENS) is the largest subdivision of the peripheral nervous

system. The ENS is responsible for regulating peristalsis, blood flow, and water and

electrolyte transport in the gut (1, 2). ENS development is a coordinated process in which

neural crest derived ENS precursors must migrate from specific axial locations to and then

along the gut. Subsequently they differentiate into the various types of neurons and glia that

make up the ENS. Defects in ENS precursor migration, proliferation and differentiation

have been shown to lead to hypo and aganglionosis phenotypes in several model systems. In

human’s intestinal aganglionosis, when present in newborns, leads to the gastrointestinal

(GI) disorder Hirschprung’s Disease (HSCR) (3–7)

Differentiation of the enteric neural crest derived cells (ENCCs) is one of the key processes

in the formation of a fully functional ENS. While studies have begun to elucidate the
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complexities behind this process there are still significant gaps in our understanding. The

ENS is a complex system that is made up of up to 17 different subtypes of neurons (1). How

this diversity in neuronal subtypes is generated is one the central unanswered questions in

the field. Several studies have shown that ENS neurons and glia can be traced back to

specific axial populations of neural crest cells but it is unclear exactly when the fate of these

neural crest cells becomes determined to generate ENCCs (4, 8–11). It is also unclear at

what stage during ENS development these ENCCs become fated to generate a specific

subtype of enteric neuron or glia. Potentially, this could be a stochastic process only

occurring when ENCCs migrate along the gut and is completely dependent on the ENCCs’

final location within the GI tract. At the other extreme, individual ENCCs could be fated to

become specific subtypes during the formation of the ENCC population in the pre-

migratory/pre-enteric neural crest (Figure 1).

Understanding the processes and mechanisms that regulate differentiation of the various

ENS subtypes will not only help us to understand the development of the ENS but may also

help us gain a better understanding of the pathologies of various GI disorders. While human

aganglionosis disorders have been extensively studied, pathological analysis of patients has

been limited to looking for the presence or absence of neurons in the gut. Because there are

a large number of GI motility disorders that present in the clinic with no obvious underlying

cause, it is quite plausible that some of these conditions result from the absence/loss of a

specific subset of ENS neurons or glia (12). A better understanding of the mechanisms

involved in the development of subtypes of enteric neurons and glia may give significant

insights into the etiologies of some currently unexplained GI motility disorders.

Early ENS Specification of the Neural Crest

One major unanswered question in ENS development is how early during embryogenesis

does ENS specification occur? The key event appears to be the formation of specific axial

populations of neural crest cells (NCCs). Classic chick-quail chimera studies indicate that

cells within the vagal neural crest are sufficient to form most of the ENS (13, 14). In the

zebrafish model system, the ENS is completely formed from vagal neural crest cells,

however in mammals and chicks the ENS is formed not only from the vagal cells but is also

derived in part from sacral neural crest cells (15–18). These vagal and sacral neural crest

cells appear to develop in a semi-cell autonomous manner indicating there is some level of

specification that occurs early on during neural crest formation. When vagal and sacral

neural crest cells were reciprocally transplanted to the other axial location, transplanted cells

went on to form structures appropriate for their new axial location. However sacral crest

cells were not as efficient at generating ENS neurons and glia as vagal crest cells (8, 9).

Similarly, when vagal NCCs were transplanted to the sacral region the transplanted cells

followed the normal migration route of sacral cells to the gut but did so earlier and in a

much greater number (10). It appears that while there is some flexibility in the axial origin

of the neural crest that gives rise to the ENCCs, vagal NCCs are the preferential axial source

of NCCs for the ENS and a critical number of NCCs are necessary for normal formation of

the ENS (19). When the number of vagal NCC derived ENCC precursors is reduced the rate

of ENCC migration along the gut proceeds at a much slower rate (20). This may be due to a

lack of cell-cell contact between the low numbers of ENCCs (20). Mathematical modeling
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of the process of ENCC colonization of the gut suggests that proliferation differences

between the different axial neural crest populations determine their ability to generate a

complete ENS (21). These models show that cranial neural crest have a spatially determined

proliferative advantage in forming an ENS in comparison to trunk neural crest (21). Given

these results, it is clear that distinct populations of NCCs are specified to be ENCCs within

the vagal neural crest and these cells are needed to correctly populate the gut with neurons

and glia.

