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Abstract

Notch-Delta signaling is a fundamental cell-cell communication mechanism that governs the differentiation of many cell
types. Most existing mathematical models of Notch-Delta signaling are based on a feedback loop between Notch and Delta
leading to lateral inhibition of neighboring cells. These models result in a checkerboard spatial pattern whereby adjacent
cells express opposing levels of Notch and Delta, leading to alternate cell fates. However, a growing body of biological
evidence suggests that Notch-Delta signaling produces other patterns that are not checkerboard, and therefore a new
model is needed. Here, we present an expanded Notch-Delta model that builds upon previous models, adding a local Notch
activity gradient, which affects long-range patterning, and the activity of a regulatory microRNA. This model is motivated by
our experiments in the ascidian Ciona intestinalis showing that the peripheral sensory neurons, whose specification is in part
regulated by the coordinate activity of Notch-Delta signaling and the microRNA miR-124, exhibit a sparse spatial pattern
whereby consecutive neurons may be spaced over a dozen cells apart. We perform rigorous stability and bifurcation
analyses, and demonstrate that our model is able to accurately explain and reproduce the neuronal pattern in Ciona. Using
Monte Carlo simulations of our model along with miR-124 transgene over-expression assays, we demonstrate that the
activity of miR-124 can be incorporated into the Notch decay rate parameter of our model. Finally, we motivate the general
applicability of our model to Notch-Delta signaling in other animals by providing evidence that microRNAs regulate Notch-
Delta signaling in analogous cell types in other organisms, and by discussing evidence in other organisms of sparse spatial
patterns in tissues where Notch-Delta signaling is active.
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Introduction

Differentiation of tissues during early animal development as

well as tissue homeostasis during adulthood requires constant

communication between cells. One of the most common ways by

which cells communicate with each other is through the Notch-

Delta signaling pathway [1–4]. Notch-Delta signaling is a

fundamental cell-to-cell communication mechanism whereby a

membrane-bound Delta ligand in one cell binds to a membrane-

bound Notch receptor in a neighboring cell, generating a

particular downstream response that depends on cellular context

[1,5]. Studies in several animals have shown that Notch expression

is both temporally and spatially widespread [2–4,6,7]. It is not

surprising, then, that Notch-Delta signaling is involved in the

development and homeostasis of many tissues, most notably those

of the nervous system [7], but also within the heart, kidney, liver,

pancreas, breast, inner ear, prostate, thyroid, respiratory system,

immune system, and many other cell types (reviewed in [1]).

Although the specific molecular factors and interactions are

remarkably complex and vary among different organisms and cell

types, the core Notch signaling pathway is relatively simple and is

conserved across all bilaterian animals [1,3]. The core pathway

consists of five main components: a Notch receptor, a CSL family

transcription factor (TF), the Hairy and Enhancer-of-split (Hes)

family of TFs, the basic helix-loop-helix (bHLH) proneural TFs,

and a Delta ligand (Figure 1). In most animals there are multiple

genes that encode each component. For example, mammals have

four Notch receptor genes and at least seven genes for Hes family

members that mediate Notch-Delta signaling in different tissues

[8,9].

Most importantly, experimental studies have shown that

neighboring cells, which communicate via Notch-Delta signaling

have opposing expression patterns of these five core components

[1,5,10]. In the signal-sending or Notch-suppressed cell, only the

bHLH proneural TFs and Delta are constitutively active, while

Notch and Hes expression are suppressed. This suppression is

thought to be mediated in part through cis-inhibition of Notch by

Delta within the same cell [2,11,12], and through loss of signaling

feedback because Delta is downregulated in the neighboring cell

[13,14]. Conversely in the signal-receiving or Notch-activated cell,

Notch and Hes are active, while Delta and bHLH proneural gene

expression, even if initially active, are eventually suppressed by a

Hes family member [5,10]. Notch-Delta signaling is often used in

a process called lateral inhibition, where the signal-sending cell

eventually differentiates into one cell type while inhibiting the

signal-receiving cell from adopting the same developmental fate
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[15–17]. Finally, the transcription factor CSL functions as a

repressor of Hes family members in the signal-sending cell but

becomes an activator of Hes genes in the signal-receiving cell

[18,19]. This functional switch of CSL from repressor to activator

occurs when the intracellular domain (ICD) of Notch translocates

to the nucleus where it displaces a co-repressor complexed with

CSL [2].

