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Abstract

The pharmaceutical industry, consumer protection groups, users of medications and government 

oversight agencies are all strongly interested in identifying adverse reactions to drugs. While a 

clinical trial of a drug may use only a thousand patients, once a drug is released on the market it 

may be taken by millions of patients. As a result, in many cases adverse drug events (ADEs) are 

observed in the broader population that were not identified during clinical trials. Therefore, there 

is a need for continued, post-marketing surveillance of drugs to identify previously-unanticipated 

ADEs. This paper casts this problem as a reverse machine learning task, related to relational 
subgroup discovery and provides an initial evaluation of this approach based on experiments with 

an actual EMR/EHR and known adverse drug events.

Introduction

Adverse drug events (ADEs) are estimated to account for 10-30% of hospital admissions, 

with costs in the United States alone between 30 and 150 billion dollars annually (Lazarou, 

Pomeranz, and Corey 1998), and with more than 180,000 life threatening or fatal ADEs 

annually, of which 50% could have been prevented (Gurwitz et al. 2003). Although the 

U.S. Food and Drug Administration (FDA) and its counterparts elsewhere have preapproval 

processes for drugs that are rigorous and involve controlled clinical trials, such processes 

cannot possibly uncover everything about a drug. While a clinical trial might use only a 

thousand patients, once a drug is released on the market it may be taken by millions of 

1We use bold-face letters to denote sets, superscripts to denote time and subscripts denote the index.
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patients. As a result, additional information about possible risks of use is often gained after a 

drug is released on the market to a larger, more diverse population.

Figure 1 presents a sample database of electronic health records (EHR) and a few patient 

records. In this example of a modern EHR, available information includes phenotype 

data: such as gender, height, and weight, clinical data such as medical visits, lab tests, 

and prescriptions, and genotype data such as Single Nucleotide Polymorphisms (SNPs, or 

individual DNA positions where some variation can be expected). This paper proposes 

reverse machine learning as a post-marketing surveillance tool in order to predict and/or 

detect adverse reactions to drugs from EHR data. We apply this approach to actual EHR 

datasets, including datasets provided by the Observational Medical Outcomes Partnership 

(OMOP). This task poses several novel challenges to the Machine Learning (ML) 

community:

1. One cannot assume advance knowledge as to an ADE that a particular drug 

might cause. In some cases, we may suspect a specific ADE, such as increased 

risk of heart attack (myocardial infarction, or MI); in such a case, supervised 

learning can be employed with MI as the class variable. But if we do not know 

the ADE in advance, what class variable can we use? We propose using the drug 
itself as the class variable and claim that, while we already know who is taking 

the drug, examination of a model that accurately predicts drug use can give 

insight into ADEs. Because we seek to discover the ADE by building a model 

to “predict” drug use (who has been on the drug), rather than to predict the 

actual entity of interest (the ADE), we refer to this approach as reverse machine 
learning.

2. The data are multi-relational. Several objects such as doctors, patients, drugs, 

diseases, and labs are connected through relations such as visits, prescriptions, 

diagnoses, etc. If traditional ML techniques are to be employed, they require 

flattening the data into a single table. All known flattening techniques, such 

as computing a join or summary features result in either (1) changes in 

frequencies on which machine learning algorithms critically depend or (2) loss of 

information.

3. There are arbitrary numbers of patient visits, diagnoses and prescriptions for 

different patients, i.e., there is no fixed pattern in the diagnoses and prescriptions 

of the patients. It is incorrect to assume that there are fixed number of diagnoses 

or that only the last diagnosis is relevant. To predict ADEs for a drug, it is 

important to consider the other drugs prescribed for the patient, as well as past 

diagnoses, procedures, and laboratory results.

