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Abstract

Immunohistochemistry-based clinical diagnoses require invasive core biopsies and use a limited

number of protein stains to identify and classify cancers. Here, we introduce a technology that

allows analysis of hundreds of proteins from minimally invasive fine needle aspirates (FNA),

which contain much smaller numbers of cells than core biopsies. The method capitalizes on DNA-

barcoded antibody sensing where barcodes can be photo-cleaved and digitally detected without

any amplification steps. Following extensive benchmarking in cell lines, this method showed high

reproducibility and achieved single cell sensitivity. We used this approach to profile ~90 proteins

in cells from FNAs and subsequently map patient heterogeneity at the protein level. Additionally,

we demonstrate how the method could be used as a clinical tool to identify pathway responses to

molecularly targeted drugs and to predict drug response in patient samples. This technique

combines specificity with ease of use to offer a new tool for understanding human cancers and

designing future clinical trials.

Introduction

An increasing number of cancer trials require tissue biopsies to measure individual drug

response markers (1). Surgically harvested tissues are often used to collect data at two ends
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of the cellular spectrum: 1) genomic analyses that reveal driver oncogenes and specific

mutations (2) and 2) protein analyses of handpicked biomarkers intended to monitor cellular

responses (3, 4). Ideally, clinical samples are collected serially to monitor change in

expression levels of key proteins. This raises many challenges, notably risk of morbidity

with repeat core biopsies, increased cost, and logistical limitations. Alternative sample

collection methods include fine needle aspirates (FNA), “liquid biopsies” of circulating

tumor cells, or analysis of scant cells present in other easily harvested fluids. However, these

samples have much lower cell numbers than biopsies, thereby limiting the number of

proteins that can be analyzed.

After tissues have been sampled, selecting ubiquitous biomarkers can be difficult due to

heterogeneity and dynamic network changes. Typically, small molecule drugs influence

more than one target protein while numerous proteins modulate downstream specific drug

actions, trigger alternative molecular pathways, and induce tumor cell death or resistance

(5). The current tools to profile these key proteins in scant clinical samples are limited;

standard practice encompasses immunocytology, which often precludes broad protein

analysis due to insufficient sample within FNAs or liquid biopsies (6). Thus, the number of

markers is often limited (<10) and requires time-consuming analyses of tissue sections by

specialists. Proteomic analyses by mass spectrometry has seen a number of advances over

the years, but remains technically challenging for single cells, phosphoproteomic detection,

and is costly for routine clinical purposes (7). In research settings, multiplexed flow

cytometry and mass cytometry have been used to examine an expanded set of markers (10 to

45) using single cell populations. Multiplexed flow cytometry often encounters limits in the

amount of markers it can measure due to spectral overlap. Mass cytometry vaporizes cells

during sample preparation, resulting in sample loss (8). In both these methods, it is currently

not possible to isolate a rare cell of interest or perform concurrent genetic analyses once

samples are used for proteomic analyses.

We designed an antibody barcoding with photocleavable DNA (ABCD) platform to perform

multiplexed protein measurements and systems-wide profiling on small amounts of clinical

sample material (~100 cells). Importantly, we designed the method to preserve genetic

material, and to enable specific isolation of rare, single cells. This approach interrogates

single cells by tagging antibodies of interest with short (~70mer) DNA “barcodes”—with

each antibody having a unique sequence—using a stable photocleavable linker (9). After

antibody binding to the cells, the photocleavable linker releases the unique DNA barcode,

which can then be detected by various means. Previously, we identified different DNA

barcodes based on size using gel electrophoresis. However, this method had limited

multiplexing (8 to 12 markers), and was only semi-quantitative (9). Other quantitative

methods, such as sequencing and quantitative PCR (qPCR), are reliable but introduce bias

during amplification steps, require prolonged processing time, or are not cost-effective.

Multiplexed qPCR only measures a maximum of 5 markers at a time. We thus opted for a

fluorescent hybridization technology traditionally used for multiplexed quantitation (16,384

barcodes) of femtomolar amounts of DNA and RNA (10, 11); however, this method had not

been previously extended to measure proteins within cells or clinical samples. We initially

validated ABCD in cell lines before applying the assay to human clinical specimens, with a
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specific interest in evaluating drug treatment response and inter- and intra-patient

heterogeneity in lung cancer.

RESULTS

Platform development and validation

We first harvested cells procured from FNAs from a given patient (Fig. 1A). To better

isolate cancer cells from their heterogeneous cellular milieu, we labeled aspirates with

antibodies directed against established markers (e.g. CD45 to deplete tumor infiltrating

leukocytes from the sample). The antibody was tagged with magnetic nanoparticles and

passed through a microfluidic device containing a self-assembled magnetic layer to deplete

tagged cells (12). The purified cancer cell population was retrieved from the device and

stained with a cocktail of antibody conjugates (table S1), each containing a unique barcode

attached via photo-cleavable linkers (Fig. 1B; fig. S1). In our case, we chose over 90

antibodies in the cocktail after careful demonstration that bulk labeling yielded similar

results to single antibody labeling. The 90 antibody-DNA conjugates were specially

designed to tag an “alien” DNA sequence that would not cross react with the human

genome. Target markers were selected to cover hallmark pathways in cancer (apoptosis,

epigenetic, DNA damage), cancer diagnostic markers commonly used in the clinic, and

housekeeping and control proteins. Prior to labeling, antibody-DNA conjugates were

isolated via IgG-specific pull down and pooled together into a cocktail. Following cell

blocking, permeabilization and labeling, and washing, the DNA was released from the cells

of interest with both proteolytic cleavage and photocleavage to increase yield and by

extension, sensitivity (Fig. 1C).

