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Abstract

Free fatty acids (FFAs) exert both positive and negative effects on beta cell survival and insulin

secretory function, depending on concentration, duration, and glucose abundance. Lipid signals

are mediated not only through metabolic pathways, but also through cell surface and nuclear

receptors. Toxicity is modulated by positive signals arising from circulating factors such as

hormones, growth factors and incretins, as well as negative signals such as inflammatory

mediators and cytokines. Intracellular mechanisms of lipotoxicity include metabolic interference

and cellular stress responses such as oxidative stress, endoplasmic reticulum (ER) stress, and

possibly autophagy. New findings strengthen an old hypothesis that lipids may also impair

compensatory beta cell proliferation. Clinical observations continue to support a role for lipid

biology in the risk and progression of both type 1 (T1D) and type 2 diabetes (T2D). This review

summarizes recent work in this important, rapidly evolving field.
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Introduction

The subject of toxic effects of lipid species on pancreatic beta cells is broad and growing.

Early biochemical work illustrated how the intracellular metabolism of lipids can either

promote or inhibit the insulin secretory response to glucose, depending on the context.

Lipids are now known to act not only through biochemical nutrient pathways, but also

through signaling via cell surface and nuclear receptors. Newer findings link lipotoxicity to

Corresponding author: Laura C. Alonso M.D., University of Massachusetts Medical School, Diabetes Division, 368 Plantation Street,
Worcester, MA 01605, 774-455-3640, Laura.Alonso@umassmed.edu. Rohit B. Sharma Ph.D., University of Massachusetts Medical
School, Diabetes Division, 368 Plantation Street, Worcester, MA 01605, 774-455-3640, Rohit.Sharma@umassmed.edu.

Conflict of Interest
Rohit B. Sharma and Laura C. Alonso declare that they have no conflict of interest.

Compliance with Ethics Guidelines
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.

NIH Public Access
Author Manuscript
Curr Diab Rep. Author manuscript; available in PMC 2015 June 01.

Published in final edited form as:
Curr Diab Rep. 2014 June ; 14(6): 492. doi:10.1007/s11892-014-0492-2.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



inflammation, oxidative, nitrosative and endoplasmic reticulum (ER) stress pathways and

autophagy. Many outstanding minds and teams have touched upon this field. Here we will

cover recent advances specific to toxic effects of lipids on beta cell survival, insulin

secretory function, and beta cell mass (Figure 1). As such, we do not discuss the well-

established beneficial effects of lipids on insulin secretion via FFAR1 and other pathways.

The review is organized from an outside-in perspective, beginning with extracellular factors,

and from a physiological rather than a biochemical perspective. A section is devoted to the

evolving new concept that lipotoxicity may impact beta cell mass by reducing beta cell

proliferation, with an emphasis on how our own work integrates with the field. Given the

broad nature of this topic, coverage of each concept is brief; the reader is encouraged to read

the original sources. By design, the review is restricted to work from the past year or two.

Extracellular signals influencing lipotoxicity

Lipid effects on the beta cell are modulated by extracellular factors. Signals that promote

beta cell mass and function, such as lactogens, estrogens, and incretins generally protect beta

cells against lipotoxicity. As reviewed in detail [1, 2], toxic effects of lipids are usually

manifested only when high glucose is also present. Extracellular beta cell toxins such as

inflammatory cytokines synergize with lipotoxicity to further impair beta cell function and

survival, as summarized below.

Growth factors and hormones

Circulating growth factors impact lipotoxicity in the beta cell. While lactogens protect beta

cells against lipotoxic cell death via activation of Jak-Stat signaling [3], hepatocyte growth

factor actually promotes lipotoxicity [4]. The insulin signaling nuclear factor FoxO1

mediates some aspects of lipotoxicity; a recent study mapped out which genes are regulated

by FoxO1 in a beta cell line [5]. The female sex steroid hormone estradiol was found to

regulate islet lipid synthesis; deletion of the ER-alpha receptor predisposed mice to lipotoxic

beta cell dysfunction [6].

