
Automated Factor Slice Sampling

Matthew M. Tibbits1, Chris Groendyke2, Murali Haran1, and John C. Liechty1,3

1Department of Statistics, Pennsylvania State University

2Department of Mathematics, Robert Morris University

3Department of Marketing, Pennsylvania State University

Abstract

Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from

arbitrary distributions. However, designing and tuning MCMC algorithms for each new

distribution, can be challenging and time consuming. It is particularly difficult to create an

efficient sampler when there is strong dependence among the variables in a multivariate

distribution. We describe a two-pronged approach for constructing efficient, automated MCMC

algorithms: (1) we propose the “factor slice sampler”, a generalization of the univariate slice

sampler where we treat the selection of a coordinate basis (factors) as an additional tuning

parameter, and (2) we develop an approach for automatically selecting tuning parameters in order

to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our

tuning approach also applies to the standard univariate slice samplers. We demonstrate the

efficiency and general applicability of our automated MCMC algorithm with a number of

illustrative examples.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms provide the knowledgeable researcher with

a very general approach for generating samples from and approximating integrals

(expectations) with respect to a wide range of complicated distributions. However, while the

theory underlying the MCMC algorithm guarantees that the accuracy of these integrals will

eventually get arbitrarily close to the truth, in practice the precision of these approximations

depends upon how well the algorithm is tailored to the particular distribution of interest.

While the standard sampling techniques such as the random-walk Metropolis-Hastings

algorithm appear adequate for many simple statistical models, the necessary sampling time

to estimate covariance structures, non-linear link functions, and/or more complicated

hierarchical models vastly diminishes their utility as a generic MCMC sampler. For many

complicated models and distributions, the resulting Markov chain does not result in accurate

estimates of the interesting features of the target distribution. In addition, standard samplers

like the random-walk algorithm are serial in nature and are not typically designed in a

Supplemental Materials: The R source code and tuning scripts are available through the Journal of Computational and Graphical
Statistics (JCGS) website. Please see the included readme file for further details. Additionally, the software will also be available in a
forthcoming R package on CRAN. An appendix is also available at the JCGS website in which we compare the performance of the
standard and factor slice samplers applied to a non-linear, “banana-shaped” distribution (cf. Rosenbrock, 1960; Wraith et al., 2009).

NIH Public Access
Author Manuscript
J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

Published in final edited form as:
J Comput Graph Stat. 2014 ; 23(2): 543–563. doi:10.1080/10618600.2013.791193.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

manner to take advantage of modern parallelized computing hardware. In recent work,

Tibbits et al. (2011) demonstrate that it is possible to construct versions of the slice sampler

(Neal, 2003) that take advantage of parallel computing.

In this manuscript, we provide a significant improvement to the approach in Tibbits et al.

(2011) by constructing proposals within a rotated reference frame. By sampling within a

transformed space, the rotated or “factor” slice sampler can generate nearly independent

draws from a highly correlated, high dimensional target distribution, eliminating the

construction of an expensive approximate multivariate slice as required by Tibbits et al.

(2011). The factor slice sampler offers a potentially robust, general sampler which can be

applied to a wide range of distributions. In addition we will also address another, seldom

discussed, challenge of constructing an efficient MCMC sampling: the selection of optimal

tuning parameters. Although identifying reasonable tuning parameters is often thought of as

more art than science, we demonstrate that a heuristic optimization technique can robustly

identify efficient interval widths (the only tuning parameter for a univariate slice sampler)

with minimal, if any need for supervision. In addition, we incorporate the techniques for

parallelizing the univariate slice sampler from our previous work utilizing modern

computational hardware (multi-threaded CPUs, graphics cards, etc.). This allows us to

provide an automatic, efficient, and parallelizeable Markov chain Monte Carlo sampling

algorithm with an example implementation in R (R Development Core Team, 2009).

The outline for the manuscript is as follows. In Section 2, we introduce the rotated or

“factor” slice sampler and demonstrate its utility within the context of a toy example. In

Section 3, we describe a procedure for automatically tuning univariate slice samplers. In

Section 4, we describe, in detail, a fully automated factor slice sampler (AFSS). Working in

concert with parallelization techniques, we demonstrate via examples that the AFSS

algorithm obtains a dramatic improvement in computational efficiency over the standard

slice sampler. Furthermore, we demonstrate the automated factor slice sampler's

performance for high dimensional distributions. We conclude in Section 5 by summarizing

the AFSS algorithm's performance and outlining areas of future research.

2 Factor Slice Sampling

The slice sampling algorithm (e.g. Damien et al., 1999; Mira and Tierney, 2002; Neal, 1997,

2003) exploits the equivalence between drawing directly from a K-dimensional probability

distribution and drawing uniformly from the K + 1-dimensional region which lies below the

corresponding probability distribution. Constructing a K + 1-dimensional random walk, the

slice sampler uses uniform deviates to draw from an arbitrary density function. Although the

algorithm for slice sampling, Algorithm 1, does not depend on the dimensionality of the

target distribution, f (β), in this manuscript we will restrict our attention to single-dimension

(univariate) implementations of the slice sampler. When applying the univariate slice

sampler to a multivariate target distribution, we sample component-at-a-time, augmenting

each dimension with its own auxiliary variable. For clarity, the subscript k will index the

dimension of the parameter, βk. The superscript (i) will index the iteration of the Markov

chain.

Tibbits et al. Page 2

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Algorithm 1: Slice Sampling Update Algorithm for Parameter β with density ∝ f(β)

1. Sample h(i) ∼ Uniform {0, f(β(i−1)}

2. Sample β(i) ∼ Uniform on A={β: f(β) ≥ h(i)}

The slice sampler augments the target distribution, adding the h parameter, to more easily

sample from a complicated target distribution, f(β). The ith step of the algorithm may be

described as follows. First, a “height” under the density function, h(i), is drawn uniformly

from the interval (0, f(β(i−1))). This height, h(i), then defines a horizontal slice across the

target density, A = {β: f(β) ≥ h(i)}. Second, a sample, β(i), is drawn uniformly from A.

Typically a closed-form solution for the boundary of A is unavailable; hence, an

intermediate step is usually inserted to construct an approximation, Ã(i), to A from which β(i)

is drawn subject to the constraint: β(i) ∈ A. Note that in the univariate case the set A is either

an interval or the union of several intervals (for example, in the presence of multiple modes).

In a multivariate setting, A may have a much more complicated geometry. We will assume

for the remainder of Section 2, that an efficient means for constructing an approximating

interval Ã exists (for the univariate slice sampler) and proceed as if A is known precisely.

It has been known for some time that a simple rotation of the sampling reference frame or

block updating can dramatically improve the efficiency of an MCMC algorithm. This fact is

often utilitized in practice through either correlated multivariate updates (e.g. Roberts and

Rosenthal, 2009; Roberts and Sahu, 1997), or through a reparameterization of the target

distribution to minimize the dependence amongst parameters (e.g. Gelfand et al., 1996;

Gilks and Roberts, 1996; Yan et al., 2007). While these approaches offer improved mixing,

they can often be challenging to implement. The first approach requires either an adaptive

scheme capable of navigating complicated dependence structures or prior knowledge of the

correlation structure to avoid highly autocorrelated samples. The second approach is often

unusable as it may not be possible to construct orthogonal reparameterizations.

