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Abstract Concentrations of different gases and volatiles
present or produced inside a fruit are determined by the
permeability of the fruit tissue to these compounds.
Primarily, surface morphology and anatomical features of
a given fruit determine the degree of permeance across the
fruit. Species and varietal variability in surface character-
istics and anatomical features therefore influence not only
the diffusibility of gases and volatiles across the fruits but
also the activity and response of various metabolic and
physiological reactions/processes regulated by these com-
pounds. Besides the well-known role of ethylene, gases and
volatiles; O2, CO2, ethanol, acetaldehyde, water vapours,
methyl salicylate, methyl jasmonate and nitric oxide (NO)
have the potential to regulate the process of ripening
individually and also in various interactive ways. Differ-
ences in the prevailing internal atmosphere of the fruits may
therefore be considered as one of the causes behind the
existing varietal variability of fruits in terms of rate of
ripening, qualitative changes, firmness, shelf-life, ideal
storage requirement, extent of tolerance towards reduced
O2 and/or elevated CO2, transpirational loss and suscepti-
bility to various physiological disorders. In this way,
internal atmosphere of a fruit (in terms of different gases
and volatiles) plays a critical regulatory role in the process
of fruit ripening. So, better and holistic understanding of
this internal atmosphere along with its exact regulatory role
on various aspects of fruit ripening will facilitate the
development of more meaningful, refined and effective
approaches in postharvest management of fruits. Its

applicability, specially for the climacteric fruits, at various
stages of the supply chain from growers to consumers
would assist in reducing postharvest losses not only in
quantity but also in quality.

Introduction

Fruits are an important source of energy, vitamins,
minerals, dietary fibers, pigments (carotene, xanthophylls,
anthocyanins etc.), flavonoids, phenolics and other phyto-
chemicals in human diets. Fruits are also functional foods
that are a source of nutraceuticals. It is through anti-
oxidizing capacity along with anti-carcinogenic and anti-
mutagenic activities that the pigments and other phyto-
chemicals present in the fruit exhibit their protective effects
against chronic disease states, different types of cancers,
macular and cardiac vascular diseases and other age-related
problems (Rao and Agarwal 1998; Chen et al. 2001; Powell
and Bennett 2002; Giovannucci 2002; Mares-Perlman et al.
2002). These health benefits emphasise the need and
importance of fruits in our daily diet. Increased awareness
of these health benefits has led to a significant change in the
food consumption habits of people. This has resulted in an
increase in the demand for high quality, fresh and nutritious
fruits with almost no residue level of any toxicant.
Increased demand for fruits requires not only the higher
production but also improved practices in quality manage-
ment, storage, transport and processing. Presently, huge
losses in quality and quantity occur between harvesting and
consumption of fruits. Extent of postharvest losses for few
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fruits in developing countries and India are presented in
Table 1. As per an estimate by Kader (2005), about one-
third of all the fruits produced are never consumed by
humans. Furthermore, losses occurring between production
and retail sites are higher in the developing countries in
comparison with developed countries. In India, about 30%
of fruits and vegetables are lost after their harvest due to
mismanagement (Pulamte 2008). This therefore emphasises
the need for a massive thrust to reduce the postharvest
losses (Pulamte 2008).

Postharvest physiology, shelf-life and losses in fruits are
interlinked and primarily governed by the last phase of fruit
maturation referred to as ripening. Fruit ripening involves
many physiological, biochemical and developmental
changes occurring through a coordinated and genetically
regulated programme (Stepanova and Alonso 2005; Barry
and Giovannoni 2007; Bouzayen et al. 2010). Fruits, in
general, show two distinctive respiratory patterns during the
course of ripening and on this basis fruits are categorized
into climacteric and non-climacteric groups (Biale 1964;
McMurchie et al. 1972; Biale and Young 1981; Bufler
1986; Abeles et al. 1992; Lelievre et al. 1997; Yamane et al.
2007). Apple, mango, papaya, guava, kiwi, tomato,
cherimoya, banana, pear, apricot, peach, plum, avocado
and plantain etc. are climacteric fruits. On the other hand,
citrus fruits (orange, grapefruit, lemon etc.), berries (cherry,
strawberry, blackberry, cranberry etc.), pineapple, lychee,
melon, loquat, pomegranate, cucumber and tamarillo etc.
belong to non-climacteric group of fruits. Climacteric fruits
show a dramatic increase in rate of respiration during
ripening and this is referred as climacteric rise. The rise in
respiration is either simultaneous or it is just followed after
the rise in the rate of ethylene production (Burg and Burg
1962, 1965a; Lelievre et al. 1997). The process of ripening
can be triggered and also accelerated by exogenous
ethylene treatment in climacteric fruits (Tucker 1993). The
plant hormone ethylene plays a major role in the ripening
process of climacteric fruits and the presence of ethylene

and its perception is required for the expression of ripening-
related genes even at advance stages of fruit ripening
(Hoeberichts et al. 2002; Alexander and Grierson 2002). On
the other hand, respiration rates increase at least temporarily
in non-climacteric fruits when treated with exogenous
ethylene. These fruits also undergo senescence more rapidly
in presence of ethylene. However, they do not undergo major
changes in composition as found in climacteric fruits with an
exception of degradation of chlorophyll in citrus fruits and
pineapples (Goldschmidt et al. 1993; Noichinda 2000).
Besides this, low levels of ethylene are involved in wound
healing and responses to various infections in some fruits of
either climacteric group or non-climacteric group (Saltveit
1999; Pech et al. 2003; Van Loon et al. 2006). In general,
perishability of climacteric fruits is more rapid and severe
than the non-climacteric fruits (Mishra and Gamage 2007).
This is basically due to faster rate of ripening and ripening-
related changes in climacteric fruits. In this way, ripening of
fruits has direct implications for human diets and nutrition as
well as for the agricultural industry (Giovannoni and El-
Rakshy 2005).

Postharvest metabolic changes leading to increased
respiratory activity and transpirational loss of water are
the two basic aspects that determine the storage life and
quality of fruits. Retardation of ripening and associated
physiological and biochemical changes (transpiration, res-
piration, ethylene production, softening and compositional
changes) have been achieved by the application of
controlled atmosphere (CA), modified atmosphere (MA)
or modified atmosphere packaging (MAP) (Kader 1986;
Leshuk and Saltveit 1990; Kanellis et al. 1993; Kader and
Saltveit 2003a, b; Yahia 2009; Kanellis et al. 2009;
Mangaraj and Goswami 2009). These approaches have in
fact become the established methods for extending the
postharvest-life of fruits (Yahia 2009; Mangaraj and
Goswami 2009; Kader 2009; Sharma et al. 2011; Ramayya
et al. 2011). It has been observed that CA, MA and MAP
basically modify the internal gaseous atmosphere of the
fruits in favour of low O2 to CO2 ratio (Banks et al. 1993;
Elyatem et al. 1994; Klieber et al. 1996; Baldwin et al.
1999; Amarante et al. 2001; Gil et al. 2002; Kader 2009;
Berry and Sargent 2009; Mangaraj and Goswami 2009;
Kanellis et al. 2009; Yahia 2009; Ramayya et al. 2011; Nath
et al. 2011). These methods also regulate ethylene produc-
tion and its response (Scully and Horsham 2008; Yahia
2009; Mangaraj and Goswami 2009; Kanellis et al. 2009).
Today, different edible coatings with wide variations in
their permeability to O2, CO2 and water vapours are also
available for practical use (Mishra et al. 2010). Since, these
findings have practical relevance for above storage methods
and therefore further investigations on the composition of
the internal atmosphere in fruits have been undertaken by
various workers.

Table 1 Estimated postharvest losses for some fruits in developing
countries and India

Fruit Postharvest losses (% of production)

In developing countries In India

Apple 14 10–25

Banana 11–14 12–14

Mango 17–37 17–37

Tomato 13–16 10–20

Citrus 8–31 8–31

Grapes 27 23–30

(Chadha and Pareek 1993; Verma and Joshi 2000; Pulamte 2008)
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At ambient temperature the internal atmosphere in fruits
comprises a mixture of many gases and volatiles including
O2, CO2, water vapours, ethylene, alcohols, aldehydes,
acetates, esters, ketones, aromatic hydrocarbons, terpenes,
carboxylic acids, sulphur compounds, ammonia, jasmonate,
salicylates etc. (Speirs et al. 1998; Baldwin et al. 2000;
Pesis 2005; de Leon-Sanchez et al. 2009). Several workers
have suggested that these gases and volatiles as mentioned
above are involved in regulating ripening, senescence and
related processes (Herregods 1977; Lougheed et al. 1987;
Toivonen 1997). In light of this, Saltveit (2003) posed a
question—Is it possible to find an optimal controlled
atmosphere for storing fruits and vegetables? He
emphasized that it is not only the external but internal
environment of the commodity as well that determine its
storability under a given external environment. This
review investigates the range of gases and volatiles
including ethylene present in the internal atmosphere of
fruit and the factors controlling their production and
diffusion through fruit tissue. The role of some of these
gases and volatiles in regulating the ripening and
ripening-related changes in fruit at individual and
interactive levels are discussed with special reference
to climacteric fruits.

Endogenous volatiles in fruits

Higher plants and plant parts produce a large and complex
mixture of volatiles. They are considered volatile because
they evaporate when exposed to air at room temperature
and generally have low molecular weight (<250 Da) with
distinctive odour. These compounds are formed via several
biochemical pathways and they are generally found in very
small amounts (Negre-Zakharov et al. 2009; Defilippi et al.
2009). Volatiles are produced in variable amounts at
different times and in different tissues (Negre-Zakharov et
al. 2009; Defilippi et al. 2009). Plants use various
mechanisms to regulate the production and levels of these
volatiles (Negre-Zakharov et al. 2009; Defilippi et al.
2009). The timing of release of many plant volatiles is
closely tied to pollination and fruit dispersal and this has
ecological and evolutionary significance (Vaughn 2007;
Negre-Zakharov et al. 2009). Maturity or ripening stage of
the fruit also influences eating quality and sensory quality
of aroma (Lalel et al. 2003).

Discovery of the plant hormone ethylene brought the
realization that at least some of the gaseous compounds
produced and emitted by the plants may have important
physiological roles. At present, more than 1,000 organic
compounds have been reported to be emitted by plants
(Dudareva et al. 2004). The aroma produced by various
fruits during ripening was reviewed by Defilippi et al.

(2009) and Pandit et al. (2009). Approximately 400 volatile
compounds have been found in the ripening tomato fruit
(Baldwin et al. 1991; de Leon-Sanchez et al. 2009). The
volatiles present in fruits are as follows: ethylene, ethanol,
acetaldehyde, methanol, acetone, butanol, ethane, hexanol,
hexenol, 3-methyl butanal, ethyl acetate, propyl acetate,
butyl acetate, propanol, acetate esters, ethyl butyrate,
geraniol, octenal, octenol, citral, terpenes, carboxylic acids,
sulphur compounds, ammonia, jasmonate, benzaldehyde
and methyl salicylate besides other types of iso-, sec- or
tert-alcohols, aromatic hydrocarbons, ketones, esters, alde-
hydes and higher carbon alcohols (Gustafson 1934; Petro-
Turza 1987; Saltveit 1989; Baldwin et al. 1991; McDonald
et al. 1996; Toivonen 1997; Frenkel et al. 1995; Speirs et al.
1998; Baldwin et al. 2000; Bai et al. 2003; Pesis 2005;
Cadwallader 2005; Negre-Zakharov et al. 2009; Defilippi et
al. 2009; de Leon-Sanchez et al. 2009).