Significant recent effort has been directed towards understanding how incretin hormones, in

particular Glp-1, interact with lipotoxicity. Increasing Glp-1 signaling is a new T2D

therapeutic approach that has generated excitement because improved insulin secretion is

accompanied by weight loss and, possibly, beta cell regeneration. Lipid exposure negatively

impacts incretin signaling, both by downregulation of the Glp-1 receptor [7] and by

interfering with downstream cAMP signaling [7, 8]. Treating diabetic mice with a

combination of lipid-lowering therapy and Glp-1 agonist improved beta cell mass and

function better than either alone [7]. Incretins were found to promote the interconnected

network of beta cells in human islets, and exposure to lipids disrupted this connectivity, and

impaired insulin secretion [9]. A number of teams have found that incretin signaling

promotes insulin secretion and beta cell survival to counteract glucolipotoxicity in vitro,

through effects on mitochondria [10], insulin signaling intermediates such as Akt and mTor

[11–13], oxidative and endoplasmic reticulum stress [14], and the nuclear factor SREBP1

[13]. The protective effects of Glp-1 signaling against lipotoxicity have been extended to

human islets [15].
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Inflammatory mediators

Inflammation negatively impacts beta cell survival and function through multiple

mechanisms [16]. Fatty acids can directly activate inflammatory pathways themselves, to

potentiate inflammatory toxicity. In some cases inflammatory signals are propagated via

intracellular lipid species as described below. Lipid exposure in vivo increases islet

inflammation, and inflammatory cytokines and immune cells are present in the pancreas in

T2D (recent examples: [17, 18]). Treating beta cells with palmitate increased chemokine

production and recruitment of pro-inflammatory macrophages, via TLR4-Myd88 [19]. High

fat feeding, and palmitate treatment in vitro, increased islet production of macrophage

migration inhibitory factor (MIF); deletion of MIF protected beta cells against lipotoxic cell

death [20]. Lipopolysaccharides (LPS) treatment reduced insulin secretion and expression of

beta cell differentiation markers Pdx1 and MafA, though TLR4 and NF-kβ [21]. Lipids

potentiated IL-1beta-induced endoplasmic reticulum stress through IRE1/Xbp activation

[22]. Cytokines impaired insulin secretion and increased cell death via a pathway involving

12-lipoxygenase and its downstream lipid product, 12-hydroxyeicosatetraenoic acid (12-

HETE) and Nox-1 and reactive oxygen species [23]. Additionally, blocking palmitoylation

protected INS-1 cells against cytokine-induced oxidative and nitrosative stress [24]. Thus,

lipotoxicity promotes and potentiates islet inflammation, supporting the concept that

modulating inflammation might be a therapeutic approach for diabetes [18].

Membrane receptors influencing lipotoxicity

Initially, all lipid effects on the beta cell were thought to arise from effects on metabolic

pathways. The finding that FFAs activate G-protein coupled receptors (GPCRs) has

generated enormous excitement because of the biological and therapeutic implications [25].

FFAs activate GPR40 (now known as FFAR1), which is expressed on the surface of human

and rodent beta cells, and is, remarkably, thought to mediate many of the positive effects of

fatty acids on insulin secretion without negatively impacting beta cell function or survival

[26–28]. Glucolipotoxicity may exert some negative effects by interfering with normal

FFAR1 function. In one study hyperglycemia decreased, but hyperlipidemia increased,

FFAR1 expression [29]. In INS-1 cells, saturated fatty acids decreased FFAR1 expression,

whereas unsaturated fatty acids increased FFAR1 expression and protected against

lipotoxicity [30]. Supporting a role for endogenous FFAR1 in insulin secretion, a single

nucleotide polymorphism at the FFAR1 locus correlated with insulin secretory function in

people; genotyping this locus may allow clinical prediction of which patients will respond to

FFAR1 agonists [31].

