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Abstract

Correlative microscopy is a methodology combining the functionality of light microscopy with the

high resolution of electron microscopy and other microscopy technologies for the same biological

specimen. In this paper, we propose an image registration method for correlative microscopy,

which is challenging due to the distinct appearance of biological structures when imaged with

different modalities. Our method is based on image analogies and allows to transform images of a

given modality into the appearance-space of another modality. Hence, the registration between

two different types of microscopy images can be transformed to a mono-modality image

registration. We use a sparse representation model to obtain image analogies. The method makes

use of corresponding image training patches of two different imaging modalities to learn a

dictionary capturing appearance relations. We test our approach on backscattered electron (BSE)

scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/

confocal images. We perform rigid, affine, and deformable registration via B-splines and show

improvements over direct registration using both mutual information and sum of squared

differences similarity measures to account for differences in image appearance.
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1. Introduction

Correlative microscopy integrates different microscopy technologies including conventional

light-, confocal- and electron transmission microscopy (Caplan et al., 2011) for the

improved examination of biological specimens. E.g., fluorescent markers can be used to

highlight regions of interest combined with an electron-microscopy image to provide high-

resolution structural information of the regions. To allow such joint analysis requires the

registration of multi-modal microscopy images. This is a challenging problem due to (large)

appearance differences between the image modalities. Fig. 1 shows an example of

correlative microscopy for a confocal/TEM image pair.

Image registration estimates spatial transformations between images (to align them) and is

an essential part of many image analysis approaches. The registration of correlative

microscopic images is very challenging: images should carry distinct information to

combine, for example, knowledge about protein locations (using fluorescence microscopy)

and high-resolution structural data (using electron microscopy). However, this precludes the

use of simple alignment measures such as the sum of squared intensity differences because

intensity patterns do not correspond well or a multi-channel image has to be registered to a

gray-valued image.

A solution for registration for correlative microscopy is to perform landmark-based

alignment, which can be greatly simplified by adding fiducial markers (Fronczek et al.,

2011). Fiducial markers cannot easily be added to some specimen, hence an alternative

image-based method is needed. This can be accomplished in some cases by appropriate

image filtering. This filtering is designed to only preserve information which is indicative of

the desired transformation, to suppress spurious image information, or to use knowledge

about the image formation process to convert an image from one modality to another. E.g.,

multichannel microscopy images of cells can be registered by registering their cell

segmentations (Yang et al., 2008). However, such image-based approaches are highly

application-specific and difficult to devise for the non-expert.

In this paper we therefore propose a method inspired by early work on texture synthesis in

computer graphics using image analogies (Hertzmann et al., 2001). Here, the objective is to

transform the appearance of one image to the appearance of another image (for example

transforming an expressionistic into an impressionistic painting). The transformation rule is

learned based on example image pairs. For image registration this amounts to providing a set

of (manually) aligned images of the two modalities to be registered from which an

appearance transformation rule can be learned. A multi-modal registration problem can then

be converted into a mono-modal one. The learned transformation rule is still highly

application-specific, however it only requires manual alignment of sets of training images

which can easily be accomplished by a domain specialist who does not need to be an expert

in image registration.

Arguably, transforming image appearance is not necessary if using an image similarity

measure which is invariant to the observed appearance differences. In medical imaging,

mutual information (MI) (Wells III et al., 1996) is the similarity measure of choice for multi-
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modal image registration. We show for two correlative microscopy example problems that

MI registration is indeed beneficial, but that registration results can be improved by

combining MI with an image analogies approach. To obtain a method with better

generalizability than standard image analogies (Hertzmann et al., 2001) we devise an image-

analogies method using ideas from sparse coding (Bruckstein et al., 2009), where

corresponding image-patches are represented by a learned basis (a dictionary). Dictionary

elements capture correspondences between image patches from different modalities and

therefore allow to transform one modality to another modality.

This paper is organized as follows: First, we briefly introduce some related work in Section

2. Section 3 describes the image analogies method with sparse coding and our numerical

solution approach. Image registration results are shown and discussed in Section 4. The

paper concludes with a summary of results and an outlook on future work in Section 5.

2. Related Work

2.1. Multi-modal Image Registration for Correlative Microscopy

Since correlative microscopy combines different microscopy modalities, resolution

differences between images are common. This poses challenges with respect to finding

corresponding regions in the images. If the images are structurally similar (for example

when aligning EM images of different resolutions (Kaynig et al., 2007), standard feature

point detectors can be used.