Gaseous exchange and factors affecting the composition
of the atmosphere in harvested fruit

Gaseous exchange across the fruit surface Gaseous ex-
change occurring between a plant organ and its environ-
ment usually follows a specific path. Gas-filled intercellular
spaces are considered as the predominant pathway for gas
transport through bulky organs such as fruits (Ho et al.
2009). The rate of movement of a gas depends on the
properties of that gas molecule, the concentration gradient
and the physical attributes of the intervening barriers
(Kader 1987). In general, the rate of release of a compound
is a function of its volatility and the properties of cellular
and intracellular membranes through which the compound
has to diffuse (Dudareva et al. 2004). Comparative analysis
of volatile compounds (emitted and present within the plant
tissues) revealed that the emission of volatiles is not merely
a function of their differential volatility but it also involves
a cytologically organized excretory process (Gershenzon et
al. 2000). The membranes of the storage compartment
(where the compound exists) or epidermal cell wall might
be differentially permeable to different volatile compounds.
Little is known about metabolite trafficking between
various subcellular compartments, the mechanism of the
release process and how these processes contribute to the
regulation of volatile emission (Dudareva et al. 2004).
Usually, emission of a particular volatile compound into the
atmosphere depends on the rate of its biosynthesis and the
rate of its release (Dudareva and Pichersky 2000). Forma-
tion of volatile compounds is regulated at spatial (Pare and
Tumlinson 1997) and developmental levels (Bouwmeester
et al. 1998; Dudareva and Pichersky 2000). Further,
environmental factors such as; light, temperature and
moisture status can greatly influence the emission of
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volatiles (monoterpenes) from the leaves of plant (Staudt
and Bertin 1998; Gershenzon et al. 2000).

In natural ecosystems, evolution of volatiles by the plant
tissue is influenced to a larger extent by evapotranspiration
(Charron and Cantliffe 1995). Emission rate of volatile
organic compounds (VOCs) in Norway spruce (Picea
abies) increased exponentially with increase in the temper-
ature and temperature itself had a direct effect on the rate of
transpiration (Filella et al. 2007). In the above study,
correlation analysis indicated very clearly that the rate of
emission of VOCs such as; acetic acid, acetaldehyde,
methanol, acetone, ethanol, hexanal, hexanol, monoter-
penes and methyl salicylate is directly associated with the
rate of transpiration. This study also emphasised the role of
partitioning of specific VOC between the gas and liquid
phases (as described by the Henry’s law constant) in
determining the rate of emission of volatiles from the plant
surfaces. The release of volatiles from the plant organs with
lower rates of transpiration (such as bulky fruits with well-
developed diffusion barriers on the surface/peel/pericarp)
will be less and therefore, the volatiles can accumulate in
the tissues of such organs. Keeping in view the varietal
variation in diffusion barriers and their characteristics for
different plants and plant parts, the accumulation of
volatiles would also be different and thereby their effect
on various physiological processes.

In general, there are three major routes through which
gaseous exchange take place for a harvested commodity 1.
Outermost layers (cuticle, cuticular cracks and periderm), 2.
Apertures (stomata and/or lenticels) and 3. Stem scar region
(Solomos 1987; Ben-Yehoshua and Rodov 2003). In view
of the presence of cracks on cuticular layer, exchange of
gases and volatiles was reported through cuticular layer and
it is primarily determined by extent of cracks present on
cuticular layer (Ehret et al. 1993). For most of the
horticultural produce, the skin represents the major barrier
to gas exchange (Solomos 1987; Kader 1987). The
diffusivity of gases for the fruit flesh is 10–20 times higher
than the diffusivity from the skin (Solomos 1987; Banks
and Nicholson 2000). In tomato, the stem scar (the place
where the pedicel along with sepals connects the fruits to
the stem) is the predominant site for gas exchange
(Cameron and Yang 1982). It was also demonstrated that
85–90% of ethylene exchange occurs through this region of
tomato fruit (de Vries et al. 1995).

Basis of gaseous exchange across the fruit boundary Gas
diffusion in fruits follows Fick’s law (Burg and Burg
1965b). This law states that the flux of a gas, diffusing
normally through a barrier, is dependent on the diffusion
coefficient and concentration gradient. Burg and Burg
(1965b) and then Solomos (1987) developed relationships
between rates of ethylene production by fruit and the

internal concentrations and these relationships were sur-
prisingly found similar across many fruit species. There is
morphological and anatomical basis for gaseous exchange
across the boundaries of harvested fruits (Cameron and
Yang 1982; Solomos 1987; Kader and Saltveit 2003a, b).
As per Kader and Morris (1977) anatomical features and
not any alterations in biochemical pathways are the reasons
for differences in the diffusion resistance. External (mor-
phological) and internal (anatomical) features were reported
to determine the keeping quality of grapes (Uys 1974),
storability of tomato berries (Niemirow-Krizsai and Csillag
1994), firmness or mechanical resistance of tomato (Wann
1996) and olive fruits (Mulas 1994), O2 to CO2 ratio in
tomato fruits (Yang and Shewfelt 1999; Kader and Saltveit
2003a, b; Pech et al. 2003) and ripening index, physiolog-
ical loss in weight and rate of respiration in tomato fruits
(Paul and Srivastava 2006). In a study by Bai et al. (2003),
it was shown that ‘Granny Smith’ apples have relatively
very few open pores (lenticels) in their peel surface and
therefore they suffer from low rates of gas exchange and as
a result these fruits are prone to develop off-flavours after
they have been coated with waxes. In contrast, ‘Delicious’
apples have many open lenticels and they retain sufficient
gas exchange even when coated with waxes. So, waxed
‘Delicious’ apples accumulate only low concentrations of
ethanol and off-flavours (Bai et al. 2003). Likewise, it was
reported that ‘Murcott’ mandarins are much more sensitive
to anaerobic stress conditions than ‘Star Ruby’ grapefruit
when exposed to N2 enriched atmosphere because they
showed much more rapid and greater increase in respiration
rates, internal CO2 concentrations, production of ethanol
and acetaldehyde and development of off-flavour (Shi et al.
2005). When mandarin and grapefruits were compared by
Shi et al. (2007), it emerged out that during postharvest
storage or after exposure to anaerobic atmospheres,
mandarin develops off-flavour much more rapidly than
grapefruit. The occurrence of off-flavour was associated
with increase in the levels of ethanol and acetaldehyde.
Anatomical observations revealed that although the total
thickness of the peel [comprising the albedo, the white
inner layer and the flavedo (the coloured outer layer)] was
greater in grapefruit but it was more condensed in
mandarins. So, it was concluded that mandarins accumulate
larger amount of acetaldehyde and ethanol after harvest
than grapefruit because of higher activity of enzyme
alcohol dehydrogenase (ADH) in the juice vesicles and
lower permeability of their peel to gases (Shi et al. 2007).
The extent of diffusibility of gases across the fruit
boundaries therefore determines the internal atmosphere of
the fruit in terms of the levels of O2 and CO2 (Nuevo et al.
1984; Ben-Yehoshua et al. 1983). Thus, the composition of
the internal atmosphere of the fruit is always different to the
external atmosphere in which it is kept (Dadzie et al. 1993).
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Peel of the fruit acts as a barrier due to different layers of
plant tissues including aqueous, cuticular and waxy layers.
Exchange of gases in fruits through the peel via diffusion
from the openings (stomata and lenticels) is proportional to
difference in the concentrations of gases across the barrier,
total area of the peel, solubility of a gas in peel, solid state
diffusion coefficient and total hole area available on the
peel surface (as contributed by openings of stomata and/or
lenticels) (Hagenmaier 2004, 2005). Gas transport in fruit
tissue is governed by diffusion as well as by permeation.
The permeation is basically caused by overall pressure
gradient of a given gas (Ho et al. 2006b). So, permeation-
diffusion–reaction model was applied to study gas transport
in intact pear. Permeation was found to be minimum across
skin and it gradually increased for cortex and vasculature
tissues of pear fruit (Ho et al. 2006b).

Gas transport properties of fruits are important in
understanding the internal atmosphere of fruits specially
during their controlled atmosphere storage. Temperature
had stronger effect on diffusivity of CO2 when compared
with O2 (Ho et al. 2006a). For pear fruit, gas diffusibility in
vertical axis was higher than the equatorial radius axis.
Diffusivity was also found to be lesser in brown tissues of
brown heart disorder of pear than the healthy tissue (Ho et
al. 2006a). Gas exchange to a large extent depends on the
arrangement pattern of cells and intercellular spaces
(Mendoza et al. 2007). In view of this, a very comprehen-
sive model of gas exchange of pear fruit was proposed for
explaining the development of physiological disorder such
as core breakdown and its role in long-term storage of this
fruit (Franck et al. 2007). In the above study, the effect of
the actual 3-D tissue structure of plant organs has been put
forward but this could not be quantified for explaining gas
exchange in plant tissues. Later on, Verboven et al. (2008)
used high-resolution phase tomography (making use of
synchrotron radiation) to explore the 3-D structure and
cellular arrangements of pome fruit tissues in their natural
state (i.e., with high water content) up to sub-micrometer
resolution. For this study, pome fruits like; apple and pear
were selected because their gas exchange properties have
been shown to be very different and closely related to their
storage lives (Schotsmans et al. 2004; Ho et al. 2006a, b;
Franck et al. 2007; Ho et al. 2008). Results obtained by
Verboven et al. (2008) revealed very clearly that the apple
fruit had more voids than pear. The differences in void
fraction (23% for apple cortex and only 5% for pear cortex)
along with the extent of network architectures of voids
explained the better ability of tissues to facilitate the gas
exchange in apple fruit. This lower void volume in pear
fruit compared to apples as shown by Verboven et al.
(2008) was able to explain the earlier findings where pear
fruit was found to be more sensitive to physiological
disorder such as internal browning and its relation to gas

exchange and the availability of internal O2 by Lammertyn
et al. (2003), Franck et al. (2007) and Ho et al. (2008).
Likewise, there is risk of developing physiological disor-
ders in pear fruit during the course of ripening. This was
shown to be due to increase in respiration resulting in
anoxia at and near the center of the fruit even under the
recommended storage conditions (Ho et al. 2010). Very
recently, quantification of microporosity in apple and
tomato fruits was done by magnetic resonance imaging
(MRI) for the better understanding of relationship between
gas transfer and various disorders in fruits during their
postharvest-life (Musse et al. 2010).