We first tested the antibody-DNA conjugates in MDA-MB-231 (human breast cancer) cells.

Cells were blocked to prevent nonspecific DNA or antibody labeling and then “stained” with

the pooled cocktail following techniques akin to standard flow cytometry staining. Next,

DNA was released with a light pulse, hybridized to fluorescent barcodes and imaged on a

cartridge via a charge-coupled imaging device (NanoString Technologies). Several DNA

conjugation and release methods were tested and optimized; ultimately, the photocleavable

linker was selected for its superior performance (figs. S1 and S2). Probe quantification

translated into proteomic sample profiling (Fig. 1C) by normalizing according to DNA per

antibody and housekeeping proteins (fig. S3). On average, there were 3–5 DNA fragments

per antibody; markers were thresholded based on non-specific binding of IgG controls.

Repeated analyses showed consistent results across different batches of cells analyzed on

different days and over time (Fig. 2). In subsequent studies, antibodies that did not fall

above 1.2-fold control IgG threshold were not included [e.g. here, di-methyl-histone H3

(Lys4)]. Excluding these outliers, the median standard error across all antibodies was 6%. A

profile of the human MDA-MB-231 line was derived from just 50 cells and showed

expected results, such as high keratin 7 and EGFR expression, two diagnostic markers

commonly used in pathology labs to identify cancer subtypes. Epigenetic and

phosphoproteomic markers have lower expression, as these naturally occur at lower

abundance in cells relative to extracellular markers. Intracellular markers such as
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phosphorylated Src (pSRC), and phosphorylated glycogen synthase kinase 3β (pGSK3b)

could be robustly detected with the optimized permeabilization method (fig. S4).

Additional benchmarking experiments were performed to demonstrate assay consistency and

reproducibility. Conjugated antibodies behaved similarly to native, unmodified antibodies as

evidenced by head-to-head comparison on flow cytometry (fig. S5A). Similar results were

found when testing intracellular antibodies such as p53 and phospho-s6 ribosomal protein

with dot blots and immunoblotting (fig. S5B). Antibody-DNA conjugates generated equal or

stronger signals compared to native antibodies on dot blots. Furthermore, the DNA-modified

antibodies showed similar expression patterns across cell lysates when compared to native

antibody. To test reproducibility, we also showed that two DNA-modified antibody clones

specific to the same target (i.e. epithelial cell adhesion molecule, EpCAM), gave nearly

identical expression levels (R2 = 0.99) across multiple cell lines and clinical samples (fig.

S6A). Antibody staining was tested using both a cocktail of 60+ antibodies and as single

agent; expression levels from both methods, as measured by ABCD, showed high, linear

correlation (R2= 0.93; fig. S6B). Protein marker changes measured with the ABCD platform

linearly correlated to expression changes measured by independent immunofluorescence

studies in taxol-treated HT1080 fibrosarcoma cells (fig. S6C). Finally, flow cytometry

measurements across eight cell lines and six different markers showed linear correlations

(R2 = 0.92–0.99) (fig. S7).

Single cell sensitivity

Sensitivity of the ABCD platform was assessed by detecting across varying cell numbers

(50, 15, 10, or 5 cells) from a bulk sample of 500,000 cells, in multiple repeats, by serial

dilution (Fig. 3A). The correlations between bulk and diluted DNA counts were linear, with

correlation coefficients >0.9 (Fig. 3B). Additional experiments were performed to validate

the ABCD platform in single human A431 cells. Figure 3C displays expression levels of 90

analyzed proteins for four randomly chosen single cells and in bulk samples. Consistent with

literature (13), we witnessed some intercellular heterogeneity, but generally, single cell

profiles matched their respective bulk profiles with correlations as high as 0.96 and as low

as 0.63. Multinucleated cells were excluded; cells were otherwise selected at random.

To demonstrate biological variation at the single cell level, we compared untreated single

human A431 cells to cells treated with gefitinib—a selective tyrosine kinase inhibitor of the

epidermal growth factor receptor (EGFR). Unsupervised clustering of single cells showed

unique patterns for treated and untreated groups (fig. S8A). A431 cell lines over-express

EGFR and are highly sensitive to gefitinib (IC50 = 100 nM), as evidenced by widespread

pathway inhibition in gefitinib-treated A431 cells. We applied a threshold at the single-cell

level to ensure that marker expression levels were detectable above all six IgG controls for

all cell lines. The majority of the panel was still detectable, though some markers such as

phosphorylated EGFR (pEGFR) fell below threshold levels in some cells, and thus were not

included for hierarchical clustering. Nevertheless, pairwise comparisons between the two

cohorts showed significant changes in key markers (fig. S8B) such as phospho-s6 ribosomal

protein (p-S6RP), Ku80 and phospho-histone H3 (p-H3), also consistent with literature (14,

15). Unlike most signaling inhibition studies, the untreated cell line was not pre-stimulated
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with epidermal growth factor (EGF) prior to treatment. As such, the assay conditions

mimicked natural signaling variability to better approximate patient samples.