There are two groups of methods for more general multi-modal image registration

(Wachinger and Navab, 2010). The first set of approaches applies advanced similarity

measures, such as mutual information (Wells III et al., 1996). The second group of

techniques includes methods that transform a multi-modal to a mono-modal registration

(Wein et al., 2008). For example, Wachinger introduced entropy images and Laplacian

images which are general structural representations (Wachinger and Navab, 2010). The

motivation of our proposed method is similar to Wachinger’s approach, i.e. transform the

modality of one image to another, but we use image analogies to achieve this goal thereby

allowing for the reconstruction of a microscopy image in the appearance space of another.

2.2. Image Analogies and Sparse Representation

Image analogies, first introduced in (Hertzmann et al., 2001), have been widely used in

texture synthesis. In this method, a pair of images A and A′ are provided as training data,

where A′ is a “filtered” version of A. The “filter” is learned from A and A′ and is later

applied to a different image B in order to generate an “analogous” filtered image. Fig. 2

shows an example of image analogies.

For multi-modal image registration, this method can be used to transfer a given image from

one modality to another using the trained “filter”. Then the multi-modal image registration

problem simplifies to a mono-modal one. However, since this method uses a nearest

neighbor (NN) search of the image patch centered at each pixel, the resulting images are

usually noisy because the L2 norm based NN search does not preserve the local consistency

well (see Fig. 2 (d)) (Hertzmann et al., 2001). This problem can be partially solved by a
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multi-scale search and a coherence search which enforce local consistency among

neighboring pixels, but an effective solution is still missing. We introduce a sparse

representation model to address this problem.

Sparse representation is a powerful model for representing and compressing high-

dimensional signals (Wright et al., 2010; Huang et al., 2011b). It represents the signal with

sparse combinations of some fixed bases which usually are not orthogonal to each other and

are overcomplete to ensure its reconstruction power (Elad et al., 2010). It has been

successfully applied many computer vision applications such as object recognition and

classification in (Wright et al., 2009; Huang and Aviyente, 2007; Huang et al., 2011a; Zhang

et al., 2012a, b; Fang et al., 2013; Cao et al., 2013). (Yang et al., 2010) also applied sparse

representation to super resolution which is similar to our method. The differences between

sparse representation based super resolution and image analogies are reconstruction

constraints and the used data. In super resolution, the reconstruction constraint is between

two images with different resolutions (the original low resolution image and predicted high

resolution image). In order to make these two images comparable, additional blurring and

downsampling operators are applied to the high resolution image, while in our method, we

can direct compute the reconstruction error from the original image and reconstructed image

from the sparse representation. Efficient algorithms based on convex optimization or greedy

pursuit are available for computing sparse representations (Bruckstein et al., 2009).

The contribution of this paper is two-fold. First, we introduce a sparse representation model

for image analogies which aims at improving the generalization ability and estimation result.

Second, we simplify multi-modal image registration by using the image analogy approach to

convert the registration problem to a mono-modal registration problem. The original idea in

this paper was published in WBIR 2012 (Cao et al., 2012). This paper provides additional

experiments, details of our method, and a more extensive review of related work. The

flowchart of our method is shown in Fig. 3.

3. Method

3.1. Standard Image Analogies

The objective for image analogies is to create an image B′ from an image B with a similar

relation in appearance as a training image set (A, A′) (Hertzmann et al., 2001). The standard

image analogies algorithm achieves the mapping between B and B′ by looking up best-

matching patches for each image location between A and B which then imply the patch

appearance for B′ from the corresponding patch A′ (A and A′ are assumed to be aligned).

These best patches are smoothly combined to generate the overall output image B′. The

algorithm description is presented in Alg. 1. To avoid costly lookups and to obtain a more

generalizable model with noise-reducing properties we propose a sparse coding image

analogies approach.

3.2. Sparse Representation Model

Sparse representation is a technique to reconstruct a signal as a linear combination of a few

basis signals from a typically over-complete dictionary. A dictionary is a collection of basis

signals. The number of dictionary elements in an over-complete dictionary exceeds the

Cao et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



dimension of the signal space (here the dimension of an image patch). Suppose a dictionary

D is pre-defined. To sparsely represent a signal x the following optimization problem is

solved (Elad, 2010):

(1)

where α is a sparse vector that explains x as a linear combination of columns in dictionary D

with error ε and || · ||0 indicates the number of non-zero elements in the vector α. Solving (1)

is an NP-hard problem. One possible solution of this problem is based on a relaxation that

replaces || · ||0 by || · ||1, where || · ||1 is the 1-norm of a vector, resulting in the optimization

problem,

(2)

The equivalent Lagrangian form of (2) is

(3)

which is a convex optimization problem that can be solved efficiently (Bruckstein et al.,

2009; Boyd et al., 2010; Lee et al., 2006; Mairal et al., 2009).

