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Abstract

Purpose of review—It has been 10 years since pathological high-frequency oscillations

(pHFOs) were described in the brain of epileptic animals and patients. This review summarizes

progress in research on mechanisms of their generation and potential clinical applications over that

period.

Recent findings—Initially, pHFOs were recorded with microelectrodes in the hippocampus of

rodents and patients with mesial temporal lobe epilepsy (MTLE), but recently pHFOs have also

been recorded with clinical depth and grid electrodes in multiple brain areas including the

hippocampus and neocortex of patients with different types of epilepsy. One hypothesis is that

pHFOs reflect fields of hypersynchronized action potentials (bursts of population spikes) within

small discrete neuronal clusters responsible for seizure generation. Studies suggest that pHFOs can

be used as a reliable biomarker for epileptogenesis, epileptogenicity, and the delineation of the

epileptogenic region.

Summary—Recording of pHFOs with clinical electrodes provides a means for further

investigation of their functional role in the epileptic brain and as a potential biomarker of

epileptogenesis and epileptogenicity and for presurgical mapping.
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Introduction

Epilepsy is the most common serious neurological disorder, affecting people of all ages [1].

Ten percent of the world’s population have at least one epileptic seizure in a lifetime, and a

third of these develop epilepsy. At any given time, 1% of the world’s population has active

epilepsy. Despite a tremendous increase in the number of antiepileptic drugs made available

over the past few decades, as many as 40% of people with epilepsy will fail to become

seizure free with treatment. Future advances in diagnosis, treatment, and prevention will

depend on improved understanding of the fundamental neuronal mechanisms underlying

epilepsy disorders. Furthermore, pharmacotherapy in epilepsy continues to be trial-and-error

because there are no reliable biomarkers that identify the presence or severity of epilepsy

(epileptogenicity) or its development (epileptogenesis). A recently identified interictal

electrophysiological epileptiform abnormality, termed pathological high-frequency

oscillations (pHFOs), may reflect the primary neuronal disturbances responsible for

epilepsy, providing opportunities to elucidate novel therapeutic and preventive targets and to

develop effective biomarkers for clinical use.

Normal high-frequency oscillations

HFOs are local oscillatory field potentials that contain spectral power greater than 100 Hz

and have a duration less than 1 s. Neuronal synchrony of unit firing increases during HFOs,

facilitating synaptic transmission through local networks. Normal HFOs include ripple

oscillations that were first described in CA1 of the nonprimate hippocampus [2–4], but are

also found in CA3, subiculum, and entorhinal cortex [5, 6]. In rats, ripples contain spectral

power between 100 and 200 Hz and occur most frequently during episodes of awake

immobility and slow wave sleep (SWS). In CA1, and likely other hippocampal structures,

ripples reflect summated fast inhibitory postsynaptic potentials (IPSPs) on the somata of

pyramidal cells [7]. In-vivo studies using mice, bats, nonhuman primates, and humans have

found ripples with spectral frequency and state-dependent characteristics similar to ripples in

rats [8–11]. Ripples are believed to play an important role in information processing and

consolidation of memory [12, 13].

In rodent and human neocortex, HFOs with spectral frequencies typically greater than 200

Hz may be evoked electrically or occur during sensory stimulation [14–18]. In cat

neocortex, spontaneous ripple-frequency HFOs can be detected during natural sleep, and

increase in amplitude during sleep-like states induced by ketamine anesthesia [19]. The

mechanisms generating neocortical HFOs are not known, but evidence suggests that

sensory-evoked HFOs may reflect population spikes from synchronously firing pyramidal

cells and/or fast-spiking, possibly GABAergic, neurons [19–21].

Pathological high-frequency oscillations

In animal models of chronic limbic epilepsy, HFOs with spectral frequencies in the range of

250–600 Hz occur in dentate gyrus, CA1, and CA3 areas of hippocampus, subiculum, and

entorhinal cortex, but only in rats that exhibit recurrent spontaneous seizures and not in

those that have been subjected to an epileptogenic insult but do not exhibit epileptic seizures

[22, 23]. These interictal HFOs, called fast ripples, are considered to be pathological based
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on results from several studies that showed interictal fast ripples are uniquely associated

with sites of seizure onset [23, 24], fast ripples occur during the onset of some hippocampal

seizures [25], and a greater number of fast ripples-generating sites correlate with a higher

rate of seizures [26]. These results suggest that fast ripples can be a biomarker for the

epileptogenic region, defined as the area of brain necessary and sufficient for the generation

of spontaneous epileptic seizures, and also for assessing the degree of epileptogenicity.

Many of these properties of fast ripples have been substantiated in patients with medically

intractable mesial temporal lobe epilepsy (MTLE) [10, 22, 27–29, 30••, 31, 32].

In the intrahippocampal kainate model of MTLE, fast ripples and ripple-frequency HFOs

were recorded in the epileptogenic dentate gyrus, an area where normal ripples do not occur

in normal rats, within days to weeks after kainate injection, but only in those animals that

later exhibited spontaneous seizures. Furthermore, shorter latencies to the first appearance of

fast ripples or ripple-frequency HFOs in dentate gyrus correlated with shorter latencies to

first spontaneous seizure [33]. These findings not only indicate that pHFOs predict seizures

after an epileptogenic insult and could be a biomarker of epileptogenesis but also that

pHFOs can occur with the same oscillatory frequency as normal ripples. Several important

differences between pHFOs and normal ripples in rat hippocampus have been identified

[34••]. Normal ripples reflect summated IPSPs and the spatial distribution of their neuronal

generators is diffuse, whereas pHFOs are believed to reflect synchronized firing of

abnormally bursting principal cells (i.e. burst of population spikes) localized to small

discrete neuronal clusters embedded within tissue that does not generate pHFOs [35, 36].

The size and location of pHFO-generating neuronal clusters in dentate gyrus becomes stable

over time [26], but local application of an inhibitory antagonist causes these clusters to

increase in size [35]. This has led to the hypothesis that pHFO-generating neuronal clusters

represent the basic underlying mechanism of these forms of epilepsy and that spontaneous

seizures arise when reduction in tonic inhibitory influences results in their expansion,

coalescence, and synchronization. This view is supported by the observation that the density

of pHFO-generating clusters in dentate gyrus correlates with seizure frequency [26] and by

the demonstration that the power of these oscillations increases during the transition to

hypersynchronous seizures [25].

Neocortical HFOs occur during high-voltage spike and wave discharges in rats that could

represent a model of absence epilepsy [37]. These events may reflect IPSPs in pyramidal

cells, similar to mechanisms generating normal hippocampal ripples. Neocortical ripple-

frequency HFOs have been recorded during spontaneous and electrically evoked

electrographic seizures in anesthetized cats [38]. In this study, fast-spiking (presumably

GABAergic) neurons did not fire at fixed latencies in relation to the neocortical HFOs,

suggesting IPSPs may not be involved in synchronizing the neuronal discharge during some

HFOs in neocortex. It is not clear from this study, however, whether these neocortical

HFOs, and the proposed mechanism generating them, are pathological because the animals

did not have chronic seizures. More research is needed to better understand the

spatiotemporal properties and mechanisms supporting normal and pathological HFOs

associated with neocortical epilepsy.
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High-frequency oscillations in patients with epilepsy

The first human studies on interictal HFOs were recorded from microelectrodes positioned

in hippocampus and entorhinal cortex of patients with MTLE [8, 22]. Human ripples in

MTL structures that are presumably normal share several important characteristics with

normal ripples found in the nonprimate hippocampus, including spectral frequency and

bilateral occurrence [8, 28], broad area of tissue supporting generation and synchrony of

neuronal discharges [27], highest occurrence during SWS and lowest duringREMsleep [10],

and preferred discharge latencies of putative interneurons and pyramidal cells associated

with the generation of ripples [39•]. Microelectrode data, and evidence that the occurrence

of ripples correlates with correct recall of items after memory consolidation tasks [40•],

suggest some ripples in human MTL reflect normal endogenous activity.

Properties of fast ripples recorded in patients resemble fast ripples in epileptic rats with

respect to the following: spectral frequency, duration and association with the seizure-onset

zone [22, 28], local generation in cell lamina that support evoked population spike discharge

and abnormal synchrony of burst firing [27], and rates of occurrence that are highest during

SWS and remain elevated during REM sleep [10]. In addition, with respect to the

pathological substrate, particularly in patients with MTLE and hippocampal sclerosis, higher

rates of fast ripples in hippocampus correlate with severity of local atrophy [41••], whereas

higher rates of fast ripples and lower rates of ripples correlate with lower neuron densities in

Ammon’s horn and dentate gyrus [42]. These data suggest that morphological abnormalities

associated with hippocampal sclerosis may promote the generation of fast ripples and alter

networks supporting ripples. It has not been possible, however, to distinguish normal from

pathological ripple-frequency HFOs in human recordings.

The number of HFO studies in presurgical patients has steadily risen with higher sampling

rates and greater bandwidth that are now available on many clinical electrophysiology

systems recording from standard clinical depth and subdural grid electrodes. These studies

have extended the characterization of pHFOs in MTL structures and neocortex. Although

they often have not attempted to distinguish between fast ripples and ripple-frequency

HFOs, they have confirmed a strong association with the epileptogenic region, and when

this distinction was made, fast ripples had a tighter correlation. Recent patient studies found

higher rates of occurrences of HFOs within nonlesioned cortical seizure-onset areas

compared with rates in lesioned cortical seizure-onset areas that included nodular

heterotopias [43••]. These latter data indicate that abnormal HFOs are not limited to a

specific type of epilepsy and may be a fundamental property of epileptogenicity common to

many types of epilepsy, but also that in some types of epilepsy, electrophysiological

disturbances may be remote to anatomical abnormalities.

HFOs in MTL and extratemporal structures occur more often during non-REM(NREM)

sleep than during waking and REM sleep [44, 45] and the duration of HFOs is longest

during SWS than during other sleep–wake states, but overall, properties of HFOs including

significant differences in rates of occurrence of HFOs with respect to the seizure-onset area

are consistent across sleep–wake states. These latter findings are consistent with previous

studies that used recordings from NREM episodes to characterize spatial patterns of
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interictal HFOs in relation to seizure-onset areas [28, 30••, 31, 46, 47] and rates of interictal

HFOs with respect to seizure frequency [48].

Direct brain electroencephalograph (EEG) recording of interictal spikes (IIS) can be useful

for delineating the epileptogenic region, but the spatial extent of IIS is usually more

widespread than the epileptogenic region and can even be contralateral to it. Recording with

clinical electrodes provides an opportunity to evaluate whether pHFOs more reliably

delineate the boundaries of the epileptogenic region than IISs do. Recent work has shown

significant overlap in the spatial and temporal patterns of IIS and HFOs, with a greater

proportion of IIS containing HFOs in seizure-onset areas compared with those outside these

areas [31, 44, 49, 50]. Approximately, 40–50% of HFOs, however, occur independently of

IIS. The occurrence of IIS with HFOs and HFOs alone are more sensitive in predicting the

seizure-onset area than the occurrence of IIS alone [30••]. Furthermore, using surgical

outcome to verify the boundaries of the epileptogenic region, patients with good surgical

outcome have a significantly larger proportion ofHFO-generating sites removed than

patients with poor surgical outcome, whereas the same relationship is less reliable for IIS or

seizure-onset sites [51, 52]. These studies suggest that pHFOs not only delineate the

epileptogenic region better than IIS, but also better than EEG identification of the site of

ictal onset.

Electroencephalograph interictal spikes and high-frequency oscillations

The mechanisms and functional significance associated with IIS containing pHFOs versus

IIS without pHFOs are not known. If IIS reflect gigantic excitatory postsynaptic potentials

[53], and pHFOs are bursts of population spikes [24, 35, 36], then IIS containing pHFOs

may indicate that a majority of neurons in the recording area generate hypersynchronous

action potentials that actively participate in the generation and propagation of epileptiform

activity. Sites where IIS do not contain pHFOs may receive epileptiform input that is

subthreshold for the generation of hypersynchronous discharges, which reduces the

probability that epileptiform activity will be transmitted to postsynaptic targets. This concept

is illustrated in Fig. 1. In part (a), eight simultaneously recorded EEG traces are presented.

Four electrodes (number 5–8) record IIS that contain pHFOs; two other recording sites (1

and 2) record IIS that do not contain pHFOs, whereas the remaining two sites (3 and 4)

record no epileptiform discharges. The earliest pHFO occurs under electrode 6 and reflects

the local abnormal generation of hypersynchronous action potentials, which is basically the

output of the network. One interpretation of these data is that the initial epileptiform signal

is generated nearest to electrode 6, is then transmitted to electrodes 5, 7, and 8, and from

these sites moves outside of the recorded network. Electrodes 1 and 2 also receive signal

from electrode 6; however, it is subthreshold and the signal does not propagate outside of

the network through these electrodes. Electrodes 3 and 4 do not receive input from areas

near electrode 6 and do not participate in propagation of the epileptiform activity (Fig. 1b).

Evidence to support this hypothesis will require careful analysis of the shape or morphology

of IIS and spectral analysis for pHFO content to identify brain areas that are actively

involved with the generation of epileptiform activity.
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A potential application for this idea in the case of neocortical epilepsy is presented in Fig.

1c. The grid electrode contacts colored white denote sites that contain IIS with pHFOs and

those colored black record IIS without pHFOs. Recordings indicate pHFOs occurred

initially under the group of electrodes in an area labeled ‘a’ in Fig. 1c, and then are recorded

consecutively at longer latencies near electrode sites labeled ‘b’, ‘c’, and ‘d’ (see examples

of pHFOs on the right part of Fig. 1c). This pattern of pHFO activity could indicate to the

neurosurgeon that the planned area of resection should include sites where pHFOs occurred,

that is, area denoted by the ellipse in Fig. 1c.

Seizures and high-frequency oscillations

Reports of HFOs associated with seizure onsets were published more than 15 years ago [54,

55], but at that time, these data were obtained from a small number of patients and could not

be repeated in other laboratories because electrophysiological recording equipment lacked

the capacity to record wide bandwidth high-frequency EEG. Ictal HFOs have now been

described in several animal and patient studies [29, 32, 52, 56–61] and their power can

increase several minutes before seizure onset. Focal seizures that secondarily generalize are

characterized by a relatively small area of pHFO generation at seizure onset that can move

along the cortex and increase in size as the seizure progresses [62]. Although it has been

suggested that alterations in the size of pHFO-generating neuronal clusters and increasing

synchrony among them account for ictal transition to ictus [25, 35], more information about

the fundamental neuronal mechanisms underlying this process is critical to understand the

role of pHFOs in seizure genesis. For example, a preictal increase in HFO power that

reflects bursts of population spikes may be an indication of enhanced synchronization of

principal cell networks that reach threshold for propagation of ictal epileptiform activity to

areas of the brain responsible for the manifestation of behavioral seizures. On the contrary,

an increase in the power of preictal HFOs that reflect IPSPs may be an indication of

interneuronal network activation to suppress propagation of epileptiform discharges and

prevent seizure occurrence.

Normal versus pathological high-frequency oscillations

A critical issue that is currently limiting our understanding of the role HFOs play in

epileptogenesis and epileptogenicity is our inability to reliably distinguish normal from

pathological HFOs outside of the dentate gyrus. Addressing this problem will require

identifying electrophysiological, anatomical, and pathological properties of the mechanisms

and networks supporting the generation of different types of HFOs. Important new

information will likely derive from advances in detection and power spectral analysis of

wide bandwidthEEG[50, 63, 64], additional studies to understand the mechanisms and

significance of IIS containing pHFOs and those without pHFOs, and analysis of

simultaneous microelectrode and macroelectrode recordings using novel electrode contact

sizes and configurations [46, 65]. Moreover, identifying clinical situations that are

associated with increases or decreases in the occurrence of different types of HFOs, for

example, sleep [66], medication withdrawal [67], or electrical stimulation [47], could

provide further insights into the brain states and conditions that regulate their generation.
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Conclusion

Data obtained from experimental animal models of MTLE and from patients with focal

epilepsy due to a variety of limbic and neocortical lesions support the view that the spatial

extent of pHFOs can reliably delineate the epileptogenic region, the area necessary and

sufficient for spontaneous seizure generation. Evidence from animal studies also suggests

that early occurrence of pHFOs predict the development of epilepsy after an epileptogenic

insult, and features of pHFOs correlate with seizure frequency. These interictal oscillations,

therefore, are among the very few potential candidate biomarkers of epileptogenesis and

epileptogenicity. Remaining issues include the fact that it is not yet possible to distinguish

normal HFOs from pHFOs in clinical recordings and so far spontaneous HFOs can only be

detected with intracranial recordings.

Basic research on pHFOs indicate that these electrophysiological events reflect

synchronized burst firing of principal cells within small discretely located neuronal clusters

and that these clusters play an important role in seizure generation. pHFOs, therefore, could

represent the primary epileptogenic abnormality in some forms of epilepsy. Elucidation of

the fundamental neuronal mechanisms responsible for their development and their role in

epileptogenesis, as well as ictogenesis, could provide insights into novel targets for

treatment, prevention, and cure of epilepsy.
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Figure 1. Functional difference between interictal spikes that do and do not contain pathological
high-frequency oscillations
(a) An example of an IIS simultaneously recorded from several electrode contacts in an

epileptic rat. Recordings from microelectrodes 5–8 contain IIS with pHFOs, microelectrodes

1 and 2 contain EEG IIS without pHFOs and no IISs or pHFOs are present in

microelectrodes 3 and 4. The pHFOs occurred first at microelectrode 6 and approximately

10 ms later at microelectrodes 5, 7, and 8. (b) A schematic of the role of each recoding sites

in the propagation of epileptiform activity. After occurrence at recoding site 6, epileptiform

activity propagates further through recording sites 5, 7, and 8 but not through recording sites

1 and 2 (see text for further explanation). (c) A hypothetical case of how mapping of IIS

containing pHFOs could be used for determining which parts of neocortex participate in the

propagation of epileptiform activity. Grid electrodes marked white record IISs containing

pHFOs, whereas those marked black record IISs without pHFOs. pHFOs occur first in

electrodes marked ‘A’, then progress through groups of electrodes marked ,‘B’, ‘C’, and ‘D’

(see examples of records on the right). In this case, the part of the neocortex outlined by the

dashed ellipse actively participates in the generation and propagation of epileptiform activity

Bragin et al. Page 11

Curr Opin Neurol. Author manuscript; available in PMC 2014 June 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



from left to right, whereas other electrodes do not. IIS, interictal spike; pHFO, pathological

high-frequency oscillation.
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