Variability and causes of differences in internal
atmosphere of fruits

There exists a large variability in the internal atmosphere of
fruits belonging to different species, variety/cultivar and
developmental stages. Resistance to diffusion of CO2 was
found to vary with fruit, variety of a fruit and also size and
maturity stage of fruit (Kader and Morris 1977; Zagory and
Kader 1988). There is varietal variability in outer surface
morphology as well as in internal anatomical features
(distribution of trichomes, stomata and lenticels, thickness
of cuticle and extent of cuticular cracks etc.) (Kader and
Morris 1977; Zagory and Kader 1988; Paul and Srivastava
2006; Paul et al. 2007, 2010b). It is the combinations of all
these features that determine the permeance or resistance of
gaseous movement across the fruit (Saltveit 1999; Paul et
al. 2007). Variations in the amount, composition and
ultrastructure of cuticular/epicuticular wax among several
apple cultivars were documented by Belding et al. (1998).
Apart from this, morphological and mechanical properties
of the cuticle as well as the epidermis were subjected to
considerable change during growth and ripening of tomato
fruit (Bargel and Neinhuis 2005). Number of stomata show
significant difference among the cultivars of pear fruit
(Kovacs et al. 1994) and sweet cherry (Peschel et al. 2003).
Likewise, varietal variations in the number of lenticels,
deposition pattern of cuticular/epicuticular wax, amount of
cuticle and wax and internal anatomy of peel and exocarp
regions were reported in mango fruits (Dietz et al. 1988;
Paul et al. 2007). In tomato fruit, cuticle appeared to
provide an excellent barrier (Thompson 2003) and as a
result it may not contribute significantly for overall gaseous
exchange across the fruit. However, instead of stomata,
trichomes were observed on the surface of tomato fruits and
trichome base cells are transformed into lenticels during
maturation of the fruit (Clendenning 1941; Blanke 1986;
Paul and Srivastava 2006). There are varietal differences in
the number of trichomes, tendency of trichomes to get
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transformed into lenticels, density of lenticels and the
dimension of stem scar portion of tomato fruits (Paul and
Srivastava 2006).

During the development, maturation and ripening—
fruits undergo changes in texture, firmness, skin colour,
composition of aroma and flavour volatiles, chemical
composition (sugar content, acidity etc.), respiration and
ethylene production (Fig. 1). Ratio of O2 to CO2 also gets
altered with the growth/development/maturity of the fruit
(Burg and Burg 1965a, b; Burg 1968; Kader and Morris
1977; Zagory and Kader 1988; Saltveit 1999). Gas
exchange properties (specifically due to skin resistance)
are not found to be consistent with the growth and maturity
of the fruit. The reason for this may be the changes that
occur in the anatomical properties and anatomical features
of the fruit itself during its development and maturation
(Zagory and Kader 1988; Longhurst et al. 1994; Kader and
Saltveit 2003a; Bargel and Neinhuis 2005; Paul and
Srivastava 2006; Paul et al. 2007; Ho et al. 2008; Paul et
al. 2010b). In another study, selected dose of 1-
methylcyclopropene (1-MCP) delayed the ripening of
tomato fruits in a variety dependent manner (Paul et al.
2010a). Earlier, similar results were demonstrated in apple
by Rupasinghe et al. (2000) and Watkins et al. (2000). Such
differential effect might be due to the differences in the
diffusion/absorption/retainability of 1-MCP by different
varieties in view of the differences in surface morphology,
anatomical features, contents of lipids and other cellular
constituents of fruits (Kader and Saltveit 2003a, b; Dauny
et al. 2003; Paul and Srivastava 2006; Nanthachai et al.
2007; Paul et al. 2010a). Physiological and biochemical
differences and also the variations in the levels of ethylene,
CO2 and O2 etc. for the plant-attached and plant-detached

fruits for both the categories of fruits i.e., climacteric and
non-climacteric were described along with their roles on the
process of fruit ripening and in explaining the existing
varietal variability in the rate of fruit ripening by Paul et al.
(2011a).

Volatile composition of fruits and vegetables often
shows wide range of variation. Such variations can partly
be explained due to differences in the experimental
procedures but, much of the variation is likely due to the
varietal differences only. For example, wide differences in
the concentrations of volatile were recorded in different
varieties of apricot (Guichad and Souty 1988). The levels
and proportions of different volatiles were also found to be
responsible for the characteristic differences in flavour
among the varieties of apricot (Guichad and Souty 1988).
Similarly, Larsen and Poll (1990) found differences in
flavour among the 10 raspberry cultivars due to variation in
production of aroma volatiles. In apple cultivars, wide
differences in susceptibility to scald were associated with
the α-farnesene content (Huelin and Coggiola 1968). Gran
and Beaudry (1993) observed wide variability in the
threshold levels of oxygen required (at 0 °C) for the
induction of anaerobic respiration in three apple varieties
(0.7% for ‘Red Delicious’, 1.4% for ‘Red Fuji’ and about
1.9% for ‘McIntosh’). In this way, variety and storage
condition can influence the degree of accumulation of
products of anaerobic respiration such as; acetaldehyde and
ethanol in tissues. Likewise, out of two varieties of
raspberries (‘Meeker’ and ‘Qualicum’), when harvested at
red-ripe stage and stored at 1 °C with 90% RH for 7 days,
variety ‘Qualicum’ was found to be more susceptible to the
accumulated acetaldehyde, ethanol and ethyl acetate in the
MAP with high CO2 i.e., 10% CO2 with 5% O2 in
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Fig. 1 Changes in various
parameters during climacteric
fruit ripening (Source: Nath et
al. 2006)
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comparison with other MAP conditions (6% CO2 with 10%
O2 and 3% CO2 with 15% O2) (Toivonen et al. 1999). On
the basis of available literature, it was concluded by
Toivonen (1997) that conditions for induction of anaerobic
metabolism were not consistent because factors such as;
commodity characteristics, variety and temperature etc. are
the important determinants of above said metabolic shift. In
tomato fruit, differences in flavour among different varieties
were in part due to the variation in production levels of
aroma volatiles (Brauss et al. 1998). For mango fruits,
volatiles (in different varieties and at different maturity
stages) have been used as marker for identification of
different maturity stages in different varieties. So, volatiles
can thereby be used in determining the most optimum
maturity stage for harvesting of mango fruits as this can
result in attaining the best quality of harvested fruits on
ripening (Lebrun et al. 2008; Pandit et al. 2009). In another
study, discrimination of 28 apricot cultivars into four
distinguishable aroma groups was achieved by analysing
their volatile constituents (Aubert and Chanforan 2007).

Influence of the internal atmosphere on ripening
and ripening-related changes

Ripening During ripening of tomato fruits, rise in endog-
enous concentrations of CO2 and ethylene were reported
along with the decrease in the concentration of O2 (Lyons
and Pratt 1964). Significance of stem scar region as a major
site for gaseous exchange of tomato fruit was exploited by
Calbo et al. (1988) and Yang and Shewfelt (1999). They
observed drastic reduction in the rate of ripening and
thereby extension in the storage life of tomato fruits by
sealing the stem scar region of fruits. The relationship
between ripening behaviour and stem scar region of tomato
fruit in different varieties was studied by blocking the stem
scar region either completely or to different degrees (Paul et
al. 2010b). In comparison to control, complete blockage of
stem scar region of tomato fruits at green mature stage
showed three-fold reduction in ripening index% (from 78.9
to 26.2 and from 45.3 to 15.1 in varieties ‘Pusa Ruby’ and
‘Pusa Gaurav’, respectively) at 14 days after treatment but
with increased decay. It was also made clear in this study
that it is the degree of blockage of the stem scar region that
determines the extent to which the rate of respiration and
ripening were suppressed. The extent of climacteric rise
was reduced significantly in treated fruits. Suppressive
effects of these treatments were however found to diminish
with the advancement in the ripening stage of tomato fruits
that were being treated (Paul et al. 2010b). Besides the
major role of stem scar region, the lenticels on the surface
of the tomato peel also appear to control the respiration and
ripening by determining the overall exchange of gases and

volatiles depending upon the developmental stage (green
mature stage and onward) and variety of tomato (Paul and
Srivastava 2006). In all the above studies, the basic change
causing the delay in ripening or suppression of respiration
was primarily due to the lower levels of ethylene and O2 to
CO2 ratio within the fruit.

Role of ethylene in regulating the process of ripening,
senescence and postharvest aspects of fruits and vegetables
has been extensively reviewed by Kader et al. (1989), Abe
and Watada (1991) Bouzayen et al. (2010) and Paul et al.
(2011b). Earlier, Toivonen (1997) had reviewed the
accumulation of non-ethylene and non-respiratory volatiles
(alcohols, aldehydes, jasmonates, terpenes, carboxylic
acids, sulphur compounds and ammonium) and discussed
them in terms of their biological activity in harvested fruits
and vegetables. It was pointed out by Toivonen (1997) that
besides removing the ethylene, ethylene removing/absorb-
ing agents can also remove the other organic volatiles from
storage or package atmosphere (Kader et al. 1989;
Matsumoto and Ogawa 1995). Therefore, at least some
effects that were attributed due to the removal of ethylene
may in fact be related to the removal of other volatiles
which have not been measured or identified. So, there is a
strong reason to evaluate the potential role and significance
of volatiles other than the ethylene and their interaction
with ethylene in postharvest situations and under different
storage conditions (Lougheed et al. 1987; Toivonen 1997).
Different factors and conditions affecting the exchange of
volatiles (as already described and discussed above) can
influence the accumulation and release of some important
volatiles such as; ethylene, alcohols (mainly the ethanol),
aldehydes (mainly the acetaldehyde) and methanol. These
volatiles may be accumulated or released differentially and
thereby influence the ripening process in fruits (Cadwallader
2005; Pesis 2005, 2006). This has been demonstrated for the
ripening of climacteric fruits like; tomato (Kelly and Saltveit
1988; Saltveit and Sharaf 1992; McDonald et al. 1996) and
apple (Pesis et al. 1994; Pesis 1995). Besides this, levels of
volatiles are also found to be associated with storage
disorders of apple fruit like; scald (Huelin and Coggiola
1968) and internal browning (Mendoza et al. 2007). The
ripening and quality of non-climacteric fruits such as; grapes,
orange and strawberries were also influenced by these
volatiles (Saltveit and Ballinger 1983; Ke and Kader 1990;
Ke et al. 1991).

Flavour and aroma In tomato fruit, 17 volatiles have a
significant impact on characteristic tomato-like aroma
(Buttery 1993). Hexanal, cis-3-hexenal, trans-3-hexenal,
trans-2-hexenal, cis-3-hexenol, 6-methyl-5-hepten-2-one,
beta-ionone, 2-isobutylthiazole, 3-(methylthio)-1-propanol
and 3-(methylthio)-1-propanal were important in imparting
flavour to fresh red tomato (Tandon et al. 2000, 2001;
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Lewinsohn et al. 2001; Baldwin 2004). Hayata et al. (2002)
reported that tomato-like flavour was correlated strongly
with geranyl acetone, 2-methylbutanol, 3-methylbutanol
and 6-methyl-5-hepten-2-one. Distinctive volatile compo-
nents responsible for aroma and flavour in some important
fruits are presented in Table 2.