A more general sparse representation model optimizes both α and the dictionary D,

(4)

The optimization problem (3) is a sparse coding problem which finds the sparse codes α to

represent x. Generating the dictionary D from a training dataset is called dictionary learning.

3.3. Image Analogies with Sparse Representation Model

For the registration of correlative microscopy images, given two training images A and A′

from different modalities, we can transform image B to the other modality by synthesizing B

′. This idea is also applied to image colorization and demosaicing in (Mairal et al., 2007).

Consider the sparse dictionary-based image denoising/reconstruction, u, given by

minimizing

(5)

where f is the given (potentially noisy) image, D is the dictionary, {αi} are the patch

coefficients, Ri selects the i-th patch from the image reconstruction u, γ, λ > 0 are balancing

constants, L is a linear operator (e.g., describing a convolution), and the norm is defined as

, where V > 0 is positive definite. We jointly optimize for the coefficients and
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the reconstructed/denoised image. Formulation (5) can be extended to images analogies by

minimizing

(6)

where we have corresponding dictionaries {D(1), D(2)} and only one image f(1) is given and

we are seeking a reconstruction of a denoised version of f(1), u(1), as well as the

corresponding analogous denoised image u(2) (without the knowledge of f(2)). Note that

there is only one set of coefficients αi per patch, which indirectly relates the two

reconstructions. The problem is convex (for given D(i)) which allows to compute a globally

optimal solution. Section 3.5 describes our numerical solution approach.

Patch-based (non-sparse) denoising has also been proposed for the denoising of fluorescence

microscopy images (Boulanger et al., 2010). A conceptually similar approach using sparse

coding and image patch transfer has been proposed to relate different magnetic resonance

images in (Roy et al., 2011). However, this approach does not address dictionary learning or

spatial consistency considered in the sparse coding stage. Our approach addresses both and

learns the dictionaries D(1) and D(2) explicitly.

3.4. Dictionary Learning

Given sets of training patches { } We want to estimate the dictionaries themselves

as well as the coefficients {αi} for the sparse coding. The problem is non-convex (bilinear in

D and αi). The standard solution approach (Elad, 2010) is alternating minimization, i.e.,

solving for αi keeping {D(1), D(2)} fixed and vice versa. Two cases need to be distinguished:

(i) L locally invertible (or the identity) and (ii) L not locally-invertible (e.g., blurring due to

convolution for a signal with the point spread function of a microscope). In the former case

we can assume that the training patches are unrelated patches and we can compute local

patch estimates { }directly by locally inverting the operator L for the given

measurement {f(1), f(2)} for each patch. In the latter case, we need to consider patch size (for

example for convolution) and can therefore not easily be inverted patch by patch. The non-

local case is significantly more complicated, because the dictionary learning step needs to

consider spatial dependencies between patches.

We only consider local dictionary learning here with L and V set to identities1. We assume

that the training patches  are unrelated patches. Then the dictionary

learning problem decouples from the image reconstruction and requires minimization of

1Our approach can also be applied to L which are locally not invertible. However, this complicates the dictionary learning.
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(7)

The image analogy dictionary learning problem is identical to the one for image denoising.

The only difference is a change in dimension for the dictionary and the patches (which are

stacked up for the corresponding image sets). Usually to avoid D being arbitrarily large, a

common constraint is added to each column of D where the l2 norm of each column in D is

less than or equal to one, i.e. , j = 1, …, m, D = {d1, d2, …, dm} ∈ ℝnxm. Similar to

(6), we use a single α in (7) to enforce the correspondence of the dictionaries between two

modalities.

3.5. Numerical Solution

To simplify the optimization process of (6), we apply an alternating optimization approach

(Elad, 2010) which initializes u(1) = f(1) and u(2) = D(2)α at the beginning, and then computes

the optimal α (the dictionary D(1) and D(2) are assumed known here). Thus the minimization

problem breaks into many smaller subparts, for each subproblem we have,

(8)

Following (Li and Osher, 2009) we use a coordinate descent algorithm to solve (8).

Given A = D(1), x = αi and b = Riu(1), then (8) can be rewritten in the general form

(9)

The coordinate descent algorithm to solve (9) is described in Alg. 2. This algorithm

minimizes (9) with respect to one component of x in one step, keeping all other components

constant. This step is repeated until convergence.

After solving (8), we can fix α and then update u(1). Now the optimization of (6) can be

changed to

(10)

The closed-form solution of (10) is as follows2,

2Refer to appendix 1 for more details.
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(11)

We iterate the optimization with respect to u(1) and α to convergence. Then u(2) = D(2)α̂.