FFAR1 agonists are under development as therapies for T2D. Preclinical studies suggest

they potentiate insulin secretion, decrease beta cell apoptosis and maintain beta cell mass

[25]. Like other GPCRs, careful ligand design may allow selective activation of positive

functions without others that are less desirable [26, 32]. FFAR1 agonists potentiate glucose-

dependent insulin secretion in vivo in diabetic rodents [33–36]. Although the majority of

analyses suggest that FFAR1 activation doesn’t lead to lipotoxicity, in fact protects against

lipotoxicity, a few studies have found that some lipotoxic effects may be mediated by

FFAR1 signaling. Extended exposure of human islets to palmitate decreased insulin content
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and secretion, which was preventable by a FFAR1 antagonist [37]. In a mouse model of beta

cell overload with failure, blocking FFAR1 reduced insulin secretion, circulating proinsulin,

and beta cell apoptosis, suggesting the possibility that in the setting of beta cell failure

increasing insulin secretion by FFAR1 agonism might increase stress by further overloading

the beta cell [38, 39].

Intracellular mechanisms of lipotoxicity

Classically, lipid toxicity to beta cells was thought to arise from chronic alteration of

biochemical substrate flux patterns, rendering the beta cell less responsive to glucose, and

through protein kinase C signaling. More recently, lipid exposure has also been shown to

activate cell stress responses including oxidative stress, endoplasmic reticulum stress, and

autophagy. Much work remains to be done to identify how each of these mechanisms relates

to human diabetes.

Metabolic pathways

Decades of research have illuminated many details of the biochemistry of lipid metabolism

in beta cells. The roles of metabolic pathways in the positive and negative effects of fatty

acids on insulin signaling, interaction between glucose and lipid metabolism, and

lipotoxicity in general have been extensively and carefully reviewed [1, 2]. Upon entering

the beta cell, free fatty acids are activated by acyl-CoA synthase, and then either oxidized or

re-esterified for storage or glycerolipid cycling [2]. Glucose, fatty acids and amino acids

interact at a biochemical level to influence many important cellular processes through the

Krebs cycle, pyruvate cycling, and the glycerolipid-free fatty acid cycle [2, 40]. Over the

past 1–2 years some new work has contributed to understanding of the role of FFA

metabolism in lipotoxicity.

At the level of lipid entry into beta cells, one histological analysis has found that lipoprotein

lipase (LPL), important for cleaving triglyceride to allow fatty acid entry into cells, is

surprisingly not intravascular in mouse islets, but instead appears to be intracellular, where it

would not have access to circulating triglyceride [41]. Islet expression of LPL was not

altered by fasting-fed state, but was regulated by leptin [41]. Islet lipid uptake may be

regulated by signals that change LPL location to extracellular; disruption of these signals

may contribute to reduction of the lipid component of glucose stimulated insulin secretion

(GSIS). A study seeking to determine which acyl-CoA synthase participates in GSIS

determined that Acsl4 is required for fatty acid potentiation of GSIS in INS1 cells [42].

However, Acls4 was not required for metabolism of long chain FA, but instead appeared to

be protective by sequestering a toxic fatty acid species, epoxyeicosatrienoic acids (EETs).

Once inside the cell, fatty acid oxidation is thought to not be pathogenic, but instead

protective against lipotoxicity as measured by ER stress [43, 44]. The insulin signaling

intermediate mTor may impact rates of fatty acid storage versus utilization in human beta

cells [45].

New findings regarding mechanisms of lipotoxicity include a pathway linking lipid exposure

to altered glycosylation patterns in beta cells, resulting in impaired glucose transport [46].

Palmitate interferes with glucose uptake, calcium signaling, mitochondrial respiration and
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insulin content [47, 48]. Palmitate treatment altered calcium handling and insulin secretion

through neprilysin, a secreted protease not previously known to impact beta cell function

[49]. The metabolic lipotoxicity pathways underlying impaired insulin secretion and

increased cell death were found to be mechanistically distinct in INS1 cells [48]. Also in

INS1 cells, a comprehensive analysis of metabolite levels in the context of mRNA

expression and histone modification cataloging is an important resource for the community

[50]. Another mechanism of palmitate toxicity may be aberrant palmitoylation of proteins;

blocking palmitoylation prevented lipotoxic beta cell death [51]. In a technical

breakthrough, the interaction of glucose and fatty acids at the level of the electron transport

chain was directly visualized using a sophisticated confocal-based imaging technique [52].

Other lipid-related species may also play a role in beta cell function and dysfunction.