Quality of the aroma is related to concentration and
composition of volatiles present in the fruit. Negative
effects of some of the above volatiles produced under
anaerobic condition have been perceived on the quality of
aroma (Forney et al. 1991; Hansen et al. 1992) but, positive
effects of accumulation of some volatiles were also found
to be influenced by volatiles such as; acetaldehyde and
ethanol (Paz et al. 1981; Pesis et al. 1986, 1998; Saltveit
and Mencarelli 1988; Frenkel et al. 1995). These positive or
negative effects were largely found to be dependent on the
concentrations of ethanol and acetaldehyde in strawberries
and persimmon fruits (Prasad and Stadelbacher 1974; Pesis
et al. 1986). Sweetness of tomato fruit was correlated not
only with sucrose equivalents and pH but also with the
volatiles including cis-3-hexenal, trans-2-hexenal, cis-3-
hexanol , geranyl-acetone, 2-methylbutanol , 3-
methylbutanol trans-2-heptenal, 6-methyl-5-hepten-2-one
and 1-nitro-2-phenylethane. Likewise, sourness was corre-

lated with soluble solids and pH along with the volatiles
including acetaldehyde, acetone, 2-isobutylthiazole,
geranyl-acetone, beta-ionone, hexanal and ethanol (Saltveit
2005).

Fruit decay Fruit decay means any condition or sign, either
physiological or pathological in origin, that makes the fruit
unacceptable (Wills and Ku 2002). The role of low O2 to
CO2 ratio or anaerobic condition is well known in
determining the overall decay of fruits and vegetables
(Banks 1984). Such situations were reported to suppress not
only the biosynthesis but also the action of ethylene
(Kanellis et al. 1989a, b). Ethylene is known to be involved
in defense against pathogen as it stimulates phenylpropa-
noid pathway, synthesis of pathogenesis-related proteins
and induces systemic resistance (Saltveit 1999). These
findings explain the higher decay under the influence of
blockage of stem scar region of tomato fruit as observed by
Paul et al. (2010b). In tomato fruits, decay was up to 50%
or more when the stem scar portion of fruits was sealed
by coconut grease and it was primarily due to the
anaerobic conditions (Calbo et al. 1988; Yang and
Shewfelt 1999). Fruits of highbush blueberry, on the other
hand, produce antimicrobial volatiles such as trans-2-

Table 2 Distinctive components of aroma for some fruits

Fruit Compound

Apple ß-Damascenone, butyl hexanoate, isoamyl hexanoate, hexyl hexanoate, ethyl butanoate, propyl butanoate, hexyl butanoate,
butyl acetate, hexanal, 2-hexenal, ethyl 2-methylbutyrate

Banana 2-Hexenal, Eugenol, Isopentanol, decan-1-ol, 2-phenylethanol, 3-oxy-pentanoic acid, 3-methylbutanoic acid, 3-methylbutyl
acetate, butanoate, 3-methylbutanoate, 5-methoxyeugenol, eugenol-methylether, elemicin

Mango Ethyl butanoate, ethyl-2-butanoate, hexanal, cis-3-hexanal, trans-2-hexanal, γ-octalactone, γ-dodecalactone, furaneol,
α-pinene, β-pinene, 3-carene, myrcenelimonene, p-cymene, terpinolene, α-copaene, caryophyllene

Tomato Hexanal, trans-2-hexenal, cis-3-hexenal, cis-3-hexenol, β-ionone, β-damascenone, 1-penten-3-one, 3-methylbutanal,
3-methylbutanol, 2-isobutylthiazole, 3-(methylthio)-1-propanol, 3-(methylthio)-1-propanal, 1-nitro-phenylethane,
trans-2-heptenal, phenylacetaldehyde, 6-methyl-5-hepten-2-one, methyl salicylate, geranylacetone

Peach Benzaldehyde, benzyl alcohol, nonanol, linalool, ethyl hexanoate, 3-methylbutanoate, α-terpineol, γ-hexalactone,
δ-decalactone, γ-undecalactone, δ-dodecalactone, α-pyrone, 6-pentyl-α-pyrone

Orange Geranial, neral acetaldehyde, decanal, octanal, nonanal, ethyl acetate, ethyl propionate, ethyl butanoate, methyl butanoate,
ethyl-2-methyl butanoate, ethyl-3-hydroxy hexanoate, linalool, α-terpineol, limonene, myrcene, α-pinene, valencene

Lemon Citeral

Grapefruit Acetaldehyde, decanal, ethyl acetate, methyl butanoate, ethyl butanoate, 1-p-menthene-8-thiol, nootkatone, limonene,
naringin

Strawberry Hexanal, cis-3-hexanal, trans-2-hexanal, furaneol, mesifuran, ethyl hexanoate, ethyl butanoate, methyl butanoate,
ethyl-2-methyl propanoate,

Grape Methyl anthranilate, o-aminoacetophenone, furaneol, methyl furaneol, β-damascenone, β-phenylethanol, butyl alcohol,
hexyl alcohol, hexanal

trans-2-hexenal, isoamyl alcohol, acetaldehyde, isobutyraldehyde, ethyl acetate, ethyl propionate, butyl acetate,
propyl acetate, 2-methylbutanol

Linalool, geraniol, methoxyisobutylpyrazine

Raspberry 1-(π-Hydroxyphenyl)-3-butanone, α-ionone, β-ionone, geraniollinalool, benzyl alcohol, ethyl hexanoate, ethyl butanoate,
methyl butanoate, γ-decalactone, 2-heptanone, cis-3-hexanal, β-damascenone

(Salunkhe and Do 1977; Tandon et al. 2000, 2001; Lewinsohn et al. 2001; Baldwin 2004; Hui 2010)
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hexenal that conferred resistance to anthracnose fruit
decay (Polashock et al. 2007). Likewise, preharvest spray
treatment of volatile compound like ethanol with calcium
also reduced the gray mold development in table grapes
(Chervin et al. 2009).

Role of some important endogenous volatiles
in regulating fruit ripening

I. Ethylene

Ethylene is the main regulator of ripening in climacteric
fruits Ethylene (C2H4) is a naturally produced gaseous
plant growth hormone with numerous effects on growth,
development and storage-life of many fruits. As already
stated earlier, this plant hormone plays a major role in the
ripening process of climacteric fruits (Theologis et al. 1992;
Yang 1995; Nagata et al. 1995; Lelievre et al. 1997; Saltveit
1999; Barry et al. 2000; Atta-Aly et al. 2000; Klee 2002;
Alexander and Grierson 2002; Hoeberichts et al. 2002;
Bouzayen et al. 2010; Paul et al. 2011b). Ethylene is
thought to start a cascade of events leading to many
interactive signaling and metabolic pathways for the
progress of ripening in climacteric fruits (Fig. 2). The
production of aroma during ripening of fruits also depends
strongly on production and action of ethylene (Golding et
al. 1998, 1999; Rupasinghe et al. 2000; Alexander and
Grierson 2002; Lurie et al. 2002; Flores et al. 2002;
Dandekar et al. 2004; Pech et al. 2008; Defilippi et al.
2009). But, Zhu et al. (2005) made it clear that production
of aromatic volatiles may or may not be totally dependent
on ethylene.

Regulation of ethylene production It is known that the rate
of ethylene production in fruits undergoing ripening is
controlled by the ability of the fruit to synthesize 1-
aminocyclopropane-1-carboxylic acid (ACC) and to con-
vert ACC to ethylene (Fig. 2). The two key enzymatic
controls are at the levels of expression and activity of ACC-
synthase and ACC-oxidase (Tucker 1993) as shown in
Fig. 2. Two systems of ethylene production have been
defined in plants (McMurchie et al. 1972). The first one is
designated as system 1. System 1 operates and functions
during normal growth and development and in response to
various stresses. System 1 is responsible for the basal level
of ethylene production in vegetative tissues and unripe
fruits. This system is regulated in an auto-inhibitory manner
(Fig. 3). This means that even the treatment of exogenous
ethylene will not trigger any further synthesis of ethylene.
The second system is system 2 and this operates during
floral senescence and fruit ripening. This system is
responsible for the large auto-inductive (auto-catalytic)
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Fig. 2 Ethylene biosynthesis,
perception and response. SAM:
S-Adenosyl-L-methionine,
ACC: 1-Amino-cyclopropane-1-
carboxylic acid, MTA: 5-
Methylthioadenosine, HCN:
Hydrogen cyanide

System 1 of ethylene production

Yang
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C2H42 4

Action inhibitor
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Fig. 3 Simplified pathway of ethylene biosynthesis in plants showing
auto-inhibition (inhibiting its own production) and auto-induction of
ethylene (inducing its own production). These two systems are
referred as system 1 and system 2 of ethylene production respectively.
In system 1, ethylene inhibits its own production by inhibiting ( )
ACS (ACC-synthase) expression/activity. It may be noted that the
ACO (ACC-oxidase) activity is enhanced during system 1 but due to
the absence of any enhancement in the activity of ACS there is no
auto-induction. In system 2, ethylene induces more of its own

production by stimulating ( ) the expression/activity of both of the
enzymes (ACS and ACO) simultaneously and this thereby enhances
the overall ethylene production ( ). 2, 4- norbornadiene and 1-MCP
(1-methylcyclopropene) [action inhibitors of ethylene] and response
mutants of ethylene block ( ) the action/response of the ethylene and
thereby inhibit the system 2 of ethylene production (Source: Adapted
and modified from Srivastava 2001)
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increase in ethylene production during fruit ripening,
specially in the climacteric fruits (Oetiker and Yang 1995;
Lelievre et al. 1997; Nakatsuka et al. 1998; Inaba 2007)
(Fig. 3). High genetic variability in the rate of production of
ethylene has been reported for fruits such as; muskmelon,
melon, peach and kiwifruit by Kendall and Ng (1988),
Miccolis and Saltveit (1991), Klozenbucher et al. (1994)
and Xu et al. (1998) respectively. It has been demonstrated
that both these enzymes i.e., ACC-synthase and ACC-
oxidase are encoded by multigene families in various plants
and they are regulated by a number of regulating factors
(Fluhr and Mattoo 1996; Lelievre et al. 1997; Nakatsuka et
al. 1998; Barry et al. 2000; Alexander and Grierson 2002).
Both of these enzymes are also regulated by the final
product of the reaction i.e., ethylene (Lelievre et al. 1997)
(Fig. 3). Lower ethylene production due to lower activity of
ACC-oxidase was assigned as the cause for the formation
of spongy tissue disorder in ‘Alphonso’ mango (Nagamani
et al. 2010). The O2 and CO2 concentrations in the fruit
play important role in the biosynthesis of ethylene and its
action as well. This aspect has been described and
discussed in detail in the subsequent part of this review.

Besides the levels of ambient and internal concentrations
of ethylene, production of ethylene is also governed by
abiotic and biotic stresses. The interactive nature of
ethylene at plant and at the level of its immediate
environment is shown in Fig. 4. Plants and plant parts are
not the only source of ethylene but; smoke, exhaust gases,
ethylene releasing chemicals, catalytic production of ethyl-
ene from ethanol and analogs of ethylene (as produced by
variety of processes within the plant system itself) are also
important sources of ethylene or the other chemicals with

ethylene-like activities. Such sources of ethylene and
ethylene-like chemicals are common under storage/cold
storage conditions. Although different analogs of ethylene
(as listed in Table 3) have reduced activity or efficiency but,
these analogs can elicit the same physiological effects as
that of ethylene. So, presence of analogs of ethylene can
also influence the fruit ripening specially under the storage
conditions.