Measuring inter- and intra-tumoral heterogeneity in clinical samples

To demonstrate the clinical capabilities of ABCD and explore single-cell heterogeneity, we

obtained FNAs from patients with lung adenocarcinoma. Single-pass FNA samples were

initially processed using antibody-mediated magnetic selection to isolate EpCAM-positive

cells. Single cells for subsequent analyses were harvested via micromanipulation while other

sample debris was removed. In one representative patient, protein marker expression in 11

single cells (EpCAM+/DAPI+/CD45−) correlated with bulk measurement (approximately

100 remaining cells from FNA) (Fig. 4A). Yet overall, correlation between patient cells and

bulk FNA were lower and varied compared to single cells from cell lines and their

respective bulk in Fig. 3. The highest correlation with the bulk measurement was 0.79 (cell

culture showed R= 0.96), while the lowest value was 0.43 (Fig. 4B).

We next determined inter-patient heterogeneity in bulk samples from six patients with

biopsy-proven lung adenocarcinoma (Fig. 5). Although these cancers harbored identical

histopathology, proteomic profiling revealed clear differences, even in this small cohort.

Marker panels were chosen to evaluate protein heterogeneity across a broad range of

functional protein networks (16) relevant for therapy assessment. Figure 5 shows visual

similarity among Patients 1, 2, and 5 (Spearman R1,2 = 0.94, R1,5 = 0.96, R2,5 = 0.95). This

partially concurred with genotyping as both Patients 1 and 2 had EGFR T790M mutations

whereas Patient 5 had a KRAS mutation (KRAS 35G>T). This suggests that different

genotypes may still yield similar proteomic phenotypes. Patients 3, 4, and 6 harbored

distinct proteomic profiles and differing mutations (Fig. 5). Patient 3 had an exon 20 EGFR

mutation while patient 4 had an EGFR L858R mutation and an additional BRAF mutation.

Patient 6 was noted to have an EML4-ALK translocation.

Protein clustering also revealed possible personalized targets (Fig. 5). For example, Patient 4

(EGFR/BRAF mutant) had high phospho-ERK1/2 and phospho-s6rp, as expected for a

patient with an EGFR L588R mutation; however, this patient also showed a high level of the

DNA repair/damage markers poly (ADP-ribose) polymerase (PARP), Ku80, and pH2A.x

expression, suggesting that PARP inhibitors or DNA damaging agents (e.g. cisplatin) could

be effective in this case. Such information could complement pharmacogenomics.

In vitro discrimination of pathway analyses during treatment

Having established feasibility of inter- and intra-patient analyses in clinical samples, we

sought to explore the feasibility of monitoring cancer treatment over time. We first

confirmed that we could discriminate known pathway responses to different drug treatments.

Triple-negative breast cancer cells (MDA-MB-436) treated with kinase inhibitors (gefitinib,

PKI-587), antibody drugs (cetuximab), and DNA-damaging drugs (olaparib, cisplatin)

showed profiles that clustered according to drug mechanism of action (Fig. 6A). As a

control study, cell lines with cetuximab resulted in expected drug inhibition (fig. S9B). We

demonstrated expected protein inhibition in drug-sensitive human cancer cell lines using

optimized drug doses and incubation times. Notable examples include phospho-S6-
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ribosomal protein (pS6RP) for targeted treatments; pH2A.X, pATM/ATR substrate, and

cleaved PARP for DNA damaging agents. We also found unexpected results, such as

epigenetic histone modifications following treatment with a PI3K inhibitor (PI3Ki) (fig.

S9E). For additional in vitro validation of treatment, we treated HT1080 fibrosarcoma cell

lines with 4 different doses of taxol. Several panel markers displayed dose response changes

to taxol treatment, including phospho-ERK and phospho-cyclin D.

Proteomic profiling of olaparib and cisplatin treatments was performed for four human

cancer cell lines, showing varying drug sensitivities as measured by viability assays (Fig. 6;

fig. S9A). We quantified the degree of change in protein profiles by calculating the number

of markers that were significantly different from the untreated condition using pairwise t-

testing (FDR = 0.1). This profiling confirmed that global pharmacodynamic changes

correlated with treatment sensitivity: as IC50 values decreased, the number of protein

markers with significant changes increased (Fig. 6B). In fact, for resistant cell lines (e.g.

OVCA429), no significant changes were detected. We also saw expected changes in DNA

damage and apoptosis markers, such as degradation of Bim and up-regulation of pERK (fig.

S9B, left two panels), confirming previous studies of DNA damage response to cisplatin

treatment (17).