Ceramide and sphingolipids impact these processes [53]. Mice fed an isocaloric diet in

which long chain FAs were replaced by medium chain FAs showed glucose intolerance and

impaired insulin secretion [54]. The role of cholesterol in beta cell function and mass is

unclear. The cholesterol transport protein ABCG1 was increased in insulinoma tissue, and

correlated with insulin secretion [55]. The intracellular cholesterol transport protein Npc1,

genetically associated with risk of obesity in humans, may also play a role in insulin

secretion [56]. LXR alpha, a receptor for cholesterol-related compounds, is important for

insulin secretion in vitro and in vivo by altering glucose metabolism, ATP production and

calcium channel flux; modulating its activity deregulated lipid metabolism via SREBP [57].

Stress pathways: oxidative stress, ER stress and autophagy

Oxidative stress is caused by generation of reactive oxygen species (ROS) that exceeds

reducing capacity. Beta cells have limited anti-oxidative defense mechanisms and are

particularly susceptible to oxidative damage. Consequences of redox imbalance include lipid

peroxidation, oxidation of proteins, DNA damage and interference of reactive species with

signal transduction. Excesses of lipids and glucose induce oxidative and nitrosative stress in

beta cells; short-term activation of ROS increases GSIS, but excessive ROS impairs insulin

secretion [24, 58]. Human islets from both diabetic and nondiabetic individuals have

detectable lipid peroxide protein adducts, suggesting oxidative damage [59]. In mice, lipid

infusion increased islet ROS, and beta cell dysfunction was prevented by treatment with a

reducing agent or inhibition of NADPH oxidase [60, 61]. Nicotinamide protected INS1 cells

against lipotoxic cell death through sirtuins [62]. Reducing agents or antioxidants may

improve beta cell function by protecting against oxidative stress.

ER stress refers to failure to maintain homeostasis of the ER, the site of protein folding for

all secretory peptides. The beta cell is a workhorse for insulin synthesis and secretion, and is

sensitive to ER stress [16, 63]. Oxidative stress increases ER stress because redox state is

important for proper ER function; however, agents that stress the beta cell ER may not alter

its redox state [64]. Under conditions of moderate ER load the unfolded protein response

(UPR) compensatory mechanism engages, but if the stress cannot be resolved cell death

ensues. Fatty acids have long been known to increase ER load, by affecting protein

processing, trafficking, Ca2+ regulation and oxidative stress [16, 63]. Saturated fatty acids

such as palmitate induce ER stress, whereas unsaturated fatty acids exert protective effects;
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in INS1 cells, palmitate activated UPR via the PERK and IRE1 pathways, and the effect was

prevented by co-treatment with oleate [65]. In bTC3 cells, palmitate activated all three UPR

pathways, through store-activated calcium entry [66]. Palmitate also induced ER stress in a

human beta cell line [67]. Protection by unsaturated fatty acids may be mediated by cellular

inhibitor of apoptosis-1 (cIAP1), an E3 ligase for the cell death director CHOP [68]. A

screen for effectors of palmitate-induced apoptosis discovered ER communication with the

intrinsic mitochondrial apoptosis pathway, through BH3-only proteins DH5 and PUMA

[69]. Another screen found ubiquitin C-terminal hydrolase L1 to be required for ER

function, beta cell survival and insulin secretion when exposed to lipotoxicity [70]. ER

morphological and functional distress caused by fatty acid treatment was traced to AMPK

acting through a GTPase called dynamin related protein 1 (DRP1), known to regulate

mitochondrial fission [71]. Another study found that palmitate influenced the makeup of ER

lipid rafts, which determined the cellular response to ER stress [72]. The immediate early

gene Npas4, rapidly induced by palmitate, promoted beta cell survival during ER stress [73].

Treatment with incretins protected beta cells against palmitate-induced ER stress [74].

Combined with the large body of clinical literature suggesting beta cell exhaustion

contributes to T2D, and possibly T1D, management of ER stress may assist in preservation

of beta cell mass and function.