It is clear that the spatial organization of the neural crest is important for determining the

eventual fate of the ENCCs. One key anatomical structure that affects the early specification

of specific vagal neural crest derivatives is the dorsal aorta. Expression of BMP4 and 7 from

the dorsal aorta induces the expression of pro-sympathetic neural genes. Inhibition of BMP

expression from the dorsal aorta prevents sympathetic neuron formation (22, 23). The

expression of BMP by the dorsal aorta gives rise to a concentration gradient of BMP ligand

in this region and this means that as neural crest cells migrate towards the gut they are

exposed to varying BMP concentrations. As a result, NCCs may acquire different cell fates

within the ventrally migrating stream depending on the length of time and the concentration

of BMP ligand to which they are exposed to during their migration. Similarly, there is a

gradient of Wnt expression extending from the neural tube laterally. NCCs that express β-

catenin, a down stream signaling component of the canonical signaling pathway, at high

levels have been shown to form sensory neurons (24, 25). While these concentration

gradients have been well studied for sympathetic neurons their specific affects on ENCCs

are less clear and needs further study.

The previously discussed embryological chick-quail chimera studies suggest that there is

some level of fate determination that is occurring early on in the formation of the neural

crest but the molecular basis behind this fate determination is unclear. At the earliest stage

of neural crest specification, the transcription factors FoxD3 and Sox10 are expressed by the

neural crest at the stage when it arises from the neuroepithelium (26, 27). Functionally,

FoxD3 has been shown to be important in the early selection of neuronal cell fates as

opposed to non-neuronal cell fates within the neural crest (27). Sox10 is also expressed

throughout neural crest development in the vagal and sacral regions and continues to be

expressed in ENCCs when they reach the gut and begin migrating along it (11, 16). Sox10

along with Pax3 induce expression of the tyrosine kinase RET, a key gene in ENS

development and an early ENCC marker that has been shown to be the primary gene

associated with HSCR (16, 28–30). RET’s initial function is to promote the survival of

ENCCs, acting as the signal transducing component of the GDNF receptor along with its co-

receptor GFR(alpha)1 (31, 32). Phox2b is another early marker whose expression is

dependent on Sox10 (33, 34). Not only is Phox2b Sox10-dependent, but it also is expressed

by ENCCs throughout their migration along the gut (34). Phox2b also appears to be

important for the expression of RET as well as for the expression of the basic helix-loop-

helix (bHLH) transcription factors Ascl1 and Hand2 (33, 35). Furthermore, in addition to the

previously mentioned transcription factors, Hox genes are involved in determining the fate

of neural crest cells. Studies have shown that the different axial populations of NCCs

express different Hox genes, dependent on their axial origin, and this NCC Hox gene

Harrison and Shepherd Page 3

Neurogastroenterol Motil. Author manuscript; available in PMC 2014 June 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



expression affects their cell fate (36, 37). Vagal neural crest cells express HoxB3 and this

expression may play a role in determining the ENCC fate for a subset of these cells (38).

Several of the identified transcription factors are expressed in both the pre-migratory and

migratory vagal neural crest precursors, his suggests that these factors potentially have an

important role in ENCC/ENS fate determination. However, the full complement of

transcription factors that are responsible for the selection of ENS precursor cell fate as

opposed to other neural crest cell derivatives has not been elucidated. In addition, while

these transcription factors are required for ENS development, it is not clear whether any of

these genes confers a specific ENCC cell fate for an individual NCC or whether their

function is simply to confer a commitment to a neural/glia cell fate.

Post Neural Crest Differentiation Control

Once the ENCCs begin to enter the gut their environment changes significantly and the

signals they receive become even more important for maintaining their proliferative

potential and for determining their eventual ENS cell fate. In vitro studies have shown that

sympathetic neuroblasts take on enteric characteristics when cultured with gut monolayers

while enteric neuroblasts take on sympathetic characteristics when cultured with dorsal aorta

monolayers (39). This clearly demonstrates the importance of environmental signals in

regulating ENS differentiation (39). As the ENCCs enter the gut, they continue to express

Sox10, RET, and Phox2b (11, 16, 31–33). Sox10 is critically important for maintaining the

progenitor state of ENCCs and it appears that in mice Sox10 expressing cells maintain

neurogenic potential into adulthood (40, 41). Sox10 also influences the expression of several

other proteins shown to be involved in ENCC development including Ascl1, a bHLH

transcription factor that actually represses Sox10 expression and promotes expression of

pro-neural genes (26). This Sox10 driven expression of Ascl1 appears to be modulated by

the notch pathway as a component of the notch signaling pathway, Hes1, represses Ascl1

expression (39). As a result, notch signaling is potentially important in maintaining the

ENCCs progenitor potential at least for a subset of ENCCs though this requires further

investigation (42, 43).