3.5.1. Dictionary Learning—We use a dictionary based approach and hence need to be

able to learn a suitable dictionary from the data. We use alternating optimization. Assuming

that the coefficients αi and the measured patches { } are given, we compute the

current best least-squares solution for the dictionary as 3

(12)

The columns are normalized according to

(13)

where D = {d1,d2, … dm} ∈ ℝnxm. The optimization with respect to the αi terms follows (for

each patch independently) the coordinate descent algorithm. Since the local dictionary

learning approach assumes that patches to learn the dictionary from are given, the problem

completely decouples with respect to the coefficients αi and we obtain

(14)

where  and D = {D(1),D(2)}.

3.6. Intensity Normalization

The image analogy approach may not be able to achieve a perfect prediction because: a)

image intensities are normalized and hence the original dynamic range of the images is not

preserved and b) image contrast may be lost as the reconstruction is based on the weighted

averaging of patches. To reduce the intensity distribution discrepancy between the predicted

image and original image, in our method, we apply intensity normalization (normalize the

different dynamic ranges of different images to the same scale for example [0,1]) to the

training images before dictionary learning, and also to the image analogy results.

3.7. Use in Image Registration

For image registration, we (i) reconstruct the “missing” analogous image and (ii)

consistently denoise the given image to be registered with (Elad and Aharon, 2006). By

3Refer to appendix 2 for more details.
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denoising the target image using the learned dictionary for the target image from the joint

dictionary learning step we obtain two consistently denoised images: the denoised target

image and the predicted source image. The image registration is applied to the analogous

image and the target image. We consider rigid followed by affine and B-spline registrations

in this paper and use elastix’s implementation (Klein et al., 2010; Ibanez et al., 2005). As

similarity measures we use sum of squared differences (SSD) and mutual information (MI).

A standard gradient descent is used for optimization. For B-spline registration, we use

displacement magnitude regularization which penalizes ||T(x) − x||2, where T(x) is the

transformation of coordinate x in an image (Klein et al., 2010). This is justified as we do not

expect large deformations between the images as they represent the same structure. Hence,

small displacements are expected, which are favored by this form of regularization.

4. Results

4.1. Data

We use both 2D correlative SEM/confocal images with fiducials and TEM/confocal images

of mouse brains in our experiment. All the experiments are performed on a Dell OptiPlex

980 computer with an Intel Core i7 860 2.9GHz CPU. The data description is shown in Tab.

1.

4.2. Registration of SEM/confocal images (with fiducials)

4.2.1. Pre-processing—The confocal images are denoised by the sparse representation-

based denoising method (Elad, 2010). We use a landmark based registration on the fiducials

to obtain the gold standard alignment results. The image size is about 400 ×400 pixels.

4.2.2. Image Analogies (IA) Results—We applied the standard IA method and our

proposed method. We trained the dictionaries using a leave-one-out approach. The training

image patches are extracted from pre-registered SEM/confocal images as part of the

preprocessing described in Section 4.2.1. In both IA methods we use 10 × 10 patches, and in

our proposed method we randomly sample 50000 patches and learn 1000 dictionary

elements in the dictionary learning phase. The learned dictionaries are shown in Fig. 5. We

choose γ = 1 and λ = 0.15 in (6). In Fig. 8, both IA methods can reconstruct the confocal

image very well but our proposed method preserves more structure than the standard IA

method. We also show the prediction errors and the statistical scores of our proposed IA

method and standard IA method for SEM/confocal images in Tab. 2. The prediction error is

defined as the sum of squared intensity differences between the predicted confocal image

and the original confocal image. Our method is based on patch-by-patch prediction using the

learned multi-modal dictionary. Given a particular patch-size the number of sparse coding

problems in our model changes linearly with the number of pixels in an image. Our method

is much faster than the standard image analogies method which involves an exhaustive

search of the whole training set as our method is based on a dictionary representation. For

example, our method takes about 500 secs for a 1024×1024 image with image patch size

10×10 and dictionary size 1000 while the standard image analogy method takes more than

30 mins for the same patch size. The CPU processing time for SEM/confocal data is shown

in Tab. 3. We also illustrate the convergence of solving (14) for both SEM/confocal and
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TEM/confocal images in Fig. 7 which shows that 100 iterations are sufficient for both

datasets..