The primary contributions of our work are as follows: (1) we propose a factor slice sampler,

which can be automatically constructed using a rotated orthogonal basis without prior

knowledge of the correlation structure, and (2) we provide an approach for automatically

tuning the proposed sampler. In Algorithm 2, shown below, updates are proposed using

linear combinations, Γk's, of the vector components, βk, in such a way that Γ forms an

orthogonal basis which spans the parameter space and leaves the target distribution

unaltered.

Algorithm 2: Univariate Factor Slice Sampling Update Algorithm for β ∈ ℝK with density proportional to f(β). Note: ηk
∈ ℝ1 is a parameter in the orthogonalized space. The basis vectors, Γk ∈ ℝK are chosen as eigenvectors of the
covariance matrix of β.

1. Sample h(i) ∼ Uniform on {0, f(β(i−1))}

2. Set β(*) = β(i−1)

3. For each basis vector Γk ∈ Γ:

 (a) Sample

 (b) Update

4. Set β(i) = β(*)

Tibbits et al. Page 3

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

It is particularly difficult to create an efficient sampler when there is strong dependence

among the variables in a multivariate distribution. The benefit of the factor slice sampler is

that univariate updates of η(k) are performed in an orthogonalized space where correlation

between the steps of the Markov chain is minimized. Further, a priori knowledge of the

correlation structure of f(β) is unnecessary. In such cases, one may construct a quadratic

approximation, , of the target

distribution, f(β), where μf and Λ represent the mean and covariance of the target distribution

respectively. One can compute the eigenvectors of Λ which form an orthogonal basis, Γ̂. The

columns of Γ̂ are then used to construct linearly independent updates of the original

parameters following Algorithm 2. The examples which follow demonstrate that an iterative

approximation of Γ using a sample covariance matrix is sufficient for efficient exploration

of f(β). Further, one can use the summation in step five of Algorithm 3 during an initial

tuning phase to gauge the accuracy of the approximation, Γ̂, to Γ.

Algorithm 3: Iterative Procedure for Parameter Covariance Estimation

1. Set Γ̂(0) =I, Λ(0) = I, and t = 1, where I is an identity matrix.

2. Draw N samples using Γ̂(t−1), an orthogonal basis for the factor slice sampler.

3. Compute Λ(t) and its corresponding eigenvectors Γ(t).

4. Find A, where A is a rotation matrix such that Λ(t−1)A = Λ(t). Set t = t + 1.

5. Repeat steps 2 through 4 until Σ (A− I) is below a preset threshold.

There are clear limits to the factor slice sampler. The factor-based technique will only

reduce the impact of linear dependence among the parameters β and will not help in the case

of non-linear dependence (as seen in the Appendix). Further, if the covariance matrix, Λ, is

highly ill-conditioned, the factor slice sampler may perform less than optimally; however if

Λ is ill-conditioned it is possible to utilize the left-singular vectors from a singular value

decomposition of Λ and allow Λ to be singular. In this case the factor slice sampler would

gracefully decay to sequentially lower dimensional subspaces even if a given distribution

was overparameterized or partially non-identifiable. This would be useful, for example,

when one desires to sample from a distribution with imposed linear constraints: given a

vector whose elements are constrained to sum to one, the distribution can be sampled

efficiently by using the basis of the space, P┴, orthogonal to the linear (sum-to-one)

constraint. However, for purposes of this manuscript, we limit our scope to models whose

parameters have a full-rank covariance matrix. If the parameters β of a distribution f(β)

exhibit strong linear dependence, then the factor slice sampler will provide a significant

performance improvement, as can be demonstrated using a stylized example of Bayesian

linear regression.

Example 1 (Linear Regression with an Intercept)

Consider a simple linear regression model using k predictors. We assume that the errors ∊j

are i.i.d. standard normal:

Tibbits et al. Page 4

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

We use a Bayesian approach to model specification and complete the model by assigning

flat priors to the regression coefficients: (β) ∝ 1.

This is a toy example as we can sample directly from the posterior distribution; however, it

provides a nice test bed for studying our algorithm. By rearranging terms, we see that the

posterior covariance of the coefficients, β, is given by (XTX)−1. Hence, we can obtain the

optimal sampling basis explicitly by calculating the eigenvectors Γk of (XTX)−1. To compare

the performance of Algorithms 1 and 2 we generate 20, 000 pairs {Yj, Xj} according to the

above model with 10, 50, 100, and 500 correlated predictors as follows:

Algorithm 4: Data Generation Procedure for Regression Example (# 1)

1. Set 3. Draw Xj ∼ N(0, Σ*)

2. Draw 4. Draw Yj ∼ N(Xjβ, 1)

The Wishart draw in step 2 of Algorithm 4 was simply used to perturb the off-diagonal

elements of the correlation matrix while ensuring that it remains positive definite. We drew

the correlated predictors, Xj, according to step 3, and similarly the response observations

according to step 4 (from the model in Example 1) using a vector of known coefficients β.

The efficiency of competing MCMC algorithms can be compared using effective sample

size (ESS) and effective samples per second (ES/sec) as described by Kass et al. (1998) and

Chib and Carlin (1999). ESS is defined as the ratio of the number of steps in a Markov chain

over its autocorrelation time, τ, given by where ρ(m) is the autocorrelation

at lag m. This summation is often truncated when the autocorrelation drops below 0.1,

though more sophisticated approaches are possible (cf. Geyer, 1992). Hence, ESS estimates

the number of i.i.d. draws to which a given Markov chain is equivalent. ESS weighted by

computation time is also reported as a metric of computational efficiency.

For comparison, we ran three univariate (component-at-a-time) update algorithms to sample

from the posterior distribution of β as described in Example 1 using data generated via

Algorithm 4. We varied the length of the tuning phase as well as the tuning parameters

values between the three samplers to ensure that each sampler functioned at peak

performance. The ES/sec times reflect the total run time (including time spent in the tuning

phase) so that a fair comparison can be made. The univariate slice sampler was run for a

shorter tuning phase of 10, 000 samples during which the interval widths were tuned to

ensure optimal performance (see Algorithm 5 in Section 3.2). The univariate factor slice

sampler ran for a much longer tuning phase of 120, 000 samples during which the interval

widths were also tuned to ensure optimal performance using Algorithm 5 of Section 3.2.

Algorithm 3 was used to tune the factor slice sampler for iteration number 10, 000 through

110, 000. The univariate random-walk Metropolis-Hastings sampler was tuned via the

method outlined in Roberts and Rosenthal (2009) to an acceptance rate of 0.44 during a

tuning phase of 100, 000 samples.