Sox10 also influences the expression of the G-Protein coupled receptor EDNRB, which has

been shown to be important for complete ENCC colonization of the gut (44–46). EDNRB

and its ligand endothelin-3 (ET-3), seem to prevent neuronal differentiation in ENCCs and

helps maintain their potential to colonize the rest of the gut (45, 47, 48). Another gene that

appears to prevent neuronal differentiation in favor of proliferation is sonic hedgehog (shh).

shh is expressed in the developing gut endoderm. shh modulates ENCC responsiveness to

GDNF promoting cell proliferation and migration while attenuating/inhibiting neuronal

differentiation (49, 50).

Many of the genes that have been shown to be critical to ENS development appear to be

expressed throughout this developmental process. Interestingly, many of these signaling

pathways involved early in neural crest development often have additional/alternate

functions later in ENCC specification. One example is the BMP family of proteins,

specifically BMP4. BMP4 is involved in differentiation of neural crest-derived cells into

neurons in vitro (51–53). It appears that ENCCs have a dose dependent response to BMP
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signaling, as low concentrations of BMP promote an ENCC to stay in an undifferentiated

proliferative state while high concentrations promote neurogenesis (52, 53). One way in

which BMP may influence neurogenesis is through its interaction with Ascl1 (54, 55).

BMP2 decreases the stability of Ascl1 leading to an inhibition of certain pro-neural genes

(56–58). Ascl1 appears to promote the expression of the transcription factor Phox2a and

together these two transcription factors promote the expression of a subset of pro-neural

genes. Previous studies looking at autonomic nervous system development have shown

Ascl1 couples the expression of general neuronal markers with subtype specific markers (59,

60). Ascl1 is also critically important for the development of esophageal neurons as Ascl1−/−

mice have perturbed gangliogenesis in the esophagus (61). This suggests that other basic

helix-loop-helix (bHLH) pro-neural transcription factors are also involved in ENS

development (62). One potential candidate bHLH transcription factor, expressed in ENCCs,

is Hand2, whose expression is also regulated by BMP in vitro (63). Furthermore Hand2 has

been shown to regulate expression and function of phox2a and phox2b genes in the

development of sympathetic nervous system (SNS) and couples neurogenesis and cell type

gene expression in the SNS (64–66).

Another gene that appears to have a bimodal role in ENS development is FoxD3. While the

ENS glial population comes from the same ENCC precursor pool as the ENS neurons, in

mice glial development lags behind the development of the neurons as glial markers are not

seen in the early migrating ENCC chains as opposed to neuronal markers, which are

observed (67–69). This is not the case however in the chick where ENS neuronal and glial

differentiation occurs concurrently in the migrating chains of ENCC (70). FoxD3 has been

shown to promote gliogenesis in the ENS, as well as influence proliferation and neural

patterning (71). Notch signaling and the bHLH transcription factor Hand2 also affect the

ENS glial cell development (72). However Hand2 appears to indirectly affect glial

development, because the glial phenotype seen in Hand2−/− mice results from an overall

reduced size of the initial ENCC progenitor pool rather than any specific effect on

gliogenesis cell fate determination (73). Sox10 also is expressed in glia cells into adulthood

allowing these cells to maintain their neurogenic potential (41, 74) These results clearly

indicate that there are several regulatory pathways that function to maintain the cell fate

potential in the ENCCs. However, it is less clear when these cells become further committed

to a specific enteric neuron subtype or glial cell fate and how the switch from proliferating

ENCC to committed neural or glial precursor is regulated.