With this biological background in hand, several mathematical

and computational models have been developed over the years to

try and quantitatively explain the dynamics of Notch-Delta

signaling [12,20–24]. These Notch-Delta models usually fall into

one of two categories: comprehensive models and minimal models.

In comprehensive models, all of the experimentally validated (and

sometimes solely computationally predicted) molecular compo-

nents are represented as separate variables, and all of the known or

predicted interactions are represented as separate equations in the

model [23,24]. Although complex, these models have led to some

key insights into the specific dynamics of particular Notch-Delta

pathway genes. For example, one model that incorporated

extensive feedback between Notch, CSL, and Hes resolved the

long-standing issue that Hes can act both as a bistable switch and

as an oscillator by showing that the transition between these two

states can occur by tuning a single parameter, the Hes1 repression

constant [23]. Another model incorporating Goodwin-modified

biochemical kinetic equations for transcription, nuclear export,

translation, and DNA-binding and dimerization of each factor

showed the importance of the decay rate of Hes1 [24]. However,

one drawback of comprehensive models is that they are usually

based on experimental data from one particular cell type and,

therefore, are not generalizable to other systems.

By contrast, in minimal models only the core molecular

components and interactions, which capture the overall, essential

Notch-Delta signaling dynamics, are represented in the differential

equations. Unlike comprehensive models, minimal models have

the advantage of being applicable to many biological contexts and

are also more amenable to parameter sensitivity and stability

analyses, which can shed important insight into the dynamics of

the system. The first minimal Notch-Delta model was published by

Monk and colleagues [20], which at its core is a simple two-cell

model with a feedback loop involving just two variables: Notch

and Delta. Because the core cascade is essentially linear, they

postulated that the Notch variable could represent the quantity of

activated Notch protein (i.e., Notch ICD) in the cell or the quantity

of downstream Hes TF [20]. The production functions represent-

ing Notch-Delta interactions could be modeled using Hill

functions, which are commonly used to model protein-protein as

well as protein-DNA interactions [12,20,25] and for which we now

have extensive experimental confirmation through biochemical

studies [12,26]. Through their model, Monk and colleagues

demonstrated that such a feedback model results in a checker-

board spatial expression pattern of Notch and Delta, which mimics

the Notch-Delta pattern found in several biological contexts for

which lateral inhibition occurs [20,21,27]. With lower coopera-

tivity (i.e., a lower Hill coefficient), occasionally a spacing of two or

three cells can occur [20]. Subsequent models over the next several

years were for the most part variations of the original Monk model

(e.g., [21,22]). Eventually, growing experimental evidence of cis-

inhibition of Notch by Delta led to an updated model by Elowitz

and colleagues that incorporated this interaction [12]. Such cis-

inhibition was thought to facilitate Notch-Delta lateral inhibition,

and indeed the expanded model resulted in faster dynamics,

sharper checkerboard patterning and greater robustness to noise

[12].

While the Monk and Elowitz models can explain the patterning

in some biological systems such as ciliated cells in the early

Xenopus ectoderm [21], there are cases in both invertebrates [28–

34] and vertebrates [7,35–37], where Notch-Delta signaling is

clearly active but the pattern is not checkerboard. In many cases,

the pattern is much more random and sparse, where the spacing

between signal-sending cells can range from a single cell to dozens

of cells in between [30,31,33]. For example, studies in zebrafish

and chick neuroepithelial tissues have demonstrated a gradient of

expression for Notch and/or Delta [7,36,37]. Also, the sensory

organ precursor (SOP) cells of the Drosophila thorax that give rise to

microchaetes are spaced about five cells apart when fully

developed [5,28–30,38]. A pair of studies demonstrated that

SOPs in wild-type Drosophila extend dynamic projections called

filopodia, and that these filopodia express graded amounts of Delta

along the filopoidia and allow the SOPs to reach out and activate

Notch signaling in non-neighboring cells [30,31]. Another form of

extended communcation in Notch signaling can occur through a

process called lateral induction, in which a Delta-bound Notch

receptor in the signal-receiving cell can induce the expression of

other ligands, which signal Notch in downstream cells [39–41].