Tibbits et al. Page 5

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

In comparing the performance of the samplers, we see that the factor slice sampler clearly

dominates the performance of the other two algorithms in both mixing efficiency, generating

nearly independent draws, as well as computational efficiency, with the highest ES/sec. The

univariate factor slice sampler requires roughly 50% more time to run than the univariate

slice sampler (including the tuning period), but this time is easily recouped in ES/sec as the

generated samples are nearly independent (ESS is nearly 500, 000). The model from

Example 1 may unfairly favor the factor slice sampler because the complicated dependency

between the β coefficients can be easily removed by orthogonalizing the covariates. In an

uncorrelated setting, the factor slice sampler will have identical performance with the

standard univariate slice sampler, but one would, algorithmically, require a longer tuning

phase; hence, the ES/sec of the factor slice sampler will be slightly lower than the ES/sec of

the standard slice sampler, but only with a perfectly linearly-independent distribution.

However, with more challenging models which employ non-linear link functions or

complicated hierarchies, removing the collinearity among the parameters may be difficult if

not impossible and there the true utility of the AFSS algorithm becomes evident, as we shall

see in Section 4.

3 Automated Interval Width Selection

In practice the most challenging aspect of using a slice sampler is constructing an efficient

approximation to the slice A = {β : f(β) ≥ h} because for most models one lacks a closed

form representation for A. We overcome this by following the method from Neal (2003) for

constructing and sampling from an approximate slice and propose a method for

automatically identifying efficient tuning parameters (initial interval widths) for this method.

In Tibbits et al. (2011), we discussed how in a multivariate slice sampler, approximating A is

a challenging or impossible problem; however, in a single dimension, it is quite

straightforward to find an upper and lower bound which are guaranteed to contain A (given

that f(β) is a proper probability distribution). The computational cost of constructing an

approximate slice depends directly on the number of likelihood evaluations which are

required. We start by quantifying the functional dependence of the computational cost on the

choice of the initial interval width. We then show how a Robbins-Monroe recursion from the

optimization literature may be used to automatically tune the slice sampler, thereby

minimizing the computational burden.

3.1 Computational Cost Estimation

To quantify the computational cost of our general slice sampling approach, we must account

for both the time spent constructing the approximate slice, Ã, as well as the time needed to

sample from A using Ã. There are clearly tradeoffs between these two. A highly accurate

approximate slice will require many likelihood evaluations to construct, but only a few

proposals as Ã is very similar to A. Conversely, a poor approximate slice will require few (if

any) likelihood evaluations to construct, but many more proposals as Ã is a very inefficient

approximation to A.

3.1.1 Approximate Slice Construction—We first explain how to construct an

approximation to the slice. Two methods for iteratively constructing an approximate slice in

Tibbits et al. Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

one dimension were outlined in Neal (2003): “step-out” and “doubling”. To clearly illustrate

our approach we will examine the step-out method in detail and derive the functional

dependence of the computational cost (the expected number of likelihood evaluations) on

the choice of tuning parameter (initial interval width). The approximation methods of Neal

both construct Ã by randomly positioning an initial interval width and then expanding it

until both bounds fall outside the target slice. Initially, we assume that the target distribution

is unimodal as this provides a well-defined stopping criterion for the interval approximation,

that is, once the approximate interval bounds fall outside the target slice, then A ⊆ Ã. We

then extend our approach to consider multimodal distributions where A is a collection of

disjoint intervals and hence, while a portion of A must be contained in Ã, Ã may not contain

all of A.

In the step-out algorithm proposed by Neal (2003), an initial interval of width ω is randomly

positioned such that it overlaps the current location, and then the lower and upper bounds

are examined and extended in steps equal to ω until they fall outside the target slice. We let s

represent the true (unknown) width of the target slice A, and define κ to be the ratio . Let X

denote the number of expansions required so that the approximate interval completely

contains A. Intuitively, κ is the expected value of X. If ω is , half the size it must be to fully

contain s, then the interval will be expanded twice. Similarly, if ω is 3 × s, then the interval

will only expand (exactly once) a third of the time. We now formally construct this result.

If we first consider the case where the target slice is smaller than the initial interval width (κ

< 1), as in the example shown in Figure 1, we see that either (1) the initial interval will

completely cover the target slice and not expand, or (2) one of the bounds (either the upper,

or the lower, but not both) will need to be extended exactly once. Further, if we consider the

placement of the lower bound with respect to the target slice, we see that the probability of

expanding is equal to the probability of the lower bound falling within a region of size s

divided by its total flexibility ω. When κ > 1, as in the example in Figure 2, X can only take

the integer values of either ⌈κ⌉ or ⌊κ⌋. In Figure 2, where , the initial interval will

either be expanded ⌊κ⌋ = two times or ⌈κ⌉ = three times. As a result, the expected number of

expansions for all values of κ can be summarized in Equation 1.

(1)

The expected number of interval expansions derived in Equation 1 is interesting as it does

not depend on the actual size of the target slice, but only on the ratio κ of the target slice to

the initial interval width. In practice, as s is unknown, we can only vary ω, not κ. However,

if ω remains fixed after a small tuning phase and is not varied by height h or for different

values of s, then ω and s are independent. Hence, for a given initial interval width, ω(0), we

can compute where the

Tibbits et al. Page 7

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

expectation of s is integrated with reference to target probability distribution and the

distribution of the auxiliary variable, h.

To examine Equation 1, we used a univariate, step-out slice sampler to sample from a

standard normal distribution in ℝ1. In the first of two simulations, we analytically computed

the target slice width at each iteration – as it is easily determined for the standard normal

distribution – varying ω in each iteration to keep κ fixed and then recorded the average

number of expansions over 10, 000 iterations at different levels of κ. In Figure 3, we see that

the result, E[X] = κ, is an exact fit to the simulation. In the second simulation, we varied ω,

and likewise, we see in Figure 4 that also provides an exact fit to the

results. Note that the value E [s] for the standard normal distribution is an integral which can

be evaluated using Maple:

Note that regardless of the skew, kurtosis, or other higher order moments of

the target distribution, as long as the underlying distribution is unimodal. Two additional

terms must be added to Equation 1 for each additional mode in the distribution. Further,

these two terms are multipled by the probability of the approximate slice overlapping both

modes without expansion. This probability is important because the step-out approximation

method may now violate our assumption that: “expansion of the initial interval width will

only cease after s is wholly contained in the approximate interval”. If this probability (of

overlapping both modes initially) is near zero, then the step-out approximation method will

tend to stick in one mode (Neal, 2003). The doubling method of Neal (2003) was devised to

mitigate the possibility of being trapped in one mode; however, the doubling method also

requires a costly construction to ensure that moving from the proposed location back to the

initial location is possible. This additional step to ensure reversibility makes the

identification of an optimal initial interval width for the doubling slice sampler highly

distribution dependent and beyond the scope of this manuscript.