Autophagy is used to recycle unnecessary or dysfunctional cellular components, and to

ensure survival during starvation by maintaining cellular energy levels. Autophagy increases

during nutrient stress; controversy exists as to whether autophagy is predominantly

detrimental or protective to beta cells. Palmitate increases autophagy in rat and human beta

cells and is associated with ER distension [75]. Atg7 overexpression sensitized cells to

palmitate-induced autophagy, which was found to increase inflammatory mediators via

cathepsin B and the NLRP3 inflammasome, linking cellular nutrient stress to inflammation

[76]. On the other hand, mice deficient in beta cell autophagy due to deletion of Atg7

showed impaired ER adaptation and heightened sensitivity to ER stress, resulting in frank

diabetes when mated onto a leptin deficient background [77]. Although fatty acids increase

autophagosomes, suggesting increased autophagy, a dynamic study found that in fact

autophagic flux, a measure of activity, was reduced in beta cells treated with oleate or

palmitate [78]. Consistent with the concept that autophagy is activated by starvation, and

fatty acid treatment represents nutrient excess, simulating starvation by rapamycin treatment

partially restored autophagic flux [78]. The role of autophagy in beta cell failure in T2D

requires further investigation.

Lipotoxicity effects in the nucleus

Some negative effects of lipids occur at the level of the nucleus. PPARs, classic nuclear lipid

receptors, exert mostly positive effects on beta cell mass and function. Our own work has

supported a new role for lipotoxicity in preventing beta cell proliferation, described in some

detail in the cell cycle section below.

Lipid receptors

The peroxisome proliferator-activated receptor (PPAR) nuclear receptors are transcription

factors regulating many genes involved in differentiation, development and metabolism.
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They play an important role in T2D because of their effects on circulating glucose and

lipids, and both PPARα and PPARγ are targets of medications currently in use. PPARs are

important for beta cell function. Overexpression of PPARα in obese mice preserved insulin

secretion without affecting beta cell mass in one study [79]; in another study, however,

treatment of obese mice with pan-PPAR agonist bezafibrate also maintained glucose

homeostasis, but in this case by preventing weight gain [80]. Expansion of beta cell mass in

leptin deficient mice is dependent on PPARγ [81]. PPARγ activation improved insulin

secretion by increasing expression of FFAR1, as well as beta cell differentiation genes, in a

pathway dependent on glucose transport, FFAR1, and phospholipase C [29, 82]. Thus,

recent literature suggests that most of the cellular effects of lipids via PPARs are positive.

Cell cycle regulation: lipid effects on beta cell proliferation

A new, less well characterized form of lipotoxicity has been postulated: that in addition to

impairment of insulin secretion and induction of beta cell death, lipid exposure may prevent

beta cell mass expansion by inhibiting beta cell proliferation. Data supporting this

hypothesis include cell culture studies showing that long chain FFAs reversibly blocked

glucose induced beta cell proliferation in INS-1 cells; intriguingly, fatty acid oxidation was

not required, and the dose of fatty acids used did not interfere with glucose metabolism [83,

84]. Palmitate has been shown to reduce proliferation in cultured human beta cells, an effect

that was mitigated by co-incubation with oleate [85]. FFAR2, a receptor for short chain fatty

acids, was upregulated in islets at a stage of pregnancy when beta cells proliferate [86]. In

vivo, raising circulating levels of FFA by direct infusion of triglyceride with heparin

prevented glucose-induced mouse beta cell proliferation [87]. FFA also reduced

proliferation when directly applied to primary mouse beta cells in vitro, and the mechanism

was traced to induction of cell cycle inhibitor proteins p16 and p18 [87].

Other studies contradict these findings, however, and FFAs have even been postulated to

promote compensatory beta cell proliferation [88]. In seeming contradiction, beta cell

proliferation increases in mice overfed with a high fat diet, but FFAs don’t increase until

after beta cell proliferation begins, and proliferation may be driven by other changes

associated with overnutrition [89]. In cultured rat islets, palmitic and oleic acids increased

beta cell proliferation and insulin secretion synergistically with prolactin treatment [90]. A

1:1 mixture of oleic:palmitic acid stimulated tritiated thymidine incorporation in rat islets