Finally, to test the assay’s ability to measure even small marker changes, we treated HT1080

human fibrosarcoma cells with taxol at five different doses. Marker changes at high doses

were compared to marker changes quantified by an independent immunofluorescence screen

(fig. S10A). Several protein markers showed dose response curves, including CDCP1,

phosphor-cyclin D, cyclin E1, fibroblast growth factor 4 (FGF4), BRCA2, and pERK1/2.

These in vitro studies established that our marker panel could indeed measure pathway

changes in response to varying drug mechanisms; furthermore, these changes could be

detected in a sensitive, dose-dependent manner. Additionally, pairwise t-tests between the

dosed and untreated cells showed an increase in significant marker changes at the highest

dose (700 nM taxol) compared to the lower 70 nM dose (fig. S10, B and C).

Monitoring PI3Ki treatment response in cancer patients

Ultimately, we seek to translate these pathway analyses to patient samples, in particular to

analyze serial biopsies in early phase clinical trials with the goal to better assess drug

efficacy and dosage. However, such invasive procedures can introduce risk of morbidity and

high costs. The ability to analyze small numbers of cells from alternative sources (e.g.

FNAs) becomes paramount when responsive tumors shrink after treatment, making repeat

biopsies difficult. As proof of concept, we performed scant cell analyses in 4 patients before

and after PI3Ki treatment during Phase I dose escalation trials (Fig. 7A). Pre-treatment

samples were collected the day before the first drug dose; post-treatment samples were

collected at the end of the second treatment cycle. Collection and processing occurred over

the course of a year to correlate profiles to patient response. All four patients had metastatic

cancers of various subtypes and were selected based on genetic PI3K mutations that could

predispose their tumors to pathway inhibition using PI3Ki treatment. In all, two patients

responded and two progressed. Data analysis was performed in a blinded manner. As

expected, unsupervised clustering separated out two groups of responders vs. non-
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responders (Fig. 7A). Interestingly, among the two responders, one patient showed larger

fold-changes across the marker panel. Subsequent unblinding revealed that this patient

received a higher dose of the drug during Phase I dose-escalation than the other responding

patient. Additional patient samples beyond this proof-of-principle work will be needed to

measure ABCD’s clinical impact during drug dosing pathway studies.

The screen could potentially help predict clinical outcome or identify promising markers of

treatment response. To demonstrate this, we profiled 5 drug-naïve patients, all with various

PI3K mutations, who eventually received small-molecule PI3Ki treatment. We categorized

patients as non-responders or responders (Fig. 7B), and employed a marker-ranking

algorithm to determine top differential markers. The top marker, dimethylation of histone

H3 lysine 79 (H3K79me2), clustered with several markers: pS6RP (a known downstream

target of PI3K and an emerging key biomarker of treatment response (14), phospho-H2A.X,

and PARP. According to canonical pathway signaling, selecting epigenetic or DNA damage

markers as readouts of PI3K treatment response, would not be an intuitive decision. DNA

damage and epigenetic marker changes were also identified by in vitro profiling of a PI3Ki

(fig. S7B). This cluster covered diverse proteins across various pathways: epigenetic

changes, DNA damage, and growth and survival pathways (PI3K, MAPK), demonstrating

the potential value of systems-wide profiling for developing better companion diagnostics

during treatment.

DISCUSSION

We developed an amplification-free method capable of sensing hundreds of proteins in

human cells by using DNA-barcoded antibodies coupled with highly sensitive optical

readouts. Cell labeling, washing and analysis can be completed within hours, making same-

day protein analysis possible. The method measures more markers on limited material than

immunohistochemistry, and preserves genetic material from samples, which is not possible

with traditional tools like multiplexed cytometry (18). The protein coverage described here

can be extended to include additional protein targets through antibody-DNA conjugations,

resulting in a scalable, multiplexed protein screening platform.

In general, the method can provide insight into protein expression levels both for single and

bulk cell populations. Our in vitro studies showed that single cells from cell lines showed

higher correlation to bulk measurements than single cells isolated from patient tumors. In

FNAs, the single cells also showed higher correlations with each other than with the bulk

population. This could be because an averaged bulk measurement is less likely to correlate

strongly with a single clonal phenotype. These findings reaffirm that current cell culture

models are an insufficient estimate of proteomic heterogeneity in clinical samples. The

ABCD platform tool is therefore particularly impactful for its ability to study rare single

cells in clinical samples, such as circulating tumor cells, stem cells, and immune cell

populations. We found that even scarce proteins, such as 53BP1 and phospho-histone

H2A.X, could be detected at the single-cell level. Large-scale protein mapping of isolated,

rare cells and clonal populations could shed insight into cancer heterogeneity, drug

resistance, and the clinical utility of circulating tumor cells. Intra-tumoral heterogeneity may

itself be a biomarker of poor clinical outcome (19). Establishing causal and reactive
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correlations between diseases and altered biomarkers could also radically improve

physicians’ abilities to diagnose and treat patients (20, 21).