Several authors analyzed more generalized models[42–44] with

nearest neighbor or juxtacrine inhibition and induction and found

these systems could generate Turing solutions[45] from a

homogeneous steady-state with various wavelengths. Thus, a

model for a juxtacrine system can produce stable periodic patterns

with larger spacing between peaks of Delta activity. Hence, in

addition to neighboring-cell lateral inhibition, a form of commu-

nication leading to long-range patterning can also operate in the

context of Notch-Delta signaling. Since these filopodia are wide at

the base but gradually thin out towards the tip, this suggests a

concentration gradient where cells touching near the base of

filopodia receive stronger Notch activation compared to cells in

contact with the tips.

In this report, we present a minimal Notch-Delta model, which

expands upon the previous Monk and Elowitz models [12,20] by

adding a simple nearest-neighbor Notch gradient term that makes

it possible for the system to exhibit long-range effects on cell

morphogenesis. We show that incorporation of a Notch activity

gradient term is able to produce a sparse pattern of Delta

expression whereby Delta-expressing cells can be spaced many

cells apart. In our studies, we focus on the patterning of larval tail

epidermal sensory neurons (ESNs) within the peripheral nervous

Author Summary

The nervous system of many animals, including the marine
invertebrate Ciona intestinalis in our study, develops
through a cell-to-cell communication mechanism called
Notch-Delta signaling. Mathematical models for Notch-
Delta signaling have been developed that can explain the
development of animal nervous systems with a dense
arrangement of neurons. However, there are several cases
where the spatial arrangement is much more sparse; we
found that the peripheral nervous system of Ciona is one
such example. Here, we develop an expanded mathemat-
ical model that is able to account for this sparser spacing,
and furthermore demonstrate that the spacing can be
widened or shortened through changing a single param-
eter that is influenced by the concentration of a regulatory
microRNA called miR-124. The underlying differential
equations contain only two variables representing the
activity levels of Notch and Delta, and are thus general
enough to be applicable to a wide variety of physical and
biological systems that exhibit a similar sparse patterning.

Expanded Notch-Delta Model
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system (PNS) of the ascidian Ciona intestinalis. We quantify the

number and spacing of ESNs in wild-type larvae, and show that

our expanded Notch-Delta model accurately reproduces the

experimentally observed ESN pattern [33,34,46]. Ascidians are

invertebrate chordates and are the closest invertebrate relatives of

vertebrates [47]. As such, they occupy an important phylogenetic

position for understanding how molecular developmental path-

ways evolved when invertebrates and vertebrates diverged from

their last common ancestor [34,48]. Sensory neurons, like those in

the Ciona intestinalis PNS, the mechanosensory bristles found in

Drosophila, and the hair cells of the mammalian inner ear, are

thought to have evolved from a common ciliated sensory-neuron

precursor [34,49]. Since Notch-Delta regulated tissues in flies,

ascidians, zebrafish, chick and mice have all been shown to exhibit

sparse spatial patterning [7,30,31,36,37], our model suggests that

Notch-Delta-mediated long-range inhibition may be broadly

conserved in bilaterians.

We also demonstrate that regulation of Notch-Delta signaling

by microRNAs (miRNAs) is conserved across bilaterians. The

miRNAs are a class of conserved small RNAs that regulate

expression of target genes through transcript destabilization,

deanylation and/or translational inhibition, leading to downreg-

ulation of the protein product [33,50]. Previously we demonstrated

that in Ciona the miRNA miR-124 downregulates Notch