Ethylene-diffusibility, its internal concentration and fruit
ripening In general, there is an inverse relationship be-
tween ethylene production and postharvest-life (Gussman et
al. 1993; Zheng and Wolff 2000). Diffusion of ethylene to
the external atmosphere follows Fick’s law from flat
surfaces and it has often been applied to study the gas
exchange in bulky organs such as fruits (Ben-Yehoshua and
Cameron 1989). According to Lescourret et al. (2001), skin
permeability can vary with fruit size. Permeability and skin
area are highly variable among different species and also
within the same species (Cameron and Reid 1982).
Ethylene is diluted in fruit tissues and diffuses into the
atmosphere and therefore according to Ben-Yehoshua and
Cameron (1989), fruit volume and gaseous permeability of
skin are important biophysical traits of fruits that need to be
considered when analysing emission of ethylene.

Saltveit (1999) described that once the ripening of
climacteric fruits has started, the internal ethylene concen-
tration increases quickly to a much higher levels (even up
to 100 μl l−1). This is due to the stronger diffusion
resistance specially at later stages of fruit development.
Ethylene concentration in tomato fruit was reported to
surpass a threshold value of 4.9 ppm in order to induce
ripening (Knegt et al. 1974). Work carried out by
Sawamura et al. (1978) indicated that during the ripening
of tomato fruits average ethylene concentration was
unusually high in plant-attached fruits (5.4 ppm; on an
average with a range from 2 to 13 ppm depending upon
cultivars and seasonal conditions) in comparison to plant-
detached tomato fruits (where the values for ethylene
dropped to a lower level i.e., 1.4 ppm on an average).
Since, such lower levels of ethylene are more commonly
found in ethylene-induced processes and therefore the
results suggested the possibility of presence of ethylene
antagonizing factor in the plant-attached fruits (Sawamura
et al. 1978). This concept might be true but, drastic
reduction in the levels of ethylene in plant-detached fruits
in comparison with plant-attached fruits might also be
because of more effective gaseous exchange across the stem
scar region of the harvested tomato fruits in comparison
with the fruits that are still attached with the mother plant
where the stem scar region is not exposed (as it is linked
with pedicel). This explanation appears to be more relevant
in view of the report by de Vries et al. (1995) where it was

Exhaust, pollution, fruit
ripening etc.

Atmospheric
ethylene

Eth l bi th iEthylene biosynthesis

Plant tissueAbiotic Biotic        Plant tissuestress stress

Plant response

Fig. 4 Interaction of ethylene with plant/plant parts and its immediate
environment (Source: Adapted and modified from Saltveit 1999)
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found that 85 to 90% of ethylene released by tomato fruit
takes place through this stem scar region only.

Basic studies on the effect of ethylene on respiration
have been done in climacteric as well as in non-climacteric
fruits. Application of propylene (an analogue of ethylene)
was reported to initiate an increase in respiration in
climacteric fruits as well as in non-climacteric fruits but,
this propylene-mediated induction or rise in the endogenous
ethylene production occurred only in climacteric fruits
(McMurchie et al. 1972; Yamane et al. 2007). In climacteric
fruits like; banana, mango and tomato a substantial
proportion of rise in rate of respiration is reported to be
contributed by cyanide-insensitive or cyanide-resistant
respiration (Kumar and Sinha 1992; Pandey et al. 1995;
Reddy and Srivastava 1999). In contrast to climacteric
fruits, cyanide-resistant respiration is present only to a
limited extent in non-climacteric fruits. In these fruits, the
upsurge in respiration and ethylene is either not observed or
it is only transitory even after the application of exogenous
ethylene (Lurie and Klein 1989; Kays and Paull 2004). A
definite ethylene-mediated stimulation of respiration was
however noticed in the peel of citrus fruits (non-climacter-
ic) during their ripening (Goldschmidt 1997). Recently, it
was pointed out by Paul et al. (2011a) that more
information on the interactive and regulatory aspects of
ethylene on the respiration (specially at biochemical and
molecular levels) are required.

The concept of binding of ethylene to its receptor in
plant system is widely accepted (Sisler and Yang 1984) and
has also been proven beyond doubt (Sisler and Serek 1997;
Sisler et al. 2006). But, usually, this aspect has not been
taken into consideration in the studies dealing with
resistance of the fruits to diffusion and exchange of gases

(Ben-Yehoshua et al. 1985). So, more has to be learned
about the retention and release of bound ethylene in plant
tissues in relation to physiological activity of ethylene
(Goldschmidt et al. 1993). In this direction, a theory of
ethylene emission by tomato fruit was developed and used
as a base to develop simulation model called ‘ETHY’ by
Genard and Gouble (2005). This model was found to be
highly sensitive to the parameters like; permeability of skin
surface, internal concentration of O2, CO2 and ACC,
change in fruit growth and temperature, activities of
ACC-oxidase and ACC-synthase, concentration of ethylene
itself and ATP production status. Besides this, changes in
the levels of ethylene receptors and/or sensitivity towards
the ethylene with the development and ripening have been
reported not only in climacteric fruits like; tomato (Kevany
et al. 2007, 2008), banana (Golding et al. 1999) and apple
(Johnston et al. 2009) but also in non-climacteric fruits like;
citrus (Goldschmidt 1997) and melon (Bower et al. 2002;
Pech et al. 2008) and in Arabidopsis plant as well (Yoo et
al. 2009).

II. Oxygen and carbon dioxide

Low oxygen From outer to inner parts of plant organs
(roots, tubers, seed and fruit etc.), levels of oxygen (O2)
showed decreasing trend (Lammertyn et al. 2003). For
fruits in general, same is being presented in Fig. 5.
Difference in the depletion of internal O2 levels in different
kind of fruits under MA condition was observed (Sornsri-
vichai et al. 1998). Yip et al. (1988) claimed that 50%
reduction in ethylene production could be obtained at 1%
level of O2. This is primarily because of the fact that O2 is

Table 3 Relative activity of
ethylene and its analogs in pea
straight growth bioassay test

(Burg and Burg 1967; Abeles
and Gahagan 1968; Abeles et al.
1992; Saltveit 1999)

Gases Formula ppm (μl l−1) in gas phase for half-maximum activity

Ethylene C2H4 0.1

Propylene C3H6 10

Vinyl chloride C2H3Cl 140

Carbon monoxide CO 270

Acetylene C2H2 280

Vinyl fluoride C2H3F 430

Methyl acetylene (Propyne) C3H4 800

Vinyl bromide C2H3Br 1,600

Allene (Propadiene) C3H4 2,900

Vinyl methyl ether C3H6O 10,000

Ethyl acetylene (1-butyne) C4H6 11,000

1-Butene C4H8 27,000

Vinyl ethyl ether C4H8O 30,000

Carbon dioxide CO2 30,000

1, 3-Butadiene C4H6 500,000
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itself a substrate for the reaction catalysed by the enzyme
ACC-oxidase (Fig. 2). It has already been reported that O2

is required for the synthesis as well as the action of ethylene
in fruits including tomato (Burg and Burg 1967). Fruits
show reduction in respiration with lowering of O2 in the
surrounding atmosphere and at specific reduced level of O2

there is induction of anaerobic respiration which leads to
fast breakdown of sugars and this is named as the Pasteur
effect (Kader 1986; Boersig et al. 1988). The Pasteur effect
has practical importance in the modified atmosphere
storage of fruits (Weichmann 1986). Oxygen concentrations
must be managed so that aerobic respiration is minimised
but anaerobic respiration, which leads to fast breakdown of
sugars, is avoided (Kader 1986; Weichmann 1986; Boersig
et al. 1988; Kubo et al. 1996). It was reported by Saltveit
(2003) that the optimum level of O2 concentration needed
to maintain the aerobic respiration is not only different for
different commodities but it also shifts for a given
commodity over a period of time during storage. In tomato
fruits, low O2 caused not only an increase in the production
of ethanol and acetaldehyde but it also delayed the ripening
in comparison to control (Klieber et al. 1996). In bulky and
dense storage organs (such as; apple fruit, potato tubers and
legume seed pods), internal O2 concentration may fall to
low levels of 8–10% near the surface and even to a very
low levels of 2–5% in the center. Such conditions may
enhance anaerobic respiration and trigger the accumulation
of acetaldehyde and ethanol (Magness 1920; Rolletscheck
et al. 2002). In tomato and pear fruits, hypoxia [the term
loosely applies to any partial pressure of O2 that is less than
21 kPa Chervin et al. (1996)] can also result in increase in
activity of pyruvate decarboxylase (PDC) and ADH (Nanos

et al. 1992; Chen and Chase 1993). The activities of
isoenzymes of ADH were found to be inversely related to
the levels of O2 (Kanellis et al. 1991). Below a certain level
of O2, the rise in CO2 production indicates a switch to
fermentative metabolism. This O2 level has been called as
the anaerobic compensation point (ACP) (Leshuk and
Saltveit 1990). The ACP may vary for different fruits and
for the same fruit at different maturity and at different
storage temperatures besides being affected by different
varieties of a given fruit (Boersig et al. 1988; Gran and
Beaudry 1993; Kubo et al. 1996). McGlasson and Wills
(1972) suggested that storage of green banana fruits at low
O2 (3%) limits the operation of Krebs cycle at two steps 1.
Between, either oxaloacetate or pyruvate and citrate and 2.
Between 2-oxoglutarate and succinate. Besides this, this
condition also caused the reduction in the activity of
enzyme malate synthase which is involved in glyoxylate
cycle.

Susceptibility of apple fruit to low O2 injury in CA
storage was found to be positively correlated with resis-
tance of the fruit towards the diffusion of gases. For a given
strain/cultivar, resistance to gas diffusion was found to be
affected by fruit’s maturity, duration of storage and whole
fruit volume (Park et al. 1993). It was noticed that,
‘Marshall’ strain of McIntosh apple had higher resistance
and thereby it showed more susceptibility to low O2 injury
as this strain accumulated ten times higher ethanol when
compared with ‘Rogers’ (another strain of McIntosh apple)
(Park et al. 1993). This demonstrates the extent of varietal
variability among the fruits for response towards their
internal atmosphere and specially for the lower concen-
trations of O2.

Modified atmospheres with low concentrations of O2

can slow down the deterioration of fruits by decreasing
respiration, ethylene production and tissue sensitivity to
the ethylene (Kader et al. 1989). The extent of decrease in
ethylene production therefore depends not only on the O2

concentration which is present in the fruit’s internal
atmosphere but also on the sensitivity of ethylene
production system under a prevailing concentration of
O2. Sanders and de Wild (2003) reported lower partial
pressure of O2 (lower than the external partial pressure of
O2) due to rapid consumption of O2 by the tomato fruit
and higher resistance of fruit to the diffusion of O2.
Reduced O2 or elevated CO2 decreased the respiration rate
(Smith et al. 1987a). In bulky storage organs such as fruits
(where the length of the diffusion path may be consider-
able), hypoxia conditions have been demonstrated (Ho et
al. 2008). So, low O2 stress may occur within the fruit as it
grows and the resistance to the entry of O2 from the
atmosphere into the fruit (via diffusion process through
the skin and thickened cell layers of the cortex) becomes
significant.
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In avocado fruit, synthesis of cellulase and polygalactur-
onase was found to be directly related to the levels of O2.
Insufficient availability of O2 can decrease the activities of
cellulase and polygalacturonase (Knee 1982; Kanellis et al.
1989a, 1991). These two enzymes are involved in causing
softening of fruits during ripening. In general, it has been
observed that treatment to the fruits just prior to their
storage with the condition like anaerobic or even exposure
to the metabolites which are produced under such condition
(like; acetaldehyde and/or ethanol) lead to improvement in
fruit quality (Pesis 2006).