We also demonstrated the method’s ease-of-use, reproducibility, compatibility with clinical

applications, such as profiling of FNA cancer samples, and its translational potential to

monitor cancer treatment as demonstrated in 4 patients. Proof-of-concept case studies

showed that broader profiling can improve understanding about potentially useful

companion diagnostic biomarkers and help explore how drug dosing corresponds to cellular

pharmacodynamics. Smarter protein-marker selection, as demonstrated by the ABCD

platform, could dramatically reduce drug development costs, narrow patient cohorts, and

improve clinical trial design.

This method could complement other single cell proteomic techniques, such as mass

cytometry and fluorophore inactivated multiplexed immunofluorescence (8, 22). A major

advantage of the ABCD platform is that both genetic material and protein barcodes can be

concurrently extracted from a single sample, thus paving the way for more biologically

relevant analyses of protein-DNA-RNA interrelationships. Such integrative measurements

could explain “missing pieces” in the cancer genomics puzzle. For example, in this study,

not all patients with PIK3CA DNA mutations responded to a given PI3Ki; this is consistent

with clinical experience (23, 24). However, proteomic biomarkers revealed differential

changes between responding and non-responding cohorts. These examples suggest that

protein profiling will help complement genotyping to shape therapeutic advances for cancer

and other diseases.

The current study also demonstrated proof of principle that the technology can work in

clinical samples with a wide range of potential applications, including rare cell profiling and

companion diagnostics within cancer clinical trials. Yet, we believe the platform could be

further enhanced by future modifications. For example, the method could be adapted to

work with both whole cells and cell lysates, and DNA could be quantified with other read

outs (e.g. sequencing) to perform simultaneous measurement of RNA, DNA, epigenetic, and

protein expression. A limitation of the ABCD platform is the current lack of methods to

rapidly isolate and measure entire populations of single cells. Additional components and

wells could be added to microfluidic devices such as the one described to increase the

throughput of single cell analysis. It is also challenging to validate single cell studies owing

to the lack of a clear reference. With a higher-throughput device, future work could examine

larger numbers of cells to compare population differences and spreads between this method

and other gold standards (e.g. flow cytometry). Finally, in our clinical studies, we show

evidence of promising companion diagnostic markers; however, the small sample size limits

definitive conclusions about specific pathway markers underscoring the need for broader

testing across cancer subtypes and therapeutics.

Moving forward, this technology could enable larger-scale studies to yield mechanistic

insights into existing and/or novel therapeutic strategies. Moreover, the platform could also

be used for rare, single cell (e.g. circulating tumor cells) profiling to derive further

understanding of their biological and clinical relevance. Since genetic material from samples

is preserved, the ABCD platform is well positioned to study proteins that interact with
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genetic regulatory elements such as microRNAs. In summary, this platform is ready for

clinical exploration in research labs, academic hospitals, and pharmaceutical companies, to

help propel drug trials and biological investigation.

MATERIALS AND METHODS

Study design

The objective of this research was to develop a multiplexed platform for detecting protein

expression in clinical samples and in cell lines with a focus on understanding treatment

response in cancer. We hypothesized that protein networks (as opposed to single

biomarkers) will reveal interesting insights into how cancers evolve and respond to drugs.

Clinical studies were performed on limited cohorts of patients for proof-of-principle. We

selected the number of patients based on a one year enrollment cycle (March 2012 to March

2013). All protein measurements were included as long as their signals were 1.2-fold higher

than that of its corresponding non-specific IgG isotype. This threshold was set to be over

three times the median standard error from the antibody cohorts pooled. Only antibodies that

were validated (via flow cytometry measurements on cell lines) were included. All in vitro

studies were performed in replicates (typically n = 3, unless otherwise specified). Following

optimization, studies with the final protocol were repeated multiple times on different days

to ensure consistency and reproducibility. All experiments on clinical studies were

performed blinded during experimental procedures and raw data analysis.

Cell lines

Validation experiments were performed in the following cell lines, which were purchased

from the American Tissue Culture Collection (ATCC): SKOV3, ES-2, OVCA429, UCI-107,

UCI-101, TOV-112D, TOV-21G, A2780, MDA-MB-231, MDA-MB-436, A431 and

HT1080. Cells were passaged in DMEM (Cellgro) or RPMI (Cellgro) as recommended by

ATCC. TIOSE6 cell line was kindly provided by Dr. Michael Birrer (Massachusetts General

Hospital). NOSE cell lines were derived from ovarian surface epithelium (OSE) brushings

cultured in 1:1 Media 199:MCDB 105 (Sigma-Aldrich) with gentamicin (25 μg/ml) and

15% heat-inactivated serum. TIOSE6 cell lines were obtained by transfecting hTERT into

NOSE cells maintained in 1:1 Media 199:MCDB 105 with gentamicin (25 μg/ml), 15%

heat-inactivated serum and G418 (500 μg/ml) (25). After trypsinization, cells were

immediately fixed with 1× Lyse/Fix buffer (BD Bioscience) for 10 minutes at 37°C and then

washed twice with SB+ (phosphate buffered saline with 2% bovine serum albumin/BSA).