3.1.2 Sampling from the Approximate Slice—To aid in situations where Ã grossly

over-estimated the size of A, an interval shrinkage procedure was also devised in Neal

(2003). The interval is contracted toward the current parameter value after each rejected

proposal. By construction, Ã is guaranteed to contain a portion of the target slice with

probability one. Hence, there is a well-defined stopping criterion for the proposal phase

because eventually a proposal must fall within the target slice, A. This leads us to estimate

the number of interval contractions, C, required before a generated proposal falls within the

target slice – as this will be one less than the number of proposals (and likelihood

evaluations) needed. Let ϖ denote the width of the approximate slice (after expansion). If

we again consider only unimodal distributions for the moment, the approximate slice is

guaranteed to contain the entirety of the slice A. The expanded interval width ϖ is then

Tibbits et al. Page 8

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

equal to the width of the target slice s plus some additional region ∊ falls outside the target

slice. As in deriving E[X], we find it useful to work with a ratio, and here we define .

We first note that no contractions are necessary if the first proposal falls within A; therefore,

we can easily construct . If the first proposal does not fall within the

target slice, then the second proposal will be sampled (uniformly) from a smaller interval.

Since the first proposal was rejected, the only portion of the interval to shrink is the excess,

∊, as the proposal must have fallen within this region to be rejected. We denote the width of

this contracted proposal interval by s + λ∊, where λ is the fraction of the excess which

remains after contraction. However, this formulation is slightly misleading because in

general a portion of the excess, ∊, falls below the lower bound (∊l) and a portion of the

excess falls above the upper bound (∊u). While λ is random, every proposal is independent

given the interval width, so the expected value can easily be computed, . To

calculate the probability of a successful second proposal (C = 1), we must first condition on

the selection of the left or right tail:

where β(j) denotes the jth proposal. We compute the expected number of interval

contractions as a weighted summation across a binary tree of proposals. We define a

recursive set of equations and numerically estimate the expected number of interval

contractions. Note that all probabilities below are computed given {β(0),…,β(j−1)} ∉ A, ,

and . These are abbreviated to "−" for brevity where denotes the number of

proposals in {β(0),…, β(j−1)} which led to the contractions of the excess in the lower bound,

∊l and similarly , for the upper bound.

(2)

Tibbits et al. Page 9

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

As with earlier notations in this manuscript, superscripts here reflect an iteration index. For

example, the term represents the fraction of excess interval remaining below the

lower bound after proposals were made in the region less than the lower bound of the

target slice (out of j rejected proposals). Note that Equation 2 does not reduce to a binomial

random variable as the probabilities of proposing in s, ∊l or ∊u are not constant. Further, the

term (β(j) ∉ s|−) must account, recursively, for the order in which the lower, ∊l and upper,

∊u, excesses were contracted. However, the computation of E[C] was greatly simplified by

summing across the m + 1 leaves of binary tree instead of eliciting all 2m possible paths. We

truncated the infinite summation in Equation 2 to the first 100 terms, and overlayed it

(dashed line) on the experimental results in Figures 5 and 6.

We numerically verified Equation 2 by sampling from a standard normal distribution in ℝ1.

In the first simulation, we analytically computed the target slice width, s, at each iteration

and allowed ω (and hence ϖ) to vary allowing us to record the average number of

contractions over all 10, 000 iterations at fixed levels of κ. For large values of in our

simulations, many expansions led to an interval which closely approximates the target slice

and very few contractions occurred. For small values of κ, the initial interval width was too

large, few expansions were made, many proposals were rejected, and, hence, many

contractions occurred. Note that as κ decreases, more contractions will occur; hence, this

will require larger and larger trees to yield an accurate approximation. This will become

computationally burdensome, but by only using the first 100 terms, we see a near perfect fit

to the simulation results in Figure 5. In the second simulation, we recorded the average

number of contractions over 10,000 iterations at fixed levels of ω. In Figure 6, we use an

approximate value, ω/E [s], in place of κ when constructing ξ for Equation 2 and find a

reasonable fit to the second simulation results. While the results presented apply chiefly to

unimodal distributions, one could consider extending these results to multimodal situations.

However, it would be highly distribution dependent as it is possible to contract and remove

entire modes from the approximate interval (altering both ∊ and s).

3.2 Tuning by Heuristic Optimization

The efficiency of the univariate slice sampler depends on the number of likelihood

evaluations required. Therefore, we want to find values of ω that minimize E[X|ω] + E[C|ω].

The second contribution of this manuscript is to propose an automated algorithm for

identifying efficient ω's. As evidenced in Sections 3.1.1 and 3.1.2, E[X] and E[C] as

functions of κ are quite well behaved. Almost any optimization technique could find the

minimum in Figure 7; however, these estimates of E[X] and E[C] were generated by

integrating over the space of all true target widths, s, globally across the distribution. If the

Markov chain is randomly initialized in the tails of the distribution, a local grid search, for

example, might limit the slice sampler's ability to efficiently explore the rest of the

distribution. Hence, we propose an adaptive optimization technique to sequentially adjust

the slice sampler's initial interval width as it explores a larger fraction of the distribution.

Instead of continually adapting with “diminishing magnitude” as in Roberts and Rosenthal

(2009), our approach stops tuning after a pre-specified threshold is met or a pre-specified

Tibbits et al. Page 10

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

number of tuning iterations is exceeded. Then, ω is fixed and the proposals are constructed

using a constant (non-adaptive) transition kernel. To tune the univariate slice sampler, we

propose a simple heuristic approach which utilizes the ratio of the number expansions to the

total number of expansions and contractions. We construct a simple Robbins-Monro

recursion (cf. Benveniste et al., 1990; Borkar, 2008). The standard form of this recursion is:

ω(t+1) ← ω(t) + γ(t)(h(ω(t)) − α), where h(ω) is some approximation to an unobservable

function of interest g(ω) (with E[h(ω)|ω] = g(ω)), and it is used to find the roots of the

equation g(ω) − α = 0, (cf. Shaby and Wells, 2010). Hence, we derive Algorithm 5 by taking

, γ(t) = 2ω(t), and :

Algorithm 5: Heuristic Algorithm for Initial Interval Width Selection

1. Draw N(0) samples using an initial guess, ω(0). Set t = 0.

2. Tally the number of expansions, X(t) & contractions, C(t)

3. Set and N(t+1) = 2 × N(t). Set t = t + 1.

4. Repeat steps 2 and 3 until

In practice, if X(t) is zero for a given iteration, we set it equal to one to prevent an undefined

update. Note also that using the interval contraction procedure, it is much better to consider

an ω that is too large versus an ω that is too small (see Figure 7). To prevent multiple draws

from using an ω which is too small, we generally choose N(0) (the initial number of samples

drawn before adjusting ω) to be a small number, often a single sample. Note that Neal

(2003) also proposed terminating the interval expansion after performing an arbitrary

number of expansions which will also help with an initially undersized ω while maintaining

the integrity of the heuristic procedure. In addition, we must also select an appropriate

tolerance for the stopping criterion. In practice, we recommend φ ≈ 0.1 as the minimum in

Figure 7 is nearly two orders of magnitude wide.