High carbon dioxide There is a decreasing gradient in CO2

concentrations from the inner parts of the fruit to the
surface, in reverse to the gradients observed for O2 (Fig. 5).
High CO2 was reported to reduce the activity or synthesis
of various enzymes of respiratory metabolism (Kerbel et al.
1988; Lange and Kader 1997a) including oxidative phos-
phorylation (Shipway and Bramlage 1973). Activation of
enzymes of glyoxylate cycle was noticed in cucumber fruits
when fruits were exposed to the environment of 60% CO2

(Yang et al. 1998). As per Lange and Kader (1997b),
elevated CO2 could influence the respiration negatively by
changing the intercellular pH. Studies on respiration and the
factors influencing the respiration become important be-
cause the potential shelf-life of harvested plant parts
(including fruits) was found to be closely related to the
rate of respiration of the plant part (Uys 1974; Kader 1987;
Varoquaux and Ozdemir 2005; Kader and Saltveit 2003b).
Bufler (1984) reported that CO2 at high concentrations
competitively inhibits the effects of ethylene by preventing
the auto-induction of ACC-synthase, as shown in Fig. 6.
The inhibitory effect of CO2 on auto-induced ethylene
production in climacteric fruits could be due to competition
between CO2 and ethylene for the same active site (Burg
and Burg 1967; Mathooko et al. 1995). As per Burg and
Burg (1967), the amount of CO2 in the intercellular spaces
of fruits at pre-climacteric stage is low but this may
approach to higher levels of around 10% during ripening
and post-climacteric phase. This higher endogenous level of
CO2 probably raises the threshold concentration of ethylene
to higher levels for its action in fruits. It has been
demonstrated that elevated CO2 (5–20%) inhibits ethylene
production in climacteric fruits by inhibiting activities of
ACC-synthase (Bufler 1984; Chavez-Franco and Kader
1993; Mathooko et al. 1995) and ACC-oxidase (Chavez-
Franco and Kader 1993; Mathooko et al. 1995). CO2-
mediated regulation of ACC-synthase and ACC-oxidase
has also been reported by Kader (1986) and Yang (1987).
In tomato, high CO2 induces the expression of stress-related
genes and suppresses the transcription of ethylene-
dependent and ethylene-independent ripening-associated
genes (Rothan et al. 1997).

Work carried out by Chaves and Tomas (1984)
suggested that CO2 interferes with ethylene metabolism
through a mass action effect. Besides this, displacing
ethylene from its receptor site has also been proposed
(Yang and Hoffman 1984). In comparison with control,
production of ethylene in tomato and activities of ACC-
synthase and ACC-oxidase were found to increase upon
withdrawal of CO2 gas from the storage environment
(Kubo et al. 1990; Mathooko et al. 1995). Levin et al.
(1993) reported that CO2 concentration up to 10%
stimulated in vivo activity of ACC-oxidase but, CO2 at
20% concentration had an inhibitory effect. Using a
continuous flow through gas system, it has been demon-
strated that 20% CO2 markedly decreases ethylene biosyn-
thesis in ripening peaches by delaying and suppressing
ACC-synthase at transcriptional level however, recovery
occurs upon withdrawal of CO2 (Mathooko et al. 2001). At
low concentrations (of about 1%), CO2 may promote
ethylene production in climacteric fruits (Bufler 1986;
Chavez-Franco and Kader 1993). At low levels, stimulatory
effect of CO2 on the production of ethylene could be due to
a balance between its stimulatory effect on the activity of
ACC-oxidase and inhibitory effect on the activity of ACC-
synthase wherein the contribution by the former being more
significant (Mathooko 1996). All elevated levels of CO2

inhibit the activity of ACC-synthase while the activity of
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ACC-oxidase is differentially regulated by CO2 (it is
stimulated at low CO2 levels but inhibited at high CO2

levels) (Mathooko 1996).
Tolerance of a commodity to elevated levels of CO2

depends on its physiological condition, maturity status,
CO2 concentration within the tissue, duration of exposure,
internal O2 concentration and storage temperature (Zagory
and Kader 1988). It was reported by Mathooko et al. (1995)
that CO2 itself could also act as an inducer of ACC-
synthase depending on the commodity. Since the effect of
CO2 was rapid and reversible so Kao and Yang (1982)
proposed that CO2 exerts its effect by directly activating the
ACC-oxidase (in vivo) rather than stimulating its synthesis.
Later, Tian et al. (1994) proposed that the mechanism of
CO2 stimulation of ACC-oxidase may be direct and
probably through interaction with a non-substrate binding
site on ACC-oxidase. They further stated that CO2 might
combine reversibly with an ACC-oxidase-ACC complex to
increase Vmax of the reaction. In tomato, interestingly, there
are at least three forms of ACC-oxidase i.e., eth1, eth2 and
eth3. These different forms of ACC-oxidase could probably
be induced and/or synthesized in different tissues and at
different developmental stages besides being a strong
possibility that CO2 can also affect each of these forms of
ACC-oxidase differentially (Bouzayen et al. 1993).

Ratio of O2 to CO2 As early as in 1936, Wardlaw and
Leonard reported that respiratory climacteric is an anaero-
bic type of respiratory shift. Later on, climacteric rise was
considered as a type of anaerobiosis because fruits naturally
ripen from inside to outward (Leonard and Wardlaw 1941).
Diagrammatic representation of fruit in Fig. 5 shows that
how the concentrations of O2 and CO2 vary within the fruit.
Respiration by the fruit tissues and barriers of diffusion/
exchange of gases as posed by anatomical/morphological/
physical/biochemical components (present either on surface
or inside the fruit) are the responsible factors for the gradual
lowering of O2 to CO2 ratio from outside to inside of the
fruit.

As described above, conditions like; hypoxia or low O2/
CO2 reduce the synthesis as well as the action of ethylene
(Kanellis et al. 1991; Blanke 1991; Kanellis et al. 1993;
Gorny and Kader 1996; Mathooko 1996). At the same time,
hypoxia was also reported to reduce the expression of genes
involved in the maturation process, which are regulated by
ethylene (Kanellis et al. 1993). Production of volatiles has
been shown to get altered in high CO2 or low O2 conditions
(Mattheis et al. 1991; Ke et al. 1994; Larsen 1994). Besides
this, high CO2 and/or low O2 within the atmosphere of the
fruit can induce anaerobic metabolism resulting in en-
hanced accumulation of ethanol and acetaldehyde (Kader
1987). Ethanol and acetaldehyde were in fact reported to
delay the ripening of tomato fruit (Kelly and Saltveit 1988;

Beaulieu et al. 1997). This thereby explains the reason
behind the retardation of ripening process due to short
period of anaerobiosis treatment prior to the storage of
tomato fruits as observed by Kelly and Saltveit (1988),
Pesis and Marinansky (1993) and Paul and Srivastava
(2006). CO2 at the level of 10 kPa in combination with
6 kPa of O2 was suggested to be suitable for cold storage
for late and early harvested grapes up to 12 weeks and
4 weeks, respectively as this limits the losses due to gray
mold (Crisosto et al. 2002).

Model based in silico analysis for the exchange of O2

and CO2 in pear fruit showed that O2 exchange takes place
mainly through the intercellular spaces and the cell wall
network and marginally through the intracellular liquid
(cytoplasm). On the other hand, CO2 exchange occurs at
similar rates through each of these phases (Ho et al. 2009).
The biological variation in the apparent diffusivity of gases
in tissue was related to the natural and random distribution
of cells and pores in the cortex tissue (Ho et al. 2009). This
thereby can have strong influence in deciding the available
O2/CO2 ratio and subsequently the metabolic shifts and
conditions created due to this. In this way, anatomical
features can be considered to be responsible for already
existing differences in the tolerance to reduced O2 and/or
elevated CO2 levels among various fruits and vegetables.
Promotive or inhibitory effects of O2 and/or CO2 levels, O2

to CO2 ratio, conditions like; hypoxia, anoxia and various
volatile metabolites are being summarized for their effect
on different steps of ethylene biosynthesis and ethylene
response (or action) in Fig. 6. Regulatory role of above
factors on the production of acetaldehyde and ethanol by
modulating the expression and activities of PDC and ADH
is presented in Fig. 7.

III. Ethanol

Ethanol production in plants/fruits Ethanol production
(through anaerobic metabolism) generally results from low
concentrations of O2 which can either be caused by reduced
levels of external O2 or due to enhanced resistance to the
diffusion of O2 into the plant parts/fruits (Jackson et al.
1982). Fruits undergoing the developmental/ripening pro-
cess exhibit changes in the levels of O2 and CO2 inside
them. These changes are usually in a direction that leads to
a net reduction in O2 to CO2 ratio within the fruit and
results in the accumulation of ethanol (Bufler and Bangerth
1982).

Ethanol-mediated inhibition of ripening Loss of ethanol
from fruit occurs predominantly by evaporation process and
this is mainly determined by degree of diffusion resistance
posed by the fruit in view of its surface/anatomical features
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as already described above. Effective ethanol concen-
trations for delaying the ripening were however found
to be similar to that of endogenously built-up levels of
ethanol as observed in following conditions 1. During
ripening of fruit (Bufler and Bangerth 1982), 2. During
anoxia (Jackson et al. 1982), 3. Under few days of
anaerobiosis (Kelly and Saltveit 1988), 4. Under stress
(Kimmerer and Kozlowski 1982) and 5. Fruits exposed
directly to ethanol vapours (Kelly and Saltveit 1988).
Ethanol appears to inhibit not only the synthesis of
ethylene but its action as well (Ritenour et al. 1997;
Saltveit and Mencarelli 1988; Pesis 2005; Asoda et al.
2009). Ethanol was also reported to delay ripening,
production of ethylene and CO2, loss of chlorophyll and
synthesis of lycopene (Kelly and Saltveit 1988; Yang and
Shewfelt 1999; Podd et al. 2002; Pesis 2005). Promotive
or inhibitory effect of O2 and/or CO2 levels, O2 to CO2

ratio, conditions like; hypoxia and anoxia and ethanol
itself on the production of acetaldehyde (and thereby
ethanol) by modulating the expression and activities of
PDC and ADH are summarized in Fig. 7.