The cells were aliquoted into tubes (~1×106 cells/mL) and stored at −20° C until labeling.

Biological replicates were seeded in different wells and collected separately. Cultured cells

were processed and stored under the exact same conditions as clinical samples. A total of

276 samples were prepared and analyzed independently via the barcoding method.

Clinical samples

The study was approved by the Institutional Review Board at the Dana Farber/Harvard

Cancer Center and informed consent was obtained from all subjects (n = 10). Fourteen

minimally invasive procedures were performed on the 10 enrolled patients. Six patients had
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primary lung adenocarcinomas. The 4 patients undergoing PI3Ki treatment with repeated

biopsies had carcinomas of varying origins in the abdomen, all with underlying PI3K

mutations. All pre-treatment biopsies were collected in the week before the first cycle of

treatment. All post-treatment biopsies were collected after a cycle was completed, typically

after several weeks to months. Image-guided fine needle aspirates using a 22-G needle were

obtained prior to routine core biopsies. Correct needle location was confirmed by CT

imaging and real-time read-out by cytopathology. FNA samples were processed

immediately by centrifugation and removal of excess PBS. If there were visual clumps

present before the fixation step, collagenase (Sigma Aldrich) was added at 0.2 mg/ml. Cells

were fixed with Lyse/Fix buffer (BD Biosciences) for 10 min at 37°C and washed twice

with PBS with 2% BSA. All centrifugations were performed at 300 x g for 5 minutes.

Clinical samples were stored at −20°C. A total of 24 samples were prepared and analyzed

independently via the barcoding method.

Drug treatments of cell lines

To test the effect of drug treatment on protein expression levels, cell lines were treated with

a number of different chemotherapeutic or molecularly targeted drugs. A431 cell lines were

dosed with gefitinib (Selleck Chemicals) in media with 1% DMSO for 12 hours at a

concentration of 10 μM. The triple-negative human breast cancer MDA-MB-436 cell line

was dosed with the PARP inhibitor olaparib (10 μM in 0.1% DMSO in media), cisplatin (10

μM, 1% HBSS in media), PI3K/mTOR inhibitor PKI-587 (100 nM, 0.1% DMSO/media)

and the EGFR inhibitors cetuximab (75 μg/ml in media) and gefitinib (10 μM in 0.1%

DMSO/media). All molecularly targeted agents (PKI-587, cetuximab, gefitinib) were

applied for 12 hours. DNA-damaging agents olaparib and cisplatin were applied to cells for

3 days. Changes in protein expression levels were compared to media controls under

identical conditions but without drug treatment.

Flow cytometry

Flow cytometry was used to validate protein expression levels in bulk samples. Fixed cells

stored at −20 °C were thawed and then permeabilized with a saponin-based buffer, PW+

(1X Perm/Wash PhosFlow Buffer, BD Biosciences, with 2% BSA). Approximately 200,000

cells per tube were incubated with primary antibodies for 1 hr at either 1 μg/ml or the

appropriate dilution as recommended by Cell Signaling for flow cytometry applications. A

complete list of primary antibodies is shown in table S1. After one wash with PW+, the

appropriate secondary antibodies targeting mouse, human or rabbit IgG were applied. The

specific secondary antibodies used were anti-rabbit IgG (H+L) F(ab′)2 Fragment Alexa

Fluor 647 Conjugate (Cell signaling #4414), anti-mouse IgG (H+L) F(ab′)2 Fragment Alexa

Fluor 647 (Cell signaling #4410) and anti-human FITC (Abcam ab98623). Expression levels

for each protein were then calculated by normalizing the geometric mean from each

antibody with the appropriate control IgG. These values were then correlated to the

expression values derived from the DNA barcoding technique.
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DNA-antibody conjugations

Antibodies listed in table S1 were conjugated to specially designed alien DNA sequences

derived from the potato genome (table S4). The 70mer sequence length was selected for

optimal hybridization with the Nanotring capture and reporter probes. Other sizes were

tested as well. Shortening sequence length tended to improve signal but reduce hybridization

capability. For example, although 50mer sequences gave relatively higher signals when

compared to controls, 30mer sequences did not reliably hybridize. Thus, we selected 70mer

sequences for reliable hybridization.

Antibodies (table S1), purchased from commercial sources, were initially purified from BSA

and/or other contaminants using either a Zeba spin column or centrifugal filter. Antibodies

were then incubated with photocleavable bifunctional linker in PBS (containing 5% DMF

and 10% 0.1 M NaHCO3) at RT for 1.5 h. Afterwards, excess reagents were removed from

maleimide-activated antibodies using a Zeba spin column (7 K MWCO, eluent: PBS).

Thiol-modified DNA oligos (from Integrated DNA Technologies) were reduced using

dithiothreitol (DTT, 100 mM) in PBS (1 mM EDTA, pH 8.0) for 2 h at RT. The reduced

DNA oligos were then purified using NAP-5 column (GE Healthcare), with de-ionized

water as the eluent. The fractions containing DTT (determined using the microBCA assay)

were discarded. The remaining reduced-DNA fractions were pooled and concentrated using

a 3000 MWCO Amicon filter (Millipore).