4.2.3. Image Registration Results—We resampled the estimated confocal images with

up to ±600 nm (15 pixels) in translation in the x and y directions (at steps of 5 pixel) and

±15° in rotation (at steps of 5 degree) with respect to the gold standard alignment. Then we

registered the resampled estimated confocal images to the corresponding original confocal

images. The goal of this experiment is to test the ability of our methods to recover from

misalignments by translating and rotating the pre-aligned image within a practically

reasonable range. Such a rough initial automatic alignment can for example be achieved by

image correlation. The image registration results based on both image analogy methods are

compared to registration results using original images using both SSD and MI as similarity

measures1. Tab. 4 summarizes the registration results on translation and rotation errors

based on the rigid transformation model for each image pair over all these experiments. The

results are reported as physical distances instead of pixels. We also perform registrations

using affine and B-spline transformation models. These registrations are initialized with the

result from the rigid registration. Fig. 6 shows the box plot for all the registration results.

4.2.4. Hypothesis Test on Registration Results—In order to check whether the

registration results from different methods are statistically different with each other, we use

hypothesis testing (Weiss and Weiss, 2012). We assume the registration results (rotations

and translations) are independent and normally distributed random variables with means μi

and variances . For the results from 2 different methods, the null hypothesis (H0) is μ1 =

μ2, and the alternative hypothesis (H1) is μ1 ≤ μ2. We apply the one-sided paired sample t-

test for equal means using MATLAB (MATLAB, 2012). The level of significance is set at

5%. Based on the hypothesis test results in Tab. 5, our proposed method shows significant

differences with respect to the standard IA method for the registration error with respect to

the SSD metric on rigid registration and both MI and SSD metrics for affine and B-spline

registrations. Tables 4 and 5 also show that our method outperforms the standard image

analogy method as well as the direct use of mutual information on the original images in

terms of registration accuracy. However, as deformations are generally relatively rigid no

statistically significant improvements in registration results could be found within a given

method relative to the different transformation models as illustrated in Tab. 6.

4.2.5. Discussion—From Fig. 6, the improvement of registration results from rigid

registration to affine and B-spline registrations are not significant due to the fact that both

SEM/-confocal images are acquired from the same piece of tissue section. The rigid

transformation model can capture the deformation well enough, though small improvements

can visually be observed using more flexible transformation models as illustrated in the

composition images between the registered SEM images using three registration methods

(direct registration and the two IA methods) and the registered SEM images based on

fiducials of Fig. 9. Our proposed method can achieve the best results for all the three

registration models. See also Tab. 6.

1We inverted the grayscale values of the original SEM image for SSD based image registration of the SEM/confocal images.
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4.3. Registration of TEM/confocal images (without fiducials)

4.3.1. Pre-processing—We extract the corresponding region of the confocal image and

resample both confocal and TEM images to an intermediate resolution. The final resolution

is 14.52 pixels per μm, and the image size is about 256×256 pixels. The datasets are already

roughly registered based on manually labeled landmarks with a rigid transformation model.

4.3.2. Image Analogies Results—We tested the standard image analogy method and

our proposed sparse method. For both image analogy methods we use 15 ×15 patches, and

for our method we randomly sample 50000 patches and learn 1000 dictionary elements in

the dictionary learning phase. The learned dictionaries are shown in Fig. 11. We choose γ =

1 and λ = 0.1 in (6). The image analogies results in Fig. 12 show that our proposed method

preserves more local structure than the standard image analogy method. We show the

prediction error of our proposed IA method and standard IA method for TEM/confocal

images in Tab. 7. The CPU processing time for the TEM/confocal data is given in Tab. 8.

4.3.3. Image Registration Results—We manually determined 10 ~ 15 corresponding

landmark pairs on each dataset to establish a gold standard for registration. The same type

and magnitude of shifts and rotations as for the SEM/confocal experiment are applied. The

image registration results based on both image analogy methods are compared to the

landmark based image registration results using mean absolute errors (MAE) and standard

deviations (STD) of the absolute errors on all the corresponding landmarks. We use both

SSD and mutual information (MI) as similarity measures. The registration results are

displayed in Fig. 14 and Table 9. The landmark based image registration result is the best

result achievable given the affine transformation model. We show the results for both image

analogy methods as well as using the original TEM/confocal image pairs1. Fig. 14 shows

that the MI based image registration results are similar among the three methods and our

proposed method performs slightly better. The results are reported as physical distances

instead of pixels. Also the results of our method are close to the landmark based registration

results (best registration results). For SSD based image registration, our proposed method is

more robust than the other two methods for the current dataset.