IV. Acetaldehyde

It has been proposed and demonstrated that ethanol-
mediated delay in ripening is basically caused by acetalde-
hyde. Acetaldehyde is produced by conversion of ethanol
into acetaldehyde via the reversible reaction catalyzed by
the enzyme ADH (Pesis and Marinansky 1993; Burdon et
al. 1996; Beaulieu et al. 1997; Podd et al. 2002) (Fig. 7).
Since, acetaldehyde and ethanol are inter-convertible
volatile compounds so they are being discussed together
not only in relation to one another but also in terms of their
final effect on fruit ripening.

Factors affecting the production of acetaldehyde and
ethanol Anaerobiosis leads to the production of acetalde-
hyde besides ethanol (Cossins 1978). Both, climacteric as
well as non-climacteric fruits produce a lot of acetaldehyde
and ethanol (Pesis 2005). For a given fruit, genetic
variability was also seen in the levels of production of
acetaldehyde and ethanol and also in the ability to survive
under anaerobiosis (Pesis 2005).

Acetaldehyde in regulating the fruit ripening Acetaldehyde
inhibits the formation of ethylene by preventing the action
of ACC-synthase and action and synthesis of ACC-oxidase
(Pesis and Marinansky 1993; Burdon et al. 1996; Podd and
van Staden 1998; Pesis et al. 1998). Exogenous ethanol
application resulted in marked increase in acetaldehyde
levels and this inhibited the ethylene production and
ripening of tomato fruits (Pesis and Marinansky 1993). It
was therefore suggested that it is the acetaldehyde and not
the ethanol which is the causal agent for ethanol-induced
inhibition of fruit ripening. Later on, it was in fact found to
be true because it was only the level of acetaldehyde which
was found to be associated with inhibition of ripening by
Beaulieu et al. (1997). In light of above findings, it was
concluded by Pesis (2005) that ethanol and acetaldehyde
are natural compounds that are essential in governing the
process of fruit ripening. These compounds are also
associated with aroma production and removal of astrin-
gency. Various sites where acetaldehyde and ethanol can
regulate the production and response of ethylene are
presented in Fig. 6. Whereas in Fig. 7 regulatory effects
of different gases, volatiles and conditions (that may prevail
within the fruit’s internal atmosphere) are being presented
on the activity of enzymes involved in the production of
ethanol and acetaldehyde.

V. Water vapours/water status in fruit

Importance and diffusibility Water is the most important
component of plant tissues with unique physical and

Ethanol vapours, hypoxia,
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Fig. 7 Pyruvate is produced during glycolysis. Under aerobic
condition, this pyruvate enters into mitochondria for Krebs cycle.
But under hypoxia or anaerobic condition, pyruvate is diverted for
ethanolic glycolysis [where it is initially converted into acetaldehyde
by the enzyme pyruvate decarboxylase (PDC) and then acetaldehyde
is converted into ethanol by a reaction catalyzed by alcohol
dehydrogenase (ADH)]. ADH basically catalyses bidirectional reac-
tion for the inter-conversion of acetaldehyde and ethanol. The symbols

++ , -- , >, <, and indicate inducers, suppressors, higher, lower
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chemical properties. It plays a significant role in determin-
ing the quality of the fresh produce. Important functions of
water in plant include; exchange of resources, medium for
biochemical reactions, cell expansion and physical and
chemical integrity of cell walls and other cellular constit-
uents (Nilsen and Orcutt 1996). Fruit maintains vascular
continuity with the mother plant and receives water till it
remains attached to the plant. But, once detached, the fruit
have no renewable source of water to compensate for the
water that is being lost through transpiration. Detached fruit
therefore experiences water stress. Water loss (transpiration)
from freshly harvested fruit results in loss of salable weight,
appearance (wilting and shriveling), textural quality (soft-
ening, flaccidity, limpness and crispness), juiciness and
nutritional quality as well (Kader and Barrett 1996).
Generally, it has been found true that fresh fruits become
unacceptable when weight loss reaches more than 5% of
harvest weight (Salunkhe and Desai 1984).

Transpiration rate of harvested fruit depends mainly
on 1. The rate of cooling of fruit after its harvest, 2.
Structure and condition of the fruit surface, 3. Surface
to volume ratio of fruit, 4. Relative humidity and
temperature during storage, 5. Air movement/circulation
and 6. Atmospheric pressure in storage environment
(Salunkhe and Desai 1984; Gamage and Rahman 1999).
The main sites of transpiration in plant and its parts are the
stomata, epidermal cells, lenticels, trichomes (hairs), stem
scar, hydathodes and cuticular cracks (Ben-Yehoshua
1987). The surface characteristics such as; number of
stomata on epidermis, type of surface, tissue underlying
the skin and the structure, thickness and chemical
composition of wax and cuticle play role in determining
the water loss from fruit and these features vary greatly
among the fruits and also with the developmental stages
for a given fruit. Stem scar region is an important pathway
for water loss in tomato fruit. In apple, lenticels account
for up to 21% of the transpiration (Maquire et al. 2001).
Complete coating of fruit was found to retard gaseous
exchange by plugging the stomatal pores of citrus (Ben-
Yehoshua et al. 1985). Such coatings reduced weight loss
up to 20% in mandarin (Lawes and Prasad 1999), mango
(Baldwin et al. 1999) and pear (Amarante et al. 2001).
Variability in peel permeance, weight loss and internal
atmosphere was recorded in different lines of mandarin
fruit (Lawes and Prasad 1999). Size of the fruit is also an
important determinant for extent of its weight loss because
higher the ratio of surface area to unit volume the greater
will be the loss of water by evaporation. As a result of
this, a small size fruit or a tuber will lose weight faster
than a bigger one (Salunkhe and Desai 1984). Likewise,
under similar conditions, a leaf will lose its water (and
thereby its weight) much faster than a fruit with similar
surface area.

Influence of water status on ethylene production, ripening,
senescence and shelf-life It was reported by Grierson and
Wardowski (1978) that water loss after harvesting causes
reduction in fruit mass and it may also induce senescence.
Water deficit in plant tissues also stimulate ethylene
production (Fig. 6) and as a consequence there is an
increase in the respiration of tissues (Yang and Pratt 1978).
Several authors found that water stress decreases the pre-
climacteric life of many fruits such as; banana, avocado,
pear and plantain (Littmann 1972; Adato and Gazit 1974;
George et al. 1982). It was found by Finger et al. (1995)
that increase in respiration and evolution of ethylene was
significantly higher when the fruits reached 5% of loss in
terms of fresh mass. The increase in respiration was 70%
and ethylene production was 50% more for such fruits
when compared to the control fruits in banana. The results
thereby confirmed that water stress (after the harvest of
fruit) might affect the shelf-life depending upon the
intensity of the water stress. So, alleviation of water stress
has been proposed as an additional controlling factor for
reducing the deterioration of fruits (Ben-Yehoshua et al.
1983). Increased ethylene production was found when fruit
was detached (Hyodo 1991) and also after having experi-
enced water stress/deficit during its development (Gelly et
al. 2003). The level of transcription for the genes of ACC-
synthase and ACC-oxidase responded positively to the
water deficit in a tissue-specific and coordinated manner
(Nakano et al. 2002). This resulted in enhanced activities of
these two enzymes under water stress (Fig. 6). However,
only little is known about the interaction of altered water
status with other important volatiles that also have role in
fruit ripening (Smith et al. 1987a, b). In this way, water
status governs not only the broad changes but also the
specific changes. Further studies are therefore necessary to
understand the interactions and implications of altered
water status with important volatile components of fruits.

Water content alone is not sufficient to describe the
water status of different parts of fruits, its movement in
fruits and also the associated physiological and biochemical
changes occurring in the fruits (Nguyen et al. 2004). Water
activity (aw) is considered as a more reliable parameter of
water status. Water activity is defined as the ratio of the
partial pressure of water in equilibrium with the food
material to the partial pressure of pure water at the same
temperature. It includes contribution of the pressure forces
in the tissue (Nguyen et al. 2004). Water activity is
important in the determination of the stability criteria for
food stuffs in terms of microbial growth, browning, lipid
oxidation, ripening, ripening-related changes and shelf-life.
(Rockland and Stewart 1981; Labuza 1984; Joyce et al.
2002). Relationship between water content and aw of a
given fruit gives water sorption isotherm. Since, different
tissues of a fruit have different water status so, aw and water
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sorption isotherm for different tissues are also different.
Besides this, aw and water sorption isotherm also change
with changes in the storage conditions and storage
durations (Hubinger et al. 1992; Joyce et al. 2002; Nguyen
et al. 2004). In an attempt to relate the moisture
distribution (water content) to the water status (water
potential) for understanding the water movement in fresh
fruit need was felt for a detailed modeling of cellular
structural properties and intercellular spaces (Nguyen et
al. 2004)

VI. Role of some other endogenous volatiles

Salicylic acid/methyl salicylate Salicylic acid (SA) and its
volatile derivatives [such as methyl salicylate (MeSA)]
were characterized as inhibitors of ethylene biosynthesis
(Leslie and Romani 1986). These volatiles were reported to
inhibit the wound-induced expression ACC-synthase (Li et
al. 1992). At low concentrations, MeSA appears to enhance
the ripening processes in tomato (Ding et al. 2002). Dual
effects of MeSA on ethylene metabolism (inhibitory and
promotive) were suggested to be dependent upon the dose
and developmental stage of fruits (Ding and Wang 2003). It
was clearly demonstrated by Ding and Wang (2003) that
low concentrations of MeSA have the potential to up-
regulate ethylene biosynthesis by increasing the expression
of ACC-synthase genes LE-ACS2 and LE-ACS4 (responsi-
ble for auto-induced production of ethylene during ripening
of tomato fruit) and eliminating the transcription of LE-
ACS6 (genes of ACC-synthase responsible for basal level
of ethylene production in tomato fruit). On the other hand,
high levels of MeSA in tomato fruit keep the ACC-synthase
and ACC-oxidase genes repressed and thus inhibit the
timely production of ethylene during ripening (Ding and
Wang 2003). In this way, the endogenous concentration of
MeSA could be critical in determining ethylene metabolism
depending on the stage of the fruit.

Jasmonic acid/jasmonates Jasmonic acid (JA), its volatile
ester i.e., methyl jasmonate (MJ) and other derivatives are
collectively known as jasmonates (JAs). JAs are ubiquitous
signaling molecules that mediate plant responses to envi-
ronmental stress such as; wounding and insect/pathogen
attack (Wasternack 2007). JAs also play role during
developmental processes including pollen development,
seed germination, root growth, and fruit growth and
ripening (Pena-Cortes et al. 2005; Wasternack 2007).
Multiple interferences and interactions between JAs and
ethylene signaling pathways were studied by analyzing
Arabidopsis mutants (Devoto and Turner 2005). The exact
role of JA in fruit ripening and JA-ethylene interaction are
still largely unclear. Both, delaying as well as promotive

effects on ripening were recorded besides the response
being the cultivar dependent.