Subtype Specification

Depending on the species, differentiation of ENCCs begins at different times during the

migration process. In zebrafish, there appears to be two main waves of neuronal

differentiation that occur at 72 and 96 hours post fertilization (hpf), respectively(75). This

brings up an interesting problem as at 72hpf the ENCCs have migrated along the length of

the gut, but a subset continue to proliferate and another group needs to circumferentially

migrate around the gut to completely populate it. This means that only a specific subset of

cells differentiate in this initial wave. While differentiation does not begin until after the

anterior posterior migration along the gut is completed in zebrafish, mouse ENCCs in the

anterior portion of the gut begin to differentiate before ENCCs have migrated to the
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posterior end of the gut (69). In both fish and mice, differentiation of all neuronal and glial

subtypes does not occur at the same time. This indicates that ENCCs must be temporally

restricted in the cell types to which they can give rise.

While there are specific waves of differentiation seen in the ENCCs of model organisms

pan-neuronal markers appear much earlier in ENS development. These markers begin to

appear as early as E10.5 in mice and in zebrafish between 24 and 48 hpf (76–78). These

early cells are electrically active as early as E11.5 in mice, indicating that these cells have

begun exhibiting both the molecular and physiological characteristics of neurons (79).

While certain pan-neuronal markers begin to show up early in ENS development the

presence of specific markers for nitronergic (nNOS), serotonergic (5-HT), cholinergic

(ChAT, VAChT), dopaminergic (DBH, TH) neurons appear at varying times during ENS

formation (75, 80–85). Similarly various other neuronal and pan-neuronal markers (IkCa,

CGRP, calbindin, calretinin, VIP, substance P) appear at varying times in ENS development

(Figure 2) (80–82, 84, 85). The earliest expressed neuronal cell type specific marker in mice

and zebrafish is nNOS, appearing around E11.5 in mice and between 48 and 72hpf in

zebrafish (75, 80). Calbindin and IkCa channels also appear at E11.5 in mice but many other

differentiation markers are absent (80). Substance P, VIP, and 5-HT neurons appear around

E14 in mice while CGRP is not present until E17 (81, 82). Molecules involved in the

synthesis of acetylcholine are present in mice between E10–12 but the ChAT and VAChT

markers themselves do not appear until around E18.5 (83). Similarly in zebrafish expression

of the markers for VIP, calbindin, CGRP, 5-HT and others do not appear until later in

development between 72 and 96hpf (75, 84).

While it is clear that the markers of these different subtypes begin to appear at different

times, it is less clearly understood how a particular subtype is specified in the ENS. So far

only a few genes and signaling pathways have been shown to have a specific role in the

specification of a specific ENS neuronal subtype. One of these genes, Ascl1, appears to

regulate 5-HT ENS neuronal differentiation, as this type of neuron is particularly affected in

Ascl1−/− mice (62). However Ascl1 does not appear to be solely responsible for 5-HT ENS

neuron development as not all Ascl1 expressing ENCC/ENS neurons are 5-HT positive (86).

5-HT neurons, along with calretenin expressing neurons, are also influenced by

norepinephrine transporter (NET) as NET −/− mice have reduced numbers of these neuronal

subtypes (87). Neutrophin-3 (NT-3) appears to affect submucosal intrinsic primary afferent

neurons expressing CGRP because there are fewer of these neurons in TrkC −/− mice,

which is the receptor for NT-3 (88). Hand2 −/− mice also have a complete loss of nNOS and

VIP enteric neurons and a significant reduction in the number of calretnin and ChAT enteric

neurons (73, 89). It also appears that nNOS formation is influenced by neural activity as

ENCCs exposed to tetanus toxin to block neural activity by SNARE mediated vesicle fusion

caused a decrease in the number of nNOS enteric neurons(80). Interestingly GDNF-RET

signaling can also influence subtype specification as increasing GDNF expression later in

ENS development can alter the numbers of certain neuronal subtypes including nNOS

neurons (90–92). This may be a result of the influence GDNF has determining when ENCC

precursors leave the cell cycle. Different ENS neuronal subtypes arise at varying time points

so by altering the stage at which ENCC leave the cell cycle will influence the respective
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proportions of different ENS neuronal subtypes (91). Clearly some ENS neuronal subtypes

develop later than others so it is possible that the earlier born neurons influence the

development of later developing neurons. Furthermore 5-HT expression in the ENS seems to

influence the development of dopaminergic, GABAergic, CGRP expressing, and late born

nitregic enteric neurons but it is not clear whether 5-HT directly influences their

differentiation or it is simply important for their development/survival (93). Together these

results indicate that it is a combination of extrinsic and intrinsic signals that lead to

ENCC/ENS neuron and glial cell fate determination and differentiation.