To test the performance of Algorithm 5, we again sampled from a standard normal

distribution in ℝ1. We initialized 50 samplers to a uniform distribution for ω(0) of roughly

thirteen orders of magnitude on the interval [e−5, e20]. We see in Figure 8, that the

convergence is quite rapid. The sampler interval widths (ω) have all converged to within a

single order of magnitude of the posterior mean in under eight iterations. Because the

number of slice sampler draws are increased in powers of two after each iteration of

Algorithm 5, eight iterations require only 512 samples. In the examples presented in

Sections 4.1 and 4.2, the samplers also often require fewer than eight tuning iterations (with

N(0) = 1, and φ = 0.1) to find a nearly optimal initial interval width. However, we typically

desire at least 10 tuning iterations to allow more time for the samplers to reach the general

vicinity of posterior support. Further, when applying Algorithm 5 to the univariate factor

slice sampler which also uses Algorithm 3, we reset i = 0 and N(i) = 1 in Algorithm 5 every

time the factors are updated to obtain an optimal selection of ω with regard to the newly

rotated frame of reference. Algorithm 5 appears to very efficiently tune the standard and

Tibbits et al. Page 11

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

factor slice samplers (initial interval widths). With a reasonable initial guess of the spread of

the target distribution, the convergence will be faster; however, it appears that starting even

from a naive guess of 1.0 for the initial interval width and tuning using Algorithm 5 will

work in general and provide reasonable performance.

4 Applications to Data Examples

In Section 2, we demonstrated the utility of rotating the sampling reference frame within the

context of a stylized example. To demonstrate the robustness of these approaches we

consider two more challenging and realistic examples from spatial statistics where an

orthogonalizing transformation of the target parameterization does not exist. While one

could generate perfectly uncorrelated draws from the distribution in our toy example, there

are no such simplifications for these two examples. The improved performance of the

univariate factor slice sampler over the the standard univariate slice sampler translates

directly to an improved ability to utilize these ubiquitous Gaussian process models.

An efficient univariate slice sampler will, on average, only require five likelihood

evaluations (where at most only two or three are performed simultaneously). Hence, the

algorithm doesn't provide as much of an opportunity for parallel decomposition as, for

example, a multivariate slice sampler; however, the improved efficiency due to the rotation

of the factors more than compensates for this drawback and further, additional parallel

processing capacity can then be dedicated to each likelihood computation. We find that an

optimal level of parallelism is obtained for these models by using either three cores of an

Intel Core i7 processor through OpenMP, or utilizing two GTX 480 graphics cards from

nVidia through CUDA. For details on the parallel implementation, we refer the interested

reader to Tibbits et al. (2011).

4.1 Linear Gaussian Process Model

In the next example, we use a linear Gaussian process to model the mean surface

temperature over the month of January, 1995 on a 24 × 24 grid covering Central America.

This dataset was obtained from the NASA Langley Research Center Atmospheric Science

Data Center.

Example 2 (ASDC Surface Temperature Dataset)—We model the mean surface

temperature as a spatially-referenced response, Y(sj), measured at 576 locations sj with a set

of covariates, X(sj), including an intercept, the latitude, and the longitude of each sj. The

responses, Y(sj), are correlated based on their magnitude of separation and it decays

exponentially:

We place a uniform prior on β as in Example 1. We place inverse gamma (shape = 2, scale =

1) priors on σ and ψ so that the prior means for σ and ψ are 1.0 and the prior variance is

Tibbits et al. Page 12

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

infinite. Finally, we place a uniform [0.005, 1.2] prior on the effective range parameter φ

(the distance matrix has been rescaled to the unit square).

The univariate factor slice sampler achieves an ESS roughly roughly 23 times that of

standard univariate slice sampler, and it is actually able to draw 100, 000 samples slightly

faster than the non-factor approach. In terms of computational efficiency, the factor slice

sampler is 26 times better at generating effectively independent samples per second (ES/

sec). Using OpenMP, we see that both univariate slice samplers gain a 30% performance

improvement. With reference to the non-parallel standard slice sampler, the factor slice

sampler using OpenMP achieves an overall 36 to 38 fold improvement. Given the ease with

which OpenMP can be incorporated to an existing codebase, the parallelized factor slice

sampler represents an automated and efficient statistical sampling technique, which requires

a minimum amount of development time.

Utilizing the more intricate parallelism of CUDA, we wrote graphics kernels to estimate the

Gaussian process log likelihood and thereby attain nearly a fifty fold improvement in

sampling efficiency. This magnitude of speedup changes the way in which the modeler

approaches this class of problems. Instead of waiting a week or more to compare two or

three models for variable selection or requiring huge, costly high performance computing

centers, the factor approach allows the statistician to examine hundreds of possible models

within the same time frame using a single desktop computer. Hardware for parallel

implementations also continues to get less expensive. (Note that at the time of submission,

an nVidia GTX 480 graphics card retailed for less than $225.)

4.2 Logistic Gaussian Process Model

To better characterize the performance of the automated factor slice sampling algorithm

within the context of a high dimensional distribution, we used the Gaussian process model

of Section 4.1 as a tool to fit the spatial dependence amongst the odds of observing a

Pennsylvania native songbird, the Hermit Thrush, using a spatial generalized linear model

(cf. Haran, 2011). This dataset, collected in a joint effort by the Carnegie Museum of

Natural History, the Powdermill Nature Reserve, and the Pennsylvania Game Commission,

will be published in the Second Pennsylvania Breeding Bird Atlas (Powdermill Avian

Research Center, 2012). The Hermit Thrush is a species found across North America;

however, surprisingly little is known of its demographic characteristics (cf. Hughes et al.,

2011). For the purpose of illustration, we have selected a random subset of 500 observations.

Example 3 (Logistic Gaussian Process Model)—We consider a logistic Gaussian

process model with an exponential covariance function. We model the presence or absence

of the Hermit thrush, as a spatially-referenced response Z(sj) measured at locations sj with

covariates X(sj) (j ∈ {1… N}) where we have included four predictors of scientific interest

as well as an intercept. We model a second spatial process w(sj) and assume that the

responses Z(sj)'s are conditionally independent given w = (w(s1),…, w(sN)) and that the

Z(sj)'s are conditionally Bernoulli, where for j ∈ {1… N} we have:

Tibbits et al. Page 13

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

The spatial dependence is imposed by modeling w as a stationary Gaussian process with an

exponential covariance function. However, to preserve the identifiability, we must force Σ(s,

φ) to be a correlation matrix. As in Example 2, we place a flat prior on β and a uniform

[0.005, 1.2] prior on the effective range parameter φ (the distance matrix was again

rescaled).