4.3.4. Hypothesis Test on Registration Results—We use the same hypothesis test

method as in Section 4.2.4, and test the means of different methods on MAE of

corresponding landmarks. Table 10 and 11 indicate that the registration result of our

proposed method shows significant improvement over the result using original images with

both SSD and MI metric. Also, the result of our proposed method is significantly better than

the standard IA method with MI metric.

4.3.5. Discussion—In Fig. 14, the affine and B-spline registrations using our proposed IA

method show significant improvement compared with affine and B-spline registrations on

the original images. In comparison to the SEM/confocal experiment (Fig. 9) the

checkerboard image shown in Fig. 13 shows slightly stronger deformations for the more

1We inverted the grayscale values of original TEM image for SSD based image registration of original TEM/confocal images.
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flexible B-spline model leading to slightly better local alignment. Our proposed method still

achieves the best results for the three registration models.

5. Conclusion

We developed a multi-modal registration method for correlative microscopy. The method is

based on image analogies with a sparse representation model. Our method can be regarded

as learning a mapping between image modalities such that either an SSD or MI image

similarity measure becomes appropriate for image registration. Any desired image

registration model could be combined with our method as long as it supports either SSD or a

MI as an image similarity measure. Our method then becomes an image pre-processing step.

We tested our method on SEM/confocal and TEM/confocal image pairs with rigid

registration followed by affine and B-spline registrations. The image registration results

from Fig. 6, 14 suggest that the sparse image analogy method can improve registration

robustness and accuracy. While our method does not show improvements for every

individual dataset, our method improved registration results significantly for the SEM/-

confocal experiments for all transformation models and for the TEM/confocal experiments

for affine and B-spline registration. Furthermore, when using our image analogy method

multi-modal registration based on SSD becomes feasible. We also compared the runtime

between the standard IA and the proposed IA methods. Our proposed method runs about 5

times faster than the standard method. While the runtime is far from real-time performance,

the method is sufficiently fast for correlative microscopy applications.

Our future work includes additional validation on a larger number of datasets from different

modalities. Our goal is also to estimate the local quality of the image analogy result. This

quality estimate could then be used to weight the registration similarity metrics to focus on

regions of high confidence. Other similarity measures can be modulated similarly. We will

also apply our sparse image analogy method to 3D images.
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Appendix A. Updating u(1) (reconstruction of f(1))

The sparse representation based image analogies method is defined as the minimization of

(A.

1)

We use an alternating optimization method to solve (A.1). Given a dictionary D(1) and

corresponding coefficients α, we want to update u(1) by minimizing the following energy

function

Differentiating the energy yields

After rearranging, we get

Appendix B. Updating the Dictionary

Assume we are given current patch estimates and dictionary coefficients. The patch

estimates can be obtained from an underlying solution step for the non-local dictionary

approach or given directly for local dictionary learning. The dictionary-dependent energy

can be rewritten as
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Using the derivation rules ((Petersen and Pedersen, 2008))

we obtain

After some rearranging, we obtain

If A is invertible we obtain
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Figure 1.
Example of Correlative Microscopy. (a) is a stained confocal brain slice, where the red box

shows an example of a neuron cell and (b) is a resampled image of the boxed region in (a).

The goal is to align (b) to (c).
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Figure 2.
Result of Image Analogies: Based on a training set (A, A′) an input image B can be

transformed to B′ which mimics A′ in appearance. The red circles in (d) show inconsistent

regions.
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Figure 3.
Flowchart of our proposed method. This method has three components: 1. dictionary

learning: learning multi-modal dictionaries for both training images from different

modalities; 2. sparse coding: computing sparse coefficients for the learned dictionaries to

reconstruct the source image while at the same time using the same coefficients to transfer

the source image to another modality; 3. registration: registering both transferred source

image and target image.
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Figure 4.
Prediction errors with respect to different λ values for SEM/-confocal image. The λ values

are tested from 0.05–1.0 with step size 0.05.
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Figure 5.
Results of dictionary learning: the left dictionary is learned from the SEM and the

corresponding right dictionary is learned from the confocal image.
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Figure 6.
Box plot for the registration results of SEM/confocal images on landmark errors of different

methods with three transformation models: rigid, affine and B-spline. The registration

methods include: Original Image SSD and Original Image MI, registrations with original

images based on SSD and MI metrics respectively; Standard IA SSD and Standard IA MI,

registration with standard IA algorithm based on SSD and MI metrics respectively;

Proposed IA SSD and Proposed IA MI, registration with our proposed IA algorithm based

on SSD and MI metrics respectively. The bottom and top edges of the boxes are the 25th

and 75th percentiles, the central red lines are the medians.
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Figure 7.
Convergence test on SEM/confocal and TEM/confocal images. The objective function is

defined as in (14). The maximum iteration number is 100. The patch size for SEM/confocal

images and TEM/confocal images are 10 ×10 and 15 ×15 respectively.
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Figure 8.
Results of estimating a confocal (b) from an SEM image (a) using the standard IA (c) and

our proposed IA method (d).
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Figure 9.
Results of registration for SEM/confocal images using MI similarity measure with direct

registration (first row), standard IA (second row) and our proposed IA method (third row)

for (a, d, g) rigid registration (b, e, h) affine registration and (c, f, i) b-spline registration.