[45]. In Zucker fatty rats subjected to partial pancreatectomy, beta cell regeneration

exceeded that of non-hyperlipidemic controls, with robust beta cell proliferation [91]. In

seeming direct contradiction to the infusion study in mice, intravenous infusion of

triglyceride and glucose into 6-month old rats resulted in increased beta cell mass and

proliferation [92]. Many experimental differences may explain the seemingly contradictory

findings, including the species, age, degree of hyperglycemia, insulin resistance and infusion

procedure. A prior study of lipid infusion in rats also concluded that lipids increased beta

cell mass and proliferation [93]. Thus, whether in vivo exposure to lipids promotes or

prevents beta cell proliferation remains an open question, and how this relates to human

biology is uncertain.
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Evidence lipotoxicity is relevant to living human beings

Circulating lipids influence risk of developing T2D [94]. New data confirm prior findings

that triglyceride levels positively correlate with risk of T2D, and specifically with beta cell

dysfunction [95, 96]. In adolescents, acute elevation of triglyceride by overnight infusion

reduced insulin secretion in response to hyperglycemic clamp; whether this effect is race-

dependent remains unclear [97, 98]. Elevation of free fatty acids was strongly associated

with reduced beta cell function in both children and adults, with, intriguingly, a more

consistent effect seen on insulin secretory capacity than on insulin sensitivity [99]. However,

the potentiation of acute glucose-stimulated insulin secretion by prior infusion of insulin was

found to be independent of free fatty acids [100].

The link between cholesterol metabolism and diabetes is an active area of investigation.

HMG-CoA reductase inhibitors (statin-class medications) are now known to slightly

increase the risk of new onset T2D, but the mechanism remains unknown [101]. Seemingly

contradictory to this, atorvastatin preserves beta cell function in some patients with early

T1D; the reason behind this observation is equally unclear [102]. The cardioprotective high-

density lipoprotein (HDL) cholesterol particle, which transports cholesterol out of tissues

and back to the liver for clearance, appears to be protective against development of T2D

[103]. Protection was correlated with larger particle size, possibly implicating flux of

cholesterol transport in diabetes prevention. Blood taken from subjects treated with a CETP

inhibitor, which elevates HDL levels, increased insulin secretion from a beta cell line, an

effect that may have been related to efflux of cholesterol from the cultured cells [104]. In

diabetic mice, chronic infusion of HDL improved blood glucose and pancreatic islet

architecture [105]. HDL protected beta cells against ER stress-mediated cell death [106].

A novel concept based on observations of diabetes remission after bariatric surgery links

beta cell dysfunction in T2D with fat accumulation in the pancreas itself [107]. Consistent

with this hypothesis, pancreatic steatosis in people with genetic ATGL deficiency was

associated with impaired insulin secretory function without impairment in insulin sensitivity

[108]. On the other hand, an imaging-based study found that in nondiabetic individuals with

mild obesity, pancreatic lipid content varied by ethnicity, and in both African American and

Caucasian subjects pancreatic triglyceride was positively correlated with first phase insulin

secretion after IV glucose challenge [109]. Whether pancreatic lipid content is a marker of a

global process, such as insulin resistance or failure of the adipocyte storage system, or has

direct effects on beta cell function, remains unknown.

Conclusion

Beta cell lipotoxicity takes many forms, with respect to lipid species, cellular location of

action, pathways involved, and end effects on beta cell survival, mass, and function. Since

lipid biology clearly interacts with diabetes risk and complications in people, and lipid

signaling is amenable to therapeutic intervention, this is an important field of study that

directly impacts human health. Much work needs to be done to identify rational basis for

new therapies that target lipotoxicity to prevent and treat beta cell failure in diabetes.
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Figure 1.
Free fatty acids exert both positive (green) and negative (red) effects on beta cell mass and

function. FFAs signal through receptors such as FFAR1 and PPARs, or through metabolic

pathways as comprehensively reviewed in [1, 2]. Positive effects are mediated

predominantly through FFAR1 and PPARs. Negative effects are mediated through

inflammation, cellular stress mechanisms, and possibly inhibition of the cell cycle. Negative

effects of FFAs are modulated by growth factors and incretins. Whether autophagy plays a

net positive or net negative role is controversial.
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