This example is not only more computationally expensive than Example 2, but also much

more challenging as the target distribution has 506 dimensions: a vector β of five regression

coefficients (including an intercept), a scalar φ which determines the degree of spatial

dependence, and 500 spatial random effect parameters, w. Unlike in Example 2, the

distributions of β, φ, and w cannot be sampled from directly; hence, we will use slice

samplers for β, φ and w. For the purpose of illustration, we have included the results (and

sampling efficiencies) for four distinctly different blocking and sampling approaches. Note

that one could construct a univariate factor slice sampler to update the regression

coefficients (β) jointly and a separate univariate factor slice sampler to update the location

mean parameters (w). We could then utilize a standard univariate slice sampler to sample the

remaining parameter, φ. For convenience, we label this scheme by IV and denote it by (φ,

{β},{w}) where the braces, {}, denote the use of a joint/factor update. There are ten possible

blocking schemes with the four included in Table 3 starred below:

We note that when blocking the regression coefficients, β, and/or the spatial random effects,

w, with the covariance parameter φ, care must be taken as this adds a significant

computational cost. Each time the parameter φ is altered, the likelihood evaluation requires a

costly Cholesky decomposition and back substitution (which is more efficient than inverting

the matrix directly for the density computation). To improve the computational efficiency,

often a discrete uniform distribution is substituted for the prior on φ where the Cholesky

decomposition at each location can be precomputed and stored (cf. Section 7.5.4 of Diggle

and Ribeiro, 2007); however, no such concessions were made here. Note that one could also

consider varimax or other such rotations to minimize the number of non-zero loadings in Γ

and thereby minimize the number of factors which require Cholesky decompositions to

update. In testing the blocking strategies IV through VIII and X, we found that the ESS of φ

marginally improved while the ES/sec of all parameters were significantly lower than the

reference strategy, I, due to the significantly increased computational burden. As such, we

also do not include the results from the samplers using CUDA. Computationally expensive

matrix operations are only required for updates to φ and the improved vector performance of

Tibbits et al. Page 14

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

CUDA is outweighed by the cost of transferring updated β and w vectors after each iteration.

For further discussion on blocking strategies, please refer to Roberts and Sahu (1997), Liu et

al. (1994), and the references therein.

In Table 3, we contrast the performance of the four sampling approaches. The first sampling

approach (I): “φ, β, w” uses standard univariate slice samplers for all parameters. It is used

as the baseline for determining the algorithmic speedups shown above. Blocking strategy II
uses a factor slice sampler to update the 500 random effects {w}. Blocking strategy III uses

a factor slice sampler update the 5 fixed effects {β}. Finally, blocking strategy IX uses a

single factor slice sampler to update the 5 fixed and the 500 random effects jointly ({β, w}).

We see that blocking the random effects improves sampling efficiencies, but it also leads to

longer sampling times. Also, the blocking of the random effects in approach II, (φ, β, {w}),

only triples the sampling efficiency whereas blocking the random effects with the fixed

effects in approach IX, (φ, {β, w}), leads to a factor of twenty-two improvement in sampling

efficiencies for the random effects. The blocking strategy in approach IX also leads to a

thirteen-fold improvement in the fixed effects sampling efficiency.

4.3 Summary of Results

In the simple toy example, we find that even in high dimensional distributions with strong

dependence, the ease with which the factor slice sampler can adapt to distributional

dependence allowed it generate nearly independent samples unlike the strong

autocorrelation present in the traditional random walk and standard slice sampler

approaches. The factor slice sampler attained a near twenty-seven-fold improvement in ES/

sec, a measure of sampling and computational efficiency. In Example 4.1, we fit a linear

Gaussian process model to a 576 location surface temperature dataset obtained from the

NASA Langley Research Center Atmospheric Science Data Center. Blocking the three

covariance parameters and utilizing the automatically tuned factor slice sampler, we

obtained a forty-six and forty-seven fold improvement in ES/sec for the two covariance

parameters. In Example 4.2, we fit a logistic Gaussian process model to 500 observations of

the prescence/abscence of Hermit Thrush, obtained from the Second Pennsylvania Breeding

Bird Atlas (Powdermill Avian Research Center, 2012). The factor slice sampler obtained

thirteen and twenty fold improvements in ES/sec for the 5 covariate coefficients, β, and the

500 random effects, w, respectively.

5 Discussion

We develop an automated approach to selecting an efficient coordinate basis using a simple

sample covariance estimate (obtained during an initial tuning phase) and constructed a

rotated or “factor” slice sampler to address the challenge of sampling from high dimensional

distributions which exhibit moderate to strong dependence. Further, we describe a new

approach to automatically tune slice samplers. Our approach for tuning is general and

appears to be effective for both the factor slice sampler and the regular slice sampler. We

then examined the performance of the standard and factor univariate slice samplers within

the context of several examples, including two challenging examples from spatial data

analysis.

Tibbits et al. Page 15

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

We believe we have demonstrated that the factor slice sampler is efficient, providing

thirteen to forty-seven fold improvements in computational efficiency (as measured in ES/

sec) over carefully tuned alternative MCMC algorithms. Furthermore, we show how the

algorithm can be fully automated, which makes it very useful for routine application by

modelers who are not experts in MCMC. The automated and parallelized factor slice

sampler provides an efficient technique which has broad application to statistical sampling

problems. It requires little or no user intervention to identify an efficient basis for sampling

and also optimal tuning parameters. Hence, we hope that these algorithms will facilitate a

broader audience to access the power of MCMC methods for complicated problems, while

efficiently utilizing increasingly parallelized hardware.

We chose not to include the multivariate slice sampler results because it was

computationally infeasible for more than 8 dimensions given our current hardware. The

results of Section 4.1 do translate directly to those of Section 4.3 in Tibbits et al. (2011),

except that in this manuscript we utilized graphics cards capable of handling all 576

locations (whereas we had previously limited our analysis to only 500 data points). Further,

the multivariate slice sampler also required a grid search to identify optimal tuning

parameters whereas the factor slice sampler is easily tuned as explained in Section 3.2.

In the future, we wish to consider alternative factor selection methods, as well as orthogonal

and oblique rotation techniques. We also wish to revisit the multivariate slice sampler

extensions explored in Tibbits et al. (2011) as they apply to the factor slice sampler.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was partially supported by an NIH grant: R01-GM083603-01. This research was supported in part
through instrumentation funded by the National Science Foundation through grant OCI-0821527. The authors
greatly appreciate the valuable comments from two anonymous reviewers on an earlier version of the manuscript.

References

Benveniste, A.; Métivier, M.; Priouret, P. Adaptive algorithms and stochastic approximations, volume
22 of Applications of Mathematics. Springer-Verlag New York, Inc.; New York, NY, USA: 1990.

Borkar, VS. Stochastic Approximation: A Dynamical Systems Approach. Cambridge University Press;
2008.

Chib S, Carlin BP. On MCMC sampling in hierarchical longitudinal models. Statistics and Computing.
1999; 9(1):17–26.