Transient increases in concentrations of JAs occur during
the onset of fruit ripening in apple and tomato suggest their
involvement in modulation of the early steps of climacteric
fruit ripening (Saniewski and Czapski 1983; Saniewski et
al. 1987; Perez et al. 1993; Creelman and Mullet 1997).
Furthermore, JAs were reported to regulate the early steps
of climacteric fruit ripening by stimulating ethylene
biosynthesis (Fan et al. 1998; Kondo et al. 2000). The
application of exogenous JAs stimulates ethylene produc-
tion and colour change in tomato (Saniewski and Czapski
1985). It was found that activities of ACC-synthase and
ACC-oxidase were stimulated by JAs in a concentration
range of 1–100 μM. But, continuous exposure at higher
dose i.e., 1,000 μM inhibited both the activities (Fan et al.
1998). The convergence of ethylene and jasmonate path-
ways at transcriptional level of ethylene response factor 1
(ERF1) was proposed by Lorenzo et al. (2003). MJ induced
the transcription of ACC-oxidase in tomato fruit (Imanishi
and Nagata 2004; Imanishi et al. 2005). The mRNA levels
of 81 genes were found to show elevation (by more than
three-fold) in response to MJ in wild type tomato in
comparison to nor mutant (Imanishi et al. 2005). The
results indicate a strong interaction of jasmonate and
ethylene and in this way endogenous status of jasmonate
could regulate the ripening and ripening-related changes
(Fig. 6). In a study by Ziosi et al. (2007), exogenous
application of JAs led to alteration in ethylene biosynthesis,
ethylene perception and polyamine accumulation. In anoth-
er study involving transcriptome analysis of JAs treated
peach fruit (at harvest) indicated that delayed ripening was
due to interference in ripening- and stress/defense-related
genes (Ziosi et al. 2008).

Nitric oxide Nitric oxide (NO) has been reported to be
emitted simultaneously with ethylene and in this way it
showed a stoichiometric relationship with ethylene produc-
tion (Leshem and Haramaty 1996). It was shown by
Leshem et al. (1998) that exogenous NO extends the
postharvest-life and delayed senescence in fruits, vegetables
and flowers. Later, Leshem et al. (2000) made it clear that
NO is natural senescence-delaying plant growth substance
acting by down-regulating ethylene production. NO affects
the ethylene production through its direct regulatory effect
on ACC-synthase or ACC-oxidase enzymes as well as on
their genes (Wills et al. 2000). Programmed cell death,
which is considered to be caused by ethylene, is rather
induced by NO as per Neil et al. (2003). In this context,
some studies have shown that the aerenchyma formation
(which is stimulated by hypoxia and ethylene) is instead
caused by NO (Igamberdiev and Hill 2004; Borisjuk et al.
2007).
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Application of NO to tomato delayed the burst in
ethylene production and colour development at green
mature and breaker stages of fruits but not at pink and full
red stages (Eum et al. 2009). The results therefore implicate
that NO might control the postharvest metabolism of fruits
depending on its dose and the status of the commodity that
is being treated (Eum et al. 2009). Borisjuk et al. (2007)
proposed a key role of NO in immediate sensing and
balancing the O2 status in seeds of the plant. NO was found
to mediate reversible O2 balancing via its effect on
respiratory activity and enabling the seed to avoid endog-
enous anoxia or extreme hypoxia. In this way, NO appears
to control energy availability for ongoing biochemical and
physiological activities. Depletion in the level of O2 and the
conditions like; hypoxia or anoxia were already reported to
prevail in fruit undergoing maturation and ripening (Lam-
mertyn et al. 2003; Franck et al. 2007; Ho et al. 2008). So,
NO-mediated sensing of O2 and balancing its levels in
fruits cannot be ruled out. NO is also found to act as a
regulatory factor for embryonic dormancy break in apple by
stimulating biosynthesis of ethylene (Gniazdowska et al.
2007). It has been reported that NO can function as an
endogenous mediator in diverse plant physiological pro-
cesses but its production, effect and associated mechanisms
are not known very precisely (Besson-Bard et al. 2008).
Likewise, Wills et al. (2000) and Leshem et al. (2000), Eum
et al. (2009) also reported that NO affects the ethylene
production through its direct regulatory effect on the
enzymes of ethylene biosynthesis (ACC-synthase and
ACC-oxidase) and also on their genes during ripening of
tomato.

The regulatory and interactive linkages of NO with
biosynthesis and response of ethylene are presented in
Fig. 6 beside this, interaction of NO with the anaerobic or
hypoxia condition is shown in Fig. 7. Interactions of some
of the volatiles like; C2H4, O2, CO2, SA/MeSA, JAs and
NO on various components of respiratory metabolism was
reported by Millar and Day (1996), Fan et al. (1997), Yang
et al. (1998), Ederli et al. (2006), Leakey et al. (2009) and
Wang et al. (2010). This shows that different volatiles and
gases can affect the status of respiration which in turn is
closely linked with the potential shelf-life of plant parts
(including fruits) after their harvest (Kader 1987; Kader and
Saltveit 2003b; Varoquaux and Ozdemir 2005; Paul and
Srivastava 2006; Paul et al. 2010b).

Practical implications of the internal atmosphere in fruit

Permeability of different volatiles or gases is governed by
diffusivity of these compounds in air, water and across the
cellular microstructures of fruit. Microstructures of internal

and surface tissues of fruit include their cellular details,
porosity (up to micro level) and 3-D organization of cells.
In this way, permeability changes in a dynamic way with
changes in the metabolic activities of tissues, developmen-
tal stage, maturity and storage time. Besides this, the
external factors like; temperature, relative humidity and
gaseous composition of immediate storage environment
also affect the permeability within and across the fruit.
Fick’s law, as such cannot be applied directly to predict the
gaseous concentration in fruits because fruit tissue does not
represent a continuum. Several researchers have described
different geometrical models with mathematical equations
that also take into the consideration the tissue micro-
structures besides other factors (Nguyen et al. 2004;
Verboven et al. 2008; Ho et al. 2008, 2009, 2010).

Today, efforts are being made for more effective use of
some gases such as; carbon monoxide (CO), nitrous oxide
(N2O), nitrogen (N2), sulphur dioxide (SO2), chlorine
dioxide (ClO2) in the storage environment to reduce the
microbial, insect and pest infestation. Besides this, ozone
(O3) gas is also being exploited in delaying the ripening and
improving the quality of the stored fruits (Scully and
Horsham 2008; Mangaraj and Goswami 2009; Hoehn et al.
2009; Yahia 2009; Zambre et al. 2010; Rodoni et al. 2010).
Ozone treated fruits are reported to show delay in ripening
and decay, proper maintenance of quality, suppression in
microbial contamination and reduction in the levels of
ethylene in storage environment and within the fruits as
well (Rice et al. 1982; Kim et al. 1999; Xu 1999; Zambre et
al. 2010; Rodoni et al. 2010). Exposure of O3 also reduced
the levels of pesticide in stored apples (Ong et al. 1996).
Besides the practical applicability of above gases, required
levels of O2, CO2, ethylene, humidity and condensation
levels in the storage environment can also delay ripening
and improve quality and storability of fruits (Scully and
Horsham 2008; Mangaraj and Goswami 2009; Hoehn et al.
2009; Yahia 2009).

Developments in the field of plant volatiles and their
roles further showed that the quality and quantity of
volatiles in plant/plant part may also be linked with various
types of abiotic and biotic stresses (Steindel et al. 2005;
Karl et al. 2008; Loreto and Schnitzler 2010). Some
specific examples are 1. Hexanal, trans-2-hexenal and
hexyl acetate improve the safety of freshly sliced apple
(Lanciotti et al. 2003), 2. Trans-2-hexenal confer resistance
to anthracnose fruit decay in highbush blueberry (Pola-
shock et al. 2007), 3. Hexanal also reduces infection of
tomatoes by Botrytis cinerea (Utto et al. 2008), 4. Alpha-
farnesene increases the suseptability of apple fruits to scald
disorder (Huelin and Coggiola 1968; Watkins et al. 1993),
5. Different endogenous volatiles (aldehydes, alcohols and
esters) and trans-2-hexenal exhibit antifungal properties
against the Colletotrichum acutatum that causes anthrac-
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nose in strawberry fruits (Arroyo et al. 2007), 6. Several
terpenoids (sesquiterpenes like; zingiberene and curcumene
and the monoterpenes like; p-cymene, α-terpinene, and α-
phellandrene) strongly repel whiteflies that infest tomatoes
(Bleeker et al. 2009) and 7. Isoprene is reported to provide
thermo tolerance in Arabidopsis (Sasaki et al. 2007) but, its
role in fruits is yet to be studied. Strawberries treated with
MJ alone or in combination with ethanol showed higher
antioxidant capacity, total phenolics and anthocyanins
along with longer postharvest-life and better quality and
aromatic properties. Combined treatment also increased
total volatile compounds during storage (although there
were quantitative and qualitative changes depending upon
the individual volatile compound) (Ayala-Zavala et al.
2005). In view of the above reports, plant volatiles are
important because fruits are reported to be accompanied by
increase in the levels of reactive oxygen species during
their maturation and ripening and this situation represents
an oxidative stress like condition for fruits (Stanley 1991;
Ferrie et al. 1994; Palma et al. 1995; Rogiers et al. 1998).
These examples show that at least some of the volatiles in
the internal atmosphere of fruit can provide protection
against biotic and abiotic stresses during ripening and
storage and reflect the potential practical applications of
these volatiles in overall postharvest management of fruits.

Better understanding of the environment that prevails
inside and also outside the fruit will allow us to further
refine measures for improving the efficacy of storage
environments for delaying the ripening and senescence,
minimizing microbial or insect/pest-mediated contamina-
tion and improving the shelf-life and quality aspects of
stored items. Future studies on storage technology should
focus on 1. Defining and then generating optimum internal
atmospheres in fruits, 2. Providing conditions which are
cultivar specific, 3. Making use of high precision sensors
for monitoring the levels of volatiles and gases 4.
Developing and using a fruit specific and real time system
to manipulate the levels of at least some of the most critical
volatiles/gases during storage and 5. Exploiting the use of
some of the fruit specific volatiles as exogenous treatments
to tackle both a specific or a broad problems related to
postharvest management.

Conclusion

Endogenous volatiles in fruits are usually known for their
role in determining the flavour and aroma. Only a few
studies show their importance and role in a specific plant
process. It is rare that combined and interactive effects of
different endogenous volatiles have been studied on
postharvest physiology of fruits, ripening process and
postharvest management practices that are being followed

for fruits. Both, the external and the internal gaseous
environments of the fruit play crucial role in regulating the
process of ripening. So far, very little is being understood
about the interactive mechanisms of different volatiles
(other than ethylene) in regulating the process of ripening.
Ethylene is of course a major controlling factor for the
ripening and related changes in climacteric fruits but its
biosynthesis, perception, sensitivity and even action are
being influenced either directly or indirectly by other
endogenous volatiles such as; acetaldehyde, ethanol, methyl
salicylate, methyl jasmonate and NO besides the O2 to CO2

ratio and water status of the fruit. The internal atmospheres
in fruit should be analysed and understood to enable
effective manipulation of ripening and control of the quality
of fruits. Efforts to decipher the dynamics of internal
atmospheres in relation to the progress of fruit ripening
could be of great practical importance. Such information
could be used to more precisely manage the storage
environment and to optimize the composition of the internal
atmosphere in the fruit. This will help not only in achieving
the best quality, aroma, flavour and shelf-life but also in
minimizing the decay, pest infestation and microbial
infection of fruits during storage.
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