4. Since all the preceding events and their interactions are temporal, it is important 

to explicitly model time. For example, some drugs taken at the same time can 

lead to side-effects, while in other cases one drug taken after another can cause a 

side-effect. As we demonstrate in our experiments, it is important to capture such 

interactions to be able to make useful predictions.
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5. We need to learn lessons from epidemiology, especially pharmacoepidemiology 
about how to construct cases and controls—positive and negative examples—as 

well as how to address confounders. Otherwise our methods will simply identify 

disease conditions associated with the drug for other reasons, such as drug 

indications or conditions correlated with use of the drug for other reasons.

Contributions to Machine Learning

This paper presents a machine learning approach to studying an important, real-world, high-

impact task—identifying ADEs—for which data sets are available through the Observational 

Medical Outcomes Partnership (http://www.omop.org). The paper shows how relational 

learning (Lavrac and Dzeroski 1994; De Raedt 2008) is especially well-suited to the task, 

because of the multi-relational nature of EHR data. In addition, this paper provides technical 

lessons for ML that should be applicable to a number of other domains as well. In this work, 

we follow the suggested structure of application papers in the Special Issue of the Machine 
Learning Journal on Applications (Kohavi and Provost 1998). We list these lessons here, 

discuss them as they arise in our presentation of the empirical analysis of our approach, and 

then review them again at the end.

1. In some ML applications, we may not have observations for the class variable. 

For example, we might hypothesize an unknown genetic factor in a disease 

or an unknown subtype of a disease. In such situations, we typically resort to 

unsupervised learning. The task of identifying previously unanticipated ADEs is 

such a situation – without an hypothesized ADE, how can we run a supervised 

learning algorithm to model it? Without knowing in advance that MI is an ADE 

for Cox2 inhibitors (Cox2ib), how can we provide supervision such that the 

algorithm will predict that MI risk is raised by these drugs? We show that the 

problem can be addressed by running supervised learning “in reverse,” to learn 

a model to predict who is on a Cox2ib. If we can identify some subgroup of 

Cox2ib patients based on the events occurring after they start Cox2ib, this can 

provide evidence that the subgroup might be sharing some common effects of 

Cox2ib. We anticipate this same approach can also be applied to other situations 

where the class variable of interest is not observed. We refer to this lesson as 

Reverse ML.

2. We introduce to ML some useful ideas from epidemiology, including treating 

each patient as his/her own control, by drawing as positive examples patients 

and their data after they begin use of a drug and as negative examples the 

same patients but before they begin use of the drug. Another idea we employ 

from epidemiology is to use a domain-specific scoring function that includes 

normalization based on other drugs and other conditions. We introduce to 

epidemiology the notion of learning rules to characterize ADEs, rather than 

simply scoring drug-condition pairs which require the ADE to correspond to an 

already-defined condition.

3. Finally, this paper reinforces the need for iteration between human and computer 

in order to obtain the models that provide the most insight for the task. In ADE 

identification, rules that are predictive of drug use can be taken as candidate 
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ADEs, but these candidate ADEs must then be vetted by a human expert. If 

some of the rules are found to still capture other factors besides drug effects 

such as indications, then these rules should be discarded. We refer to this lesson 

as Iterative Interaction. Note that the prediction is reverse not only in terms of 

causality, but more importantly in terms of the label of interest.

Machine Learning for Predicting ADEs

Learning adverse events can be defined as follows:

Given

Patient data (from claims databases and/or EHRs) and a drug D

Do

Determine if evidence exists that associates D with some previously unanticipated adverse 

event

Note that no specific associated ADE has been hypothesized, and there is a need to identify 

the event to be predicted.

To our knowledge, ML has not been applied to this task before now. As mentioned above, 

our approach for this task is to use machine learning “in reverse.” We seek a model that can 

predict which patients are on drug D using the data after they start the drug (left-censored) 

and also censoring the indications of the drug. If a model can predict which patients are 

taking the drug, there must be some combination of clinical experiences more common 

among patients on the drug. In theory, this commonality should not consist of common 

causes for use of the drug, but common effects. The model can then be examined by experts 

to see if it might indicate a possible adverse event.

Formalizing Learning in Reverse

Given a (large) EHR and a drug, our task is to find a condition that is related to the drug. 

To better understand the complexity of the problem, consider the Markov model shown in 

Figure 2. The states are a set of partially observed variables ⟨A, C, L, D⟩, where A1 are 

attributes of the patient, such as gender, age, family history, and genetic information; C are 

diagnoses; L are lab tests, and D are drugs prescribed. Given the dimensionality of the task, 

we chose to ignore latent variables (Saria, Koller, and Penn 2010) in this model.

We define an ADE to be an unexpected dependency between an observed variable in C 

and an observed variable in D, in the simplest case, or even some combination of variables 

in D. To our knowledge the present paper is the first to consider the more complex case 

of combinations, although we begin with the simpler case. Notice that vectors A, C, L, D 

have a large number of variables: our EHR includes over 10k reported conditions, and 4k 

to 5k different drugs. A standard approach to this problem is to assume two time-steps: 

events that happened before (step 0) and after taking a drug Dj (step 1). Techniques such 

as disproportionality analysis (Wilson, Thabane, and Holbrook 2004; Zorych et al. 2011) 

then search for a condition Ci such that its probability increases after taking drug Dj, i.e., 
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P Ci
t ∣ Dj

t1 > P Ci
t′ ∣ Dj

t1  s.t.t > t1 > t′, where Ci
t denotes the condition Ci at time t. To do so, 

one must obtain estimators P Ci
t ∣ Dj

t1  and P Ci
t′ ∣ Dj

t1  and test against the null hypothesis. In 

practice, estimates can be confounded by other parameters. Typically, one will consider A 

and stratify at least over age and gender, and then weight the estimates. One can also go a 

step further and count time of exposure, as in observational screening. Focus on the temporal 

aspect is given by the univariate method (Newgard et al. 2004), where the condition Ci is 

considered the result of a non-homogeneous Poisson process with two rates, for during and 

after usage of drug Dj. A different method is to take into account confounding between 

different drugs. For example, a Bayesian logistic regression method (Caster et al. 2010) 

takes into account all drugs, plus gender and age information, to estimate the P (condition).

Essentially, these different methods search conditions Ci
j such that their posterior 

probabilities of occurrence are greater than some threshold ( P Ci
j ∣ A1; t, C1; t, L1; t, D1; t > δ ) 

> δ), i.e., they search through the entire EHR for some conditions occurring with a non-

trivial probability given the drug history. Given the size of the problem, they focus on 

different combinations of A, C, L, D. We use the ′ to refer to a (possibly empty) subset, 

say, D′ a subset of D. The previous approaches to the problem can be described as an 

enumeration of P Ci
j ∣ A′1; t, C′1; t, L′1; t, D′1; t  , given some fixed A′1;t, C′1;t, L′1;t, D′1;t.

In this work, we propose reverse learning. Instead of a direct search for Ci, we propose 

to enumerate over A′1;t, C′1;t, L′1;t, D′1;t and compute P Dj
k ∣ A′1; t, C′1; t, L′1; t, D′1; t  for 

some k as we know that if Ci is an ADE for Dj, then Ci
l will be in a learned model for Dj

k

where l ≥ k. We thus reduce the problem of learning models for every condition Ci to the 

problem of finding out whether Ci is in a model for Dj. Thus, we can use standard learning 

technology to perform the search. Notice that our approach is akin to Bayesian inference, 

where we compute P(C|E) by estimating P(E|C). Indeed it reduces to this in the case where 

we just search over fixed subsets. On the other hand, the advantage is not in the Bayesian 

approach itself, as P(Dj|A′1;t, C′1;t, L′1;t, D′1;t) is not necessarily always easier to estimate 

than P (Ci|A′1;t, C′1;t, L′1;t, D′1;t): both are estimated from counts. The advantage is in 

transforming the learning process and making the problem supervised.

The strong relation between our work and Bayesian learning suggests a connection between 

reverse learning and abduction (Sato and Kameya 2002; Kakas and Flach 2009). Notice that 

in our setting the goal is not as much to learn a set of abducibles for an existing procedure, 

as to learn a new concept. Our problem is thus closer to the problem of predicate invention 

(Muggleton 1994; Richards and Mooney 1995; Davis et al. 2007; Muggleton et al. 2010). 

We believe that such insights will guide further progress in reverse learning.

Implementing Reverse Learning

To apply our reverse learning algorithm, we need to analyze in more detail:

1. EHR data are multi-relational and temporal, necessitating relational learning (De 

Raedt 2008) for this task.
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2. The output of the learning process should be easy to interpret by the domain 

expert (Page and Srinivasan 2003).

3. Generally, only a few patients on a drug D will experience novel ADEs (ADEs 

not already found during clinical trials). The learned model need not, and indeed 

most often should not, correctly identify everyone on the drug, but rather merely 

a subgroup of those on the drug while not generating many false positives 

(individuals not on the drug). This argues that our reverse learning problem 

actually can be viewed as “subgroup discovery”(Wrobel 1997; Klosgen 2002; 

Zelezný and Lavrac 2006), in this case finding a subgroup of patients on drug D 
who share some subsequent clinical events.

This suggests using a relational rule-based classifier, since relational rules naturally 

induce subgroups on the data, are discriminant, and are often easy to understand. In our 

experiments, we use the ILP system, Aleph (Srinivasan 2004). In the remainder of the 

section, for concreteness, we present the discussion in terms of Aleph. Aleph learns rules in 

the form of Prolog clauses and scores rules by coverage (P – N), but this scoring function 

can be easily replaced by any user-defined scoring function.

Suppose we did not know that Cox2 inhibitors doubled the risk of MI, but we wondered if 

these drugs had any associated ADE. Our reverse ML approach can be seen as a case control 

study, where “cases”, or positive examples, are the patients on Cox2ibs and “controls” are 

the negative examples. Choosing controls is fundamental in obtaining good study quality 

(Rothman and Greenland 2008). We can use the patient him/herself as control. In this case 

the data on the patient prior to drug usage is the negative example. Alternatively, we can 

search for age- and gender-matched controls and use them as negative examples. In this 

case, for each positive example, a control is a patient of the same age and gender who is not 

on a Cox2ib. (Controls could be selected to be similar to the cases in other ways—age and 

gender are just the most common such features in clinical studies.) Because Cox2ibs double 

the risk of MI, we can expect our distribution of selected patients to appear as in Figure 3. 

For example, if we have say 200 positive (P) patients who suffer an MI, we expect about 

100 negative (N) patients. The following rule would have a strong score of P – N = 100 and 

hence would be returned by Aleph unless some other rule scores even better.

cox2ib Patient mi Patient

This rule says that a patient was likely on a Cox2ib if they suffered an MI.

Another advantage of the multi-relational approach, is that the body (precondition) of the 

rule does not have to be a single condition, but it can be a combination of conditions and 

lab results, possibly in a temporal order. Hence, ADEs that do not neatly correspond to an 

exact pre-existing diagnosis code can be discovered. Furthermore, the body of the rule can 

involve other drugs. So, ADEs caused by drug interactions can be captured. For example, 

it has recently been observed that patients on Plavix may have an increased risk of stroke 

(ordinarily prevented by Plavix) if they are also on Omeprazole. This can be represented by 

the following rule:

Page et al. Page 6

Proc AAAI Conf Artif Intell. Author manuscript; available in PMC 2014 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plavix Patient omeprazole Patient ∧ stroke Patient

Just because the rule is representable does not mean it will be learned. This depends on its 

support in the data, and the support of other rules that could score better, specifically as the 

support impacts the scoring function we employ.

In our experiments, we consider two cases. In the first case, we seek to associate drugs 

with specific conditions or candidate ADEs. In terms of relational learning, an association 

is represented by a rule, or definite clause, whose head is an atomic formula built from 

a predicate naming the drug and a variable standing for the patient, and whose tail is an 

atomic formula built from a predicate naming the condition and the same patient variable; 

this form is illustrated by the cox2ib and mi rule above. In this case our reverse learning 

approach is another way to carry out a standard association study, differing only in the 

scoring function we employ. In the second case, we do not assume a list of candidate ADEs 

or conditions; instead an ADE is represented by any conjunction of atomic formulas with 

predicates naming entities from the EMR such as conditions, observations (labs or vitals), 

or other drugs, or possibly predicates defined in a background theory such as before. In this 

case reverse learning extends beyond the standard association study methodology.

Experiments with OMOP Data and an EHR

Our first experiment is with a large real-world health insurance claims database available 

through OMOP. This was one of several databases available for evaluation of methods 

for ADE discovery (Ryan et al. 2010); OMOP evaluated methods by use of 10 known 

drug-ADE pairs such as Warfarin-bleeding and ACE inhibitor-Angioedema. Because OMOP 

had multiple different reasonable definitions for each ADE condition, this resulted in 35 

ground-truth positive examples. All other pairs consisting of 1 of the 10 drugs with one of 

these 30 condition definitions were taken to be ground-truth negatives. This strong definition 

of negative examples may lead to somewhat pessimistic evaluation results, as evidence is 

accruing that some of these negative examples may actually be ADEs as well, such as a 

possible association between ACE inhibitors and renal damage. The methods were evaluated 

on a database with over 1.2 million subjects, and that includes 17M drug reports and 29M 

condition reports, for a total of 1300 drugs and over 10k conditions. The best approaches, 

with the best combinations of parameter settings achieved AUCROC around 0.8 (Madigan 

and Ryan 2011); this is quite high considering that many approaches did no better than 

chance (AUCROC of roughly 0.5).

As a first study, because all the other methods tested by OMOP ranked only drug-condition 

pairs, we limited Aleph to rules consisting of only a single condition in the body of the rule, 

that is, rules of the form of the following example:

warfarin X bleeding X

Aleph with its default scoring function and this constraint scored no better than chance. This 

was the case whether we chose positive and negative examples to be individuals on or not on 
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the drug, or to be individuals (their diagnoses, drugs, labs, vitals, etc.) after or before drug 

use, respectively. We settled on choosing individuals as their own controls, and on a scoring 

function based on the posterior probability which has the following motivation.

We are interested in whether a drug d causes a condition, or ADE, c, but we are unable to 

carry out a controlled experiment to test causality. Following our reverse learning approach, 

we use each drug d as a reference, and Aleph computes for every condition c the counts of 

patients such that P = ΣI I ∣ tcI > tdI  , and N = ΣI I ∣ tcI ≤ tId  . In this case, P/(P + N) is an 

estimator to the distribution Pr(tc > td|c; d).

Note that one drug d might yield high probabilities for many conditions simply because it 

is frequently used by patients who are generally unhealthy or chronically ill; we can correct 

for this with a penalty term that incorporates all conditions, such as Pr(tC > td|C, d): the 

number of patients in whom any condition C occurs later than d divided by the total number 

of patients who have any condition and the particular drug d. Also, a condition c might 

yield high values of Pr(tc > td|c, d) for many different drugs d; again we can correct for this 

with an analogous penalty term Pr(tC > td|C, d) over all conditions C. We can incorporate 

each penalty term by dividing the original metric by it, or by multiplying the original metric 

by one minus this penalty term. In practice both approaches work equally well for ranking 

drug-condition pairs. We can show that the above approach is equivalent to computing the 

point-wise mutual information (Mackay 2003) between ⟨d, c⟩ pairs.

With this scoring function Aleph, achieves an AUCROC of 0.76, as shown in Figure 4. 

While this result is competitive without requiring parameter tuning, it nevertheless brings 

no improvement over other methods. The main benefit of using reverse machine learning 

with Aleph comes only with extending the possible lengths of the rule bodies. Our next 

experiment was to do so with the same data set. Runs of this type take substantially longer, 

varying from twenty minutes to almost seven hours depending on he drug. We no longer had 

ground truth against which to score these more complex rules, but we were able to evaluate 

their potential value, and especially their ability to pick up on drug-drug interactions. One of 

the top-scoring rules was:

warfarin X bleeding X ∧ antibiotics X

This rule represents a rediscovery that antibiotics elevate the risk of bleeding in patients on 

Warfarin, and the rule scores significantly better than a rule with bleeding alone.

Our second experiment is with a very different EHR. The Marshfield Clinic has one 

of the oldest internally developed EHRs (Cattails MD) in the US, with coded diagnoses 

dating back to the early 1960s. Cattails MD has over 13, 000 users throughout Central and 

Northern Wisconsin. Data collected for clinical care is transferred daily into the Marshfield 

Clinic Data Warehouse (CDW) where it is integrated. CDW is the source of data for this 

study. Programs were developed to select, de-identify by removing direct identifiers, and 

then transfer the data to a collaboration server. For this work, the specific CDW tables used 

were: ICD9 diagnoses, observations (lab results and others such as weight, blood pressure, 

and height), three sources of medication information and patient demographics (gender and 
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birth date). Also associated with every entry was a date, so we provided Aleph background 

knowledge predicates to compare dates.

We ran on two drugs, Warfarin and Vioxx. For Warfarin the approach easily rediscovered 

the known ADE of bleeding, together with the common treatment for Warfarin-induced 

bleeding (Phytonadione, or Vitamin K1).

warfarin X bleeding X, D1 ∧ pℎytonadione X, D2 ∧ after D1, D2

Vioxx is a drug that was pulled from the market because it was found to double the risk 

of heart attack, or myocardial infarction (MI). We next tested to see whether Aleph would 

uncover this link with MI if the link were unknown. Vioxx belongs to a larger class of 

drugs called Cox2 inhibitors. The overall goal was to identify possible ADEs caused by 

Cox2ib. In our reverse ML approach, the specific goal of the Aleph run was to learn rules 

to accurately predict which patients had an indicated use of Cox2ib. These rules would then 

be vetted by a human expert to distinguish which were merely associated with indications 

of the drug (diseases or conditions for which the drug is prescribed) and which constituted 

possible ADEs (or other interesting associations, such as off-label uses for the drug). We 

first validate our methodology with a run in which only diagnoses are used and rules are 

kept as short as possible—one body literal (precondition) per rule. Myocardial infarction 

(MI) is a known adverse event of Cox2ib, and we wanted to test if the method would 

uncover MI automatically. In Table 1 we show the 10 most significant rules identified by 

Aleph for a single run. Note that the penultimate rule (highlighted) identifies the diagnosis 

of 410 (MI) as a possible ADE of Cox2. The fact that this ADE can be learned from 

data demonstrates that our method is capable of identifying important drug interactions and 

side-effects.

In some cases, a drug may cause an ADE that does not neatly correspond to an existing 

diagnosis code (e.g., ICD9 code), or that only occurs in the presence of another drug or 

other preconditions. In such a case, simple 1-literal rules will not suffice to capture the 

ADE. We now report a run in which all of the background knowledge was used, including 

labs, vitals, demographics and other drugs. Table 2 shows the top ten most significant 

rules. The use of ILP yields interpretable rules. Fisher’s exact test indicated that many rules 

demonstrated a significant difference in identifying positive cases over chance. Aleph also 

provided summary statistics on model performance for identifying subjects on Cox2ibs, as 

shown below the Tables 1 and 2. If we assume that the probability of being on the Cox2ib 

is greater than 0.5 (the common threshold) then the model has an accuracy of 78% in 

predicting Cox2ib use. The sobering aspect of this result is that Aleph learns over a hundred 

rules, and while some are potential ADEs, most appear to simply describe combinations 

of features associated with indications for the drug. At present a clinician must then sort 

through this large set of rules in order to find any evidence for possible ADEs. Research is 

required to find ways to reduce the burden on the clinician, including automatically focusing 

the rule set toward possible ADEs and presenting the remaining rules in a manner most 

likely to ease human effort.
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Conclusion

This paper presents an initial study of machine learning for the discovery of unanticipated 

adverse drug events (ADEs). The key contributions and lessons learned for ML are:

• ML can be used “in reverse” when the real class value of interest—in this case, 

some unanticipated ADE—is not known at learning time. We show that this 

approach is able to successfully uncover ADEs.

• The paper demonstrates the importance of learning from years of epidemiology 

research in selecting our positive and negative examples for machine learning, 

as well as in setting our scoring function. We do not want to find patterns in 

the patients who get prescribed a particular drug, because we already know such 

patterns—they are the indications of the drug. Hence, it is important to control 

by using data about patients before the drug, as well as by total amounts of data 

on various conditions following various drugs.

• Another lesson is that despite our censoring, a high accuracy, or highly-accurate 

discovered subgroup, does not automatically mean we have uncovered one or 

more ADEs. Instead, all rules must be vetted by a human expert to determine if 

they are representative of an ADE or of some other phenomenon, such as that 

patients on arthritis medication such as Cox2ib also suffer from other correlated 

ailments. Once these associated conditions are also censored, learning ideally 

should be re-run in case ADEs were masked by other rules that scored better.

• Another lesson is that data are multi-relational, including longitudinal 

(temporal), and hence may be best analyzed by methods that can directly handle 

such data. It would be desirable to take into account time from drug exposure 

to events, but this is a challenging direction because different drugs can cause 

ADEs over different ranges of time. Some drugs may cause an ADE within 

hours after they are taken, whereas others may have permanent effects that only 

manifest themselves as an ADE years later.

Applications for Machine Learning in Active Surveillance

In addition to the task of ADE that we have presented, machine learning approaches could 

support many drug safety needs, including:

1. Identify and characterize temporal relationships between drugs and conditions 

across the population - Is there an association between exposure to rofecoxib and 

cardiovascular events such as MI? If so, what is the likely time-to-onset of the 

event, relative to exposure? Does the risk increase over time and vary by dose?

2. Identify drug-condition relationships within patient subpopulations - Among 

elderly, what are the observed effects of a particular medicine? Among patients 

with renal impairment, what is rate of adverse events?

3. Identify drug-drug interactions that produce harmful effects - Which concomitant 

drug combinations produce elevated risks, relative to exposure to individual 

products?

Page et al. Page 10

Proc AAAI Conf Artif Intell. Author manuscript; available in PMC 2014 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Identify risk factors and define patient subgroups with differential effects of a 

drug-related adverse event - Which patients are more likely to experience adverse 

events? Which patients less likely to experience adverse events?

5. Create models for predicting event onset - Which patients are likely to have 

experienced a MI, based on available information about diagnoses (AMI and 

other CV terms), diagnostic procedures (EKG), treatments (PCI), lab tests 

(troponin, CK-MB), and other observations.

Identifying previously-unanticipated ADEs, predicting who is most at risk for an ADE, and 

predicting safe and efficacious doses of drugs for particular patients all are important needs 

for society. With the recent advent of “paperless” medical record systems, the pieces are in 

place for machine learning to help meet these important needs.
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Figure 1. 
Sample structure of EHR
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Figure 2. 
A temporal model capturing our problem; horizontal lines represent time.
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Figure 3. 
Distribution of people with risk of MI
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Figure 4. 
ROC Plot on OMOP data
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Table 1

Aleph Rules Generated for Cox2 Inhibitor Use (Single Diagnosis)
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Table 2

Aleph Rules Generated for Cox2 Inhibitor Use

Proc AAAI Conf Artif Intell. Author manuscript; available in PMC 2014 June 19.


	Abstract
	Introduction
	Contributions to Machine Learning

	Machine Learning for Predicting ADEs
	Given
	Do
	Formalizing Learning in Reverse
	Implementing Reverse Learning

	Experiments with OMOP Data and an EHR
	Conclusion
	Applications for Machine Learning in Active Surveillance

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