Damien P, Wakefield J, Walker S. Gibbs sampling for Bayesian non-conjugate and hierarchical
models by using auxiliary variables. Journal of the Royal Statistical Society Series B (Statistical
Methodology). 1999; 61(2):331–344.

Diggle, PJ.; Ribeiro, PJ. Springer Series in Statistics. Springer New York; 2007. Model-based
Geostatistics.

Gelfand, AE.; Sahu, SK.; Carlin, BP. Efficient parametrizations for generalized linear mixed models,
(with discussion). In: Bernardo, JM.; Berger, JO.; Dawid, AP.; Smith, AFM., editors. Bayesian
Statistics 5. Oxford Univ Press; 1996. p. 165-180.

Geyer CJ. Practical Markov chain Monte Carlo. Statistical Science. 1992; 7(4):473–483.

Tibbits et al. Page 16

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gilks, WR.; Roberts, G. Strategies for improving MCMC. In: Gilks, WR.; Richardson, S.;
Spiegelhalter, DJ., editors. Markov chain Monte Carlo in practice. London: Chapman & Hall/CRC;
1996. p. 89-114.

Haran, M. Gaussian random field models for spatial data. In: Brooks, S.; Gelman, A.; Jones, G.; Meng,
X., editors. Handbook of Markov chain Monte Carlo. Springer-Verlag, Inc; 2011.

Hughes J, Haran M, Caragea P. Autologistic Models for Binary Data on a Lattice. Environmetrics (to
appear). 2011

Kass RE, Carlin BP, Gelman A, Neal RM. Markov chain Monte Carlo in practice: A roundtable
discussion. The American Statistician. 1998; 52(2):93–100.

Liu JS, Wong WH, Kong A. Covariance structure of the Gibbs sampler with applications to the
comparisons of estimators and augmentation schemes. Biometrika. 1994; 81(1):27–40.

Mira A, Tierney L. Efficiency and convergence properties of slice samplers. Scandinavian Journal of
Statistics. 2002; 29:1–12(12).

Neal, RM. Technical report. Department of Statistics; University of Toronto: 1997. Markov chain
Monte Carlo methods based on ‘slicing’ the density function.

Neal RM. Slice Sampling. The Annals of Statistics. 2003; 31(3):705–741.

Powdermill Avian Research Center (Retrieved May 27th, 2012). Carnegie museum of natural history
web site © 2012. http://www.carnegiemnh.org/powdermill/atlas/index.html

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing; Vienna, Austria: 2009.

Roberts G, Rosenthal J. Examples of Adaptive MCMC. Journal of Computational and Graphical
Statistics. 2009; 18(2):349–367.

Roberts GO, Sahu SK. Updating schemes, correlation structure, blocking and parameterization for the
Gibbs sampler. Journal of the Royal Statistical Society: Series B (Methodological). 1997; 59(2):
291–317.

Rosenbrock HH. An Automatic Method for Finding the Greatest or Least Value of a Function. The
Computer Journal. 1960; 3(3):175–184.

Shaby B, Wells M. Exploring an adaptive Metropolis algorithm. Currently under review. 2010; 1:1–
17.

Tibbits MM, Haran M, Liechty JC. Parallel multivariate slice sampling. Statistics and Computing.
2011; 21:415–430.

Wraith D, Kilbinger M, Benabed K, Cappé O, Cardoso JFmc, Fort G, Prunet S, Robert CP. Estimation
of cosmological parameters using adaptive importance sampling. Phys Rev D. 2009; 80:023507.

Yan J, Cowles MK, Wang S, Armstrong MP. Parallelizing MCMC for Bayesian spatiotemporal
geostatistical models. Statistics and Computing. 2007; 17(4):323–335.

Tibbits et al. Page 17

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.carnegiemnh.org/powdermill/atlas/index.html

Figure 1.

Expansion of a randomly positioned initial interval of width . Hence , and we

make either ⌈κ⌉ = 1, or ⌊κ⌋ = 0 expansions.

Tibbits et al. Page 18

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 2.

Expansion of a randomly positioned initial interval of width . Hence , we make

either ⌈κ⌉ = 3, or ⌊κ⌋ = 2 expansions.

Tibbits et al. Page 19

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 3. Number of Expansions vs κ

Tibbits et al. Page 20

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 4. Number of Expansions vs s/ω

Tibbits et al. Page 21

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 5. Number of Contractions vs κ

Tibbits et al. Page 22

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 6. Number of Contractions vs ω

Tibbits et al. Page 23

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 7. Total Number of Likelihood Evals vs κ

Tibbits et al. Page 24

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 8. Convergence of Interval Width (ω)

Tibbits et al. Page 25

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Tibbits et al. Page 26

T
ab

le
 1

T
oy

 e
xa

m
pl

e
fo

r
pe

rf
or

m
an

ce
 c

om
pa

ri
so

n
of

 M
C

M
C

 s
am

pl
in

g
al

go
ri

th
m

s
fo

r
β,

 a
 v

ec
to

r
of

 r
eg

re
ss

io
n

co
ef

fi
ci

en
ts

 f
ro

m
 E

xa
m

pl
e

1
w

ith
 P

 =
 1

0,
 5

0,
 1

00
,

an
d

50
0

di
m

en
si

on
s.

 A
ll

E
SS

 e
st

im
at

es
 w

er
e

ob
ta

in
ed

 f
ro

m
 5

00
, 0

00
 “

po
st

-t
un

in
g”

 d
ra

w
s.

 N
ot

e:
 T

he
 c

om
pu

ta
tio

n
tim

e
us

ed
 in

 E
S/

se
c

in
cl

ud
es

 ti
m

e
sp

en
t

in
 th

e
tu

ni
ng

 p
ha

se
. (

R
W

M
H

 ≡
 R

an
do

m
-W

al
k

M
et

ro
po

lis
 H

as
tin

gs
)

A
lg

or
it

hm
P

 =
 1

0
P

 =
 5

0
P

 =
 1

00
P

 =
 5

00

E
SS

E
S/

se
c

E
SS

E
S/

se
c

E
SS

E
S/

se
c

E
SS

E
S/

se
c

U
ni

va
ri

at
e

R
W

M
H

20
19

5
26

84
15

82
2

18
0

15
86

5
32

17
00

4
0.

30

U
ni

va
ri

at
e

Sl
ic

e
Sa

m
pl

er
75

16
9

34
62

39
57

6
15

0
36

23
5

25
19

76
3

0.
13

U
ni

va
ri

at
e

Fa
ct

or
 S

lic
e

Sa
m

pl
er

49
88

08
14

37
6

49
51

32
11

30
49

07
94

24
1

45
73

37
2.