Further insights into ENS cell subtype specification can be gained from examining

specification in other parts of the peripheral nervous system. Sympathetic neuron expression

of DBH is influenced by a combination of factors including Phox2a and Hand2 (94–96).

Similarly, Phox2a and Hand2 influence sympathetic neuron expression of TH, however TH

neurons respond differently to protein kinase A (PKA) activity as compared to DBH

neurons. In TH neurons Phox2a and PKA act independently but in DBH neurons Phox2a

and PKA synergistically (94, 97). Finally the cholinergic markers ChAT and VAChT in the

parasympathetic system appear to be influenced by the expression of PKA as well as the

transcription factor REST (80, 98).

It is clear from looking at studies into subtype specification in other neuronal systems that

the formation of these subtypes is a complicated process involving the interaction of

multiple transcription factors and signaling pathways. To fully understand the specific

molecular combination of signals and factors that influence terminal cell fate specification in

the ENS will require the generation of more conditional knockout and over-expression

animal models. In addition, a better understanding of the precise lineage relationship

between the different ENS neuronal and glial subtypes is still needed if we are to get a more

complete understanding of this process. Given that different subtype markers appear at

different times it is also possible that the different ENS neuron and glia subtypes may

become specified at different times and that ENS development is some combination of the

two models presented in Figure 1. Recent technological advances such as the development

of the brainbow lineage reporter system will potentially allow us to gain a much clearer

understanding of the lineage relationship within the developing ENS (99, 100).

Perspectives

The ENS is a complex, dynamic circuit of neurons and glia that are necessary for normal

healthy digestion. Any errors in ENS formation can have drastic consequences for the

development of an individual, as evidenced by the aganglionosis phenotype seen in

Hirschprung’s disease. Furthermore we have barely begun to understand the neuronal basis

of many GI disorders. The complex circuit that is the ENS is made up of multiple different

subtypes of neurons, each of which are necessary for normal ENS function. Should the

proper equilibrium of neuronal subtypes not form there is a risk the whole circuit will not

work properly. While we can characterize the aganglionosis phenotype in HSCR

comparatively easily, detecting GI disorders that affect only a specific subpopulation of ENS

neurons and glia is far more challenging. Clinically the loss/reduction in number of a
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specific ENS neuronal subtype potentially could be the cause of many GI disorders that as of

present have no known cellular basis.

While our understanding of the differentiation and development of the ENS has grown

greatly over the past few years, there is still much that still needs to be determined. As we

have pointed out in this review, while the appearance of subtypes has been well

characterized the actual molecular basis for how this specification process occurs both

cellularly and mechanistically is not well understood. How early does enteric neuron and

glia subtype specification begin? When are ENCCs committed to a specific neuronal

subtype fate? Is it extrinsic or intrinsic factors that determine a specific subtype

specification? All of these questions and more will need to be answered in order to begin to

gain a more complete understanding of the complex process of ENS formation.
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Figure 1.
Models of ENCC Differentiation. There are two models that could explain the

differentiation of the ENCCs into the various subtypes in the gut. The first is a stochastic

model in which the fate of the ENCCs is not specified until they reach the gut. In this model

any kind of ENS cell subtype can come from any ENCC depending on where it ends up in

the gut. In the fated model ENCCs are fated to become specific subtypes early in

development and cells derived from one specific ENCC are all fated to become a specific

subtype. The different colored shapes indicate different subtypes of enteric neurons and glia.
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Figure 2.
Schematic diagram of ENCCs populating the guts of D. Rerio and M. Muscalis. ENCCs

enter the gut at 36hpf and E9.5 in mouse and zebrafish respectively. nNOS appears in

zebrafish between 48–72hpf and around E11.5 in mice. IKCa and calbindin also appear in

mice around E11.5. at 72hpf ENCCs have populated the posterior of the gut in zebrafish and

a first wave of differentiation has occurred while ENCCs are still migrating to the posterior

in mice. A 96hpf the second differentiation wave has occurred in zebrafish while at E14

ENCCs have populated the posterior gut in mice. Between 72 and 96hpf VIP, calbindin,

CGRP, and 5HT appear in zebrafish. Substance P, VIP, and 5HT appear at E14 in mice

while CGRP doesn’t appear until much later at E17. ChaT and VAChT also do not appear

until later in mouse development at E18.5.
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