The maleimide-activated antibodies were incubated with the reduced DNA oligos in PBS

solution. In a typical conjugation process, 15-molar excess of DNA oligos were incubated

with maleimide-activated antibodies. The conjugation reaction was allowed to proceed for

12 h at 4°C. DNA barcode-antibody conjugates were purified using a Millipore 100 K

MWCO centrifugal filter followed by 3 washes with PBS. After the antibodies were mixed,

a final purification of excess DNA was conducted using Protein A/G coated magnetic beads

(Pierce/Thermo Scientific). The commercial protocol from Thermo for magnetic separation

was only slightly modified to use a TBS/0.1% Tween wash buffer and a gentle Ag/Ab

elution buffer (Thermo Scientific). Three elutions were performed for 20 minutes each.

Solvent antibody was exchanged into pure TBS using a Zeba desalting column (7 K

MWCO).

Antibody storage and characterization is described in Supplementary Methods.

Fluorescent read-out

All capture and fluorescent probes were obtained from NanoString Technologies to be

compatible with its commercially available Prep/Analyzer station (nCounter Analysis

System). Commercial protocols from NanoString for hybridization and detection from the

DNA lysis sample were followed. In brief, DNA barcodes, capture probes and fluorescent

probes were combined in PCR tubes with hybridization buffer, and incubated at 65°C for a

minimum of 12h, before running the automated NanoString Prep and Analyzer Station in

order to immobilize DNA probes onto a cartridge, image the area, and count fluorescent

probes. A total of 276 sample runs were performed for optimization (n=132), cell line
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measurements (n = 96), clinical sample measurements (n=24), and single cell measurements

and optimization (n=36).

Single cell isolation and processing

After antibody staining, single cells were picked using a micromanipulator. Cells were

stained with Hoechst 3342 (Molecular Probes) and added to an open 10-cm dish and imaged

using a TE2000 microscope (Nikon). Single cells were placed directly into a PCR tube. Five

μL of lysis buffer/proteinase K were added (4.5 μL ATL buffer, 0.5 μL proteinase K). Lysis/

enzymatic cleavage proceeded for 30 minutes at 56°C before photocleavage for 15 minutes.

Reporter and capture probes (NanoString Technologies) were then directly added to this

tube according to manufacturer’s recommendations.

Data analysis

Calculating proteomic expression profiles—Protein expression profiles were

extracted from raw data as follows. First, raw DNA counts were normalized via the mean of

the internal NanoString positive controls, which account for hybridization efficiency. These

counts were then converted to antibody expression values using the relative DNA/Ab

counts. Next, average background signal from control IgG was subtracted. Lastly,

housekeeping genes were used for normalization that accounted for cell number variations.

We normalized signals via beta-tubulin, which provided the most consistent result. For the

taxol treatments we normalized via the geometric mean of histone H3, GAPDH, and actin

rather than tubulin, because tubulin is a primary target of taxol. Data was transformed into

log2 scale as denoted in captions.

Clustering—Heat maps and clustergrams were plotted using MATLAB with a matrix

input of marker expression values that were calculated as detailed above. All shown

clustergrams were performed as a weighted linkage and were clustered using correlation

values as a distance metric. Some clustergrams were normalized by row, as specified in

captions, to highlight marker differences among different patients. If a marker was not

detectable in one of the patients, it was removed from the matrix or heatmap and is not

displayed.

Statistical analysis

Raw data from Nanostring DNA counts were normalized by first using the nSolver analysis

software to account for hybridization differences on the cartridge. Only positive controls A

through D on the Nanostring software were used in normalization. DNA counts were within

the linear range of detection and met all other criteria for inclusion as determined by the

nSolver software (maximum fields of view, image quality, etc.). After determining an

expression value by taking into account non-specific IgG binding and housekeeping genes

(cell count), data was log2 transformed.

Correlation between single-cell analysis and bulk measurement was calculated in GraphPad

Prism. Spearman r values were calculated without assuming a normal, consistent

distribution. Two-sided P values were calculated, where significant markers were identified

by comparing two groups (e.g. treated vs. untreated) in Prism and performing pairwise t-
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tests with an FDR of 0.2 for multiple test correction error. Significant marker changes and

their P-values between gefitinib-treated and untreated A431 single cells are shown in Table

S2. For heat maps, if any samples had markers below threshold, the entire marker row was

removed (no imputed data values were used). To identify differentiating markers between

responders and non-responders, we used a multi-class sequential forward selection ranking

algorithm. We classified the patients as responders or non-responders based on known data.