64

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Tibbits et al. Page 27

T
ab

le
 2

C
om

pa
ri

so
n

of
 e

ff
ec

tiv
e

sa
m

pl
e

si
ze

 (
E

SS
),

 e
ff

ec
tiv

e
sa

m
pl

es
 p

er
 s

ec
on

d(
E

S/
se

c)
, a

nd
 r

el
at

iv
e

sp
ee

du
p

of
 E

S/
se

c
fo

r
σ

, ψ
, a

nd
 φ

 f
ro

m
 E

xa
m

pl
e

2.
 A

ll

al
go

ri
th

m
s

w
er

e
ru

n
fo

r
11

0,
 2

40
 it

er
at

io
ns

, b
ut

 th
e

fi
rs

t 1
0,

 2
40

 w
er

e
di

sc
ar

de
d

to
 a

llo
w

 f
or

 s
am

pl
er

 tu
ni

ng
 (

us
in

g
A

lg
or

ith
m

s
3

an
d

5)
. T

he
 s

am
pl

in
g

al
go

ri
th

m
s

w
er

e
pa

ra
lle

liz
ed

 u
si

ng
 O

pe
nM

P
w

ith
 th

re
e

pr
oc

es
so

r
co

re
s

an
d

us
in

g
C

U
D

A
 w

ith
 tw

o
nV

id
ia

 G
T

X
 4

80
s

as
 d

es
cr

ib
ed

 in
 T

ib
bi

ts
 e

t a
l.

(2
01

1)
.

ψ
σ

φ

A
lg

or
it

hm
s

P
ar

al
le

l A
P

I
E

SS
E

S/
se

c
E

S/
se

c
Sp

ee
du

p
E

SS
E

S/
se

c
E

S/
se

c
Sp

ee
du

p
E

SS
E

S/
se

c
E

S/
se

c
Sp

ee
du

p

U
ni

va
ri

at
e

Sl
ic

e
Sa

m
pl

er

—
64

61
6

2.
06

22
67

0.
07

22
34

0.
07

O
pe

nM
P

64
92

0
2.

70
(1

.2
7)

22
10

0.
09

(1
.3

1)
21

78
0.

09
(1

.2
7)

C
U

D
A

65
49

7
2.

70
(1

.3
1)

22
93

0.
09

(1
.3

1)
22

62
0.

09
(1

.3
1)

U
ni

va
ri

at
e

Fa
ct

or
 S

lic
e

Sa
m

pl
er

—
58

72
3

2.
10

(1
.0

2)
52

29
1

1.
87

(2
5.

82
)

51
93

7
1.

85
(2

6.
02

)

O
pe

nM
P

57
12

9
2.

89
(1

.4
0)

51
26

7
2.

60
(3

5.
93

)
52

99
6

2.
68

(3
7.

69
)

C
U

D
A

66
08

6
4.

25
(2

.0
6)

51
77

0
3.

33
(4

6.
07

)
51

64
1

3.
32

(4
6.

63
)

N
ot

e:
 T

ab
le

 2
 u

se
s

th
e

st
an

da
rd

 u
ni

va
ri

at
e

sl
ic

e
sa

m
pl

er
's

 s
in

gl
e

pr
oc

es
so

r
ru

n
tim

e
as

 th
e

ba
se

lin
e

fo
r

de
te

rm
in

in
g

al
go

ri
th

m
ic

 s
pe

ed
up

s
sh

ow
n

ab
ov

e.

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Tibbits et al. Page 28

T
ab

le
 3

C
om

pa
ri

so
n

of
 e

ff
ec

tiv
e

sa
m

pl
e

si
ze

 (
E

SS
),

 e
ff

ec
tiv

e
sa

m
pl

es
 p

er
 s

ec
on

d(
E

S/
se

c)
, a

nd
 r

el
at

iv
e

sp
ee

du
p

of
 E

S/
se

c
fo

r
φ

, β
, a

nd
 w

 f
ro

m
 E

xa
m

pl
e

3.
 A

ll

al
go

ri
th

m
s

w
er

e
ru

n
fo

r
12

0,
 4

80
 it

er
at

io
ns

, b
ut

 th
e

fi
rs

t 2
0,

 4
80

 w
er

e
di

sc
ar

de
d

to
 a

llo
w

 f
or

 s
am

pl
er

 tu
ni

ng
. F

or
 b

re
vi

ty
 w

e
pr

ov
id

e
on

ly
 th

e
av

er
ag

e

ef
fi

ci
en

cy
 β

̄ f
or

 th
e

fi
xe

d
ef

fe
ct

s
β,

 a
nd

 th
e

av
er

ag
e

ef
fi

ci
en

cy
 ω

̄ f
or

 th
e

sp
at

ia
l r

an
do

m
 e

ff
ec

ts
 w

.

φ
β̄

ω
̄

Sa
m

pl
in

g
A

pp
ro

ac
h

P
ar

al
le

l A
P

I
E

SS
E

S/
se

c
E

S/
se

c
Sp

ee
du

p
E

SS
E

S/
se

c
E

S/
se

c
Sp

ee
du

p
E

SS
E

S/
se

c
E

S/
se

c
Sp

ee
du

p

φ
, β

, w
—

15
61

0.
04

36
14

0.
08

23
70

0.
05

O
pe

nM
P

15
48

0.
05

(1
.4

6)
33

60
0.

11
(1

.3
7)

23
64

0.
08

(1
.4

7)

φ
, β

, {
w

}
—

15
64

0.
03

(0
.8

8)
51

71
0.

10
(1

.2
6)

55
87

0.
11

(2
.0

7)

O
pe

nM
P

16
79

0.
05

(1
.6

8)
42

46
0.

13
(1

.6
2)

61
65

0.
19

(3
.4

2)

φ
, {

β}
, w

—
15

04
0.

03
(0

.9
6)

13
16

0.
03

(0
.3

6)
23

43
0.

05
(0

.9
6)

O
pe

nM
P

14
84

0.
05

(1
.3

6)
22

07
0.

07
(0

.8
8)

24
03

0.
08

(1
.4

5)

φ
, {

β,
 w

}
—

16
73

0.
03

(0
.9

4)
35

14
1

0.
70

(8
.5

6)
39

42
4

0.
79

(1
4.

64
)

O
pe

nM
P

17
77

0.
06

(1
.5

6)
34

70
6

1.
08

(1
3.

11
)

38
56

8
1.

19
(2

2.
21

)

N
ot

e
th

at
 {

θ 1
, θ

2}
 d

en
ot

es
 a

 jo
in

t u
pd

at
e

of
 p

ar
am

et
er

s
θ 1

 a
nd

 θ
2

us
in

g
a

fa
ct

or
 s

lic
e

sa
m

pl
er

. T
he

 f
ir

st
 s

am
pl

in
g

ap
pr

oa
ch

: “
φ

, β
, w

”
em

pl
oy

s
st

an
da

rd
 u

ni
va

ri
at

e
sl

ic
e

sa
m

pl
er

s
fo

r
al

l p
ar

am
et

er
s

an
d

w
as

us
ed

 a
s

th
e

ba
se

lin
e

fo
r

de
te

rm
in

in
g

th
e

al
go

ri
th

m
ic

 s
pe

ed
up

s
sh

ow
n

ab
ov

e.

J Comput Graph Stat. Author manuscript; available in PMC 2015 January 01.