Some regions are zoomed in to highlight the distances between corresponding fiducials. The

images show the compositions of the registered SEM images using the three registration

methods (direct registration, standard IA and proposed IA methods) and the registered SEM

image based on fiducials respectively. Differences are generally very small indicating that

for these images a rigid transformation model may already be sufficiently good.
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Figure 10.
Prediction errors for different λ values for TEM/confocal image. The λ values are tested

from 0.05–1.0 with step size 0.05.
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Figure 11.
Results of dictionary learning: the left dictionary is learned from the TEM and the

corresponding right dictionary is learned from the confocal image.
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Figure 12.
Result of estimating the confocal image (b) from the TEM image (a) for the standard image

analogy method (c) and the proposed sparse image analogy method (d) which shows better

preservation of structure.
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Figure 13.
Results of registration for TEM/confocal images using MI similarity measure with directly

registration (first row) and our proposed IA method (second and third rows) using (a, d, g)

rigid registration (b, e, h) affine registration and (c, f, i) b-spline registration. The results are

shown in a checkerboard image for comparison. Here, first and second rows show the

checkerboard images of the original TEM/confocal images 1 while the third row shows the

checkerboard image of the results of our proposed IA method. Differences are generally

small, but some improvements can be observed for B-spline registration.
1The grayscale values of original TEM image are inverted for better visualization
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Figure 14.
Box plot for the registration results of TEM/confocal images for different methods. The

bottom and top edges of the boxes are 25th and 75th percentiles, the central red lines

indicate the medians.
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Table 1

Data Description

Data Types

SEM/confocal TEM/confocal

Number of datasets 8 6

Fiducial 100 nm gold none

Pixel Size 40 nm 0.069μm
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Table 2

Prediction results for SEM/confocal images. Prediction is based on the proposed IA and standard IA methods,

and we use sum of squared prediction residuals (SSR) to evaluate the prediction results. The p-value is

computed using a paired t-test.

Method mean std p-value

Proposed IA 1.52 ×105 5.79 ×104

0.0002
Standard IA 2.83 ×105 7.11 ×104
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Table 3

CPU time (in seconds) for SEM/confocal images. The p-value is computed using a paired t-test.

Method mean std p-value

Proposed IA 82.2 6.7
0.00006

Standard IA 407.3 10.1
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Table 5

Hypothesis test results (p-values) with multiple testing correction results (FDR corrected p-values in

parentheses) for registration results evaluated via landmark errors for SEM/confocal images. We use a one-

sided paired t-test. Comparison of different image types (original image, standard IA, proposed IA) using the

same registration models (rigid, affine, B-spline). The proposed model shows the best performance for all

transformation models. (Bold indicates statistically significant improvement at significance level α = 0.05

after correcting for multiple comparisons with FDR (Benjamini and Hochberg, 1995).)

Original Image/Standard IA Original Image/Proposed IA Standard IA/Proposed IA

Rigid
SSD 0.5017 (0.5236) 0.0040 (0.0102) 0.0482 (0.0668)

MI 0.0747 (0.0961) 0.0014 (0.0052) 0.0888(0.1065)

Affine
SSD 0.5236 (0.5236) 0.0013 (0.0052) 0.0357 (0.0535)

MI 0.0298 (0.0488) 0.0048 (0.0108) 0.0258 (0.0465)

B-spline
SSD 0.0017 (0.0052) 0.0001 (0.0023) 0.0089 (0.0179)

MI 0.1491 (0.1678) 0.0002 (0.0024) 0.0017 (0.0052)
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Table 6

Hypothesis test results (p-values) with multiple testing correction results (FDR corrected p-values in

parentheses) for registration results measured via landmark errors for SEM/confocal images. We use a one-

sided paired t-test. Comparison of different registration models (rigid, affine, B-spline) within the same image

types (original image, standard IA, proposed IA). Results are not statistically significantly better after

correcting for multiple comparisons with FDR.)

Rigid/Affine Rigid/B-spline Affine/B-spline

Original Image
SSD 0.7918 (0.8908) 0.3974 (0.6596) 0.1631 (0.5873)

MI 0.6122 (0.7952) 0.3902 (0.6596) 0.3635 (0.6596)

Standard IA
SSD 0.9181 (0.9371) 0.1593 (0.5873) 0.0726 (0.5873)

MI 0.5043 (0.7564) 0.6185 (0.7952) 0.7459 (0.8908)

Proposed IA
SSD 0.9371 (0.9371) 0.3742 (0.6596) 0.0448 (0.5873)

MI 0.4031 (0.6596) 0.1616 (0.5873) 0.2726 (0.6596)
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Table 7

Prediction results for TEM/confocal images. Prediction is based on the proposed IA and standard IA methods,

and we use SSR to evaluate the prediction results. The p-value is computed using a paired t-test.

Method mean std p-value

Proposed IA 7.43 ×104 4.72 ×103

0.0015
Standard IA 8.62 ×104 6.37 ×103
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Table 8

CPU time (in seconds) for TEM/confocal images. The p-value is computed using a paired t-test.

Method mean std p-value

Proposed IA 35.2 4.4
0.00019

Standard IA 196.4 8.1
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Table 10

Hypothesis test results (p-values) with multiple testing correction results (FDR corrected p-values in

parentheses) for registration results measured via landmark errors for TEM/confocal images. We use a one-

sided paired t-test. Comparison of different image types (original image, standard IA, proposed IA) using the

same registration models (rigid, affine, B-spline). The proposed image analogy method performs better for

affine and B-spline deformation models. (Bold indicates statistically significant improvement at a significance

level α = 0.05 after correcting for multiple comparisons with FDR.)

Original Image/Standard IA Original Image/Proposed IA Standard IA/Proposed IA

Rigid
SSD 0.2458 (0.2919) 0.0488 (0.1069) 0.0869 (0.1303)

MI 0.2594 (0.2919) 0.0478 (0.1069) 0.0594 (0.1069)

Affine
SSD 0.5864 (0.5864) 0.0148 (0.0445) 0.0750 (0.1226)

MI 0.1593 (0.2048) 0.0137 (0.0445) 0.0556 (0.1069)

B-spline
SSD 0.0083 (0.0445) 0.0085 (0.0445) 0.3597 (0.3809)

MI 0.0148 (0.0445) 0.0054 (0.0445) 0.1164 (0.1611)
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Table 11

Hypothesis test results (p-values) with multiple testing correction results (FDR corrected p-values in

parentheses) for registration results evaluated via landmark errors for TEM/confocal images. We use a one-

sided paired t-test. Comparison of different image types (original image, standard IA, proposed IA) using the

same registration models (rigid, affine, B-spline). Results are overall suggestive of the benefit of B-spline

registration, but except for the standard IA do not reach significance after correction for multiple comparisons.

This may be due to the limited sample size. (Bold indicates statistically significant improvement after

correcting for multiple comparisons with FDR.)

Rigid/Affine Rigid/B-spline Affine/B-spline

Original Image
SSD 0.0792(0.1583) 0.1149(0.2069) 0.3058(0.4865)

MI 0.4325(0.4865) 0.4091(0.4865) 0.3996(0.4865)

Standard IA
SSD 0.3818(0.4865) 0.0289(0.1041) 0.0280(0.1041)

MI 0.4899(0.5188) 0.0742(0.1583) 0.0009(0.0177)

Proposed IA
SSD 0.3823(0.4865) 0.0365(0.1096) 0.0216(0.1041)

MI 0.5431(0.5431) 0.0595(0.1531) 0.0150(0.1041)
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Algorithm 1

Image Analogies.

Input:

Training images: A and A′;

Source image: B.

Output:

’Filtered’ source B′.

1: Construct Gaussian pyramids for A, A′ and B;

2: Generate features for A, A′ and B;

3: for each level l starting from coarsest do

4:

 for each pixel , in scan-line order do

5:

  Find best matching pixel p of q in Al and ;

6:

  Assign the value of pixel p in A′ to the value of pixel q in ;

7:   Record the position of p.

8:  end for

9: end for

10:

Return  where L is the finest level.
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Algorithm 2

Coordinate Descent

Input: x = 0, λ > 0, β = ATb

Output: x

 while not converged do

1 x̃ = Sλ (β)1;

2 j = arg maxi |xi − x ̃i|, where i is the index of the component in x and x̃;

3
, i ≠ j, and ;

4
, and , where (AT A)j is the jth column of (AT A).

 end while

1Sa(v) is soft thresholding operator where Sa(v) = (v − a)+ − (− v − a)+.
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