Class separability was measured by the Bhattacharya distance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Multiplexed protein analysis in single cells
(A) Cells were harvested from cancer patients by FNA. In this case, a heterogeneous

population of EpCAM-positive cancer cells (green) is displayed alongside mesothelial cells

(red) with nuclei shown in blue (Hoechst) from an abdominal cancer FNA. Cancer cells

were enriched and isolated via magnetic separation in PDMS microfluidic devices with

herringbone channels using both positive (e.g. EpCAM+/CK+) and negative (e.g. CD45−)

selection modes. (B) Cells of interest were incubated with a cocktail of DNA-conjugated

antibodies containing a photo-cleavable linker (fig. S1) to allow DNA release after exposure

to ultraviolet light. (C) DNA-antibody conjugates released from lysed cells (fig. S2) were

isolated using size-separation and IgG pull-down. Released “alien” DNA barcodes were

processed with a fluorescent DNA barcoding platform (NanoString). Fluorescent barcodes

were hybridized and imaged using a CCD camera. The quantified barcodes were translated

to protein expression levels by normalizing to DNA per antibody and housekeeping proteins

and subtracting non-specific binding from control IgGs. A representative profile of SKOV3

ovarian cancer cell lines shows high CD44 and high Her2 expression, characteristic of this

cell line.
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Figure 2. Multiplexed protein profiling of a human breast cancer cell line
Representative example of 88 different antibodies spanning cancer-relevant pathways

(color-coded) profiled in triplicate (mean ± SEM) on the MDA-MB-231 triple-negative

breast cancer cell line. DNA counts were converted to protein binding by normalizing to the

amount of DNA per antibody. Non-specific binding from expression of six control IgGs was

subtracted and expression was normalized by housekeeping proteins Cox IV, histone H3,

tubulin, actin, and GAPDH (far right).
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Figure 3. Detection sensitivity using a human epidermal cancer cell line
(A) A bulk 500,000 cells from the epidermoid carcinoma cell line A431 was lysed and

processed as shown in Fig. 1. Dilutions corresponding to 5, 15, and 50 cells were then

compared to the bulk measurement. (B) Correlation values for single A431 cells selected by

micromanipulation are compared to the bulk measurements (500,000 cells). (C) Protein

expression profiles (log 2 expression values) of four single cells compared with the bulk

sample. Correlations were highly significant when comparing all single cells to bulk

measurements (p<.0001, paired t-test, GraphPad Prism 6.0).
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Figure 4. Single-cell protein analysis in a patient sample
An FNA was obtained from a patient with biopsy-proven lung adenocarcinoma. (A) Eleven

harvested cells were analyzed individually, and protein expression levels in each cell (y-

axis) were correlated with expression levels from the bulk tumor sample (x-axis). Each data

point represents the expression for a given marker (n= 85 markers, 3 below detection

threshold). (B) Spearman R correlation coefficient values for each of the single cells in (A)

relative to each other and to the bulk measurement.
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Figure 5. Inter-patient heterogeneity in lung cancer
FNAs were obtained from six patients with biopsy-proven lung adenocarcinoma, and bulk

samples (~100 cells each) were processed as shown in Fig. 1 with 88 barcoded antibodies.

Expression data were log2 normalized by row to show differences between each patient.

Note the heterogeneity in expression profiles despite the identical histological type (upon

genetic analysis, it was noted that patients 1 and 2 had EGFR exon 19 amplification and

T790m mutations, patient 3 had an exon 20 EGFR mutation, patient 4 had an EGFR L858R

mutation and an additional BRAF mutation, patient 5 had a KRAS mutation, and patient 6

had an EML4-ALK translocation).
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Fig. 6. Effect of different therapies on protein expression profiles in MDA-MB-436 triple
negative breast cancer cell line
(A) MDA-MB-436 cells were treated with different agents and marker proteins were

measured. Unsupervised hierarchical clustering based on Euclidean distance grouped drug

treatments by their mechanisms of action (molecularly targeted vs. DNA-damaging) and

primary targets (EGFR for gefitinib/cetuximab and mTOR/PI3K for PKI-587). Data shows

the log2 fold change of marker expression in treated compared to untreated cells for n = 84

markers. All experiments were performed in triplicate. (B) Correlating drug sensitivity of 4

different cell lines with proteomic profile changes following treatment with cisplatin and

olaparibs. IC50 values (black bars) were calculated based on viability curves (fig. S9A). The

cell profile change after treatment is represented by the number of significant markers (grey

bars) that were identified by a pairwise t-test of treated vs. untreated samples (FDR = 0.1).

Ullal et al. Page 21

Sci Transl Med. Author manuscript; available in PMC 2014 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7. Monitoring and predicting treatment response in patients receiving PI3K inhibitors
(A) Profiles of five drug-naïve cancer patients are shown with clustering based on

correlation metrics with weighted linkage. The dotted box shows cluster including the

marker that best separated responders and non-responders (H3K79me2). Other markers in

the cluster include pS6RP (a downstream target of PI3K), phospho-H2A.X (DNA damage

marker), PARP (DNA repair protein) and 4EBP1 (protein translation).(B) Four patients with

biopsy-proven adenocarcinoma were treated with PI3Ki, and primary cancers were biopsied

before and after treatment. The heat map is a pre–post treatment difference map showing

log2 fold changes in protein expression (normalized by row to highlight differences between

patients). Patient segregation is by correlation distance metric (weighted linkage). The

patient in the third column received a higher dose of the PI3Ki (400 mg b.i.d.) than the

patient in the fourth column (150 mg b.i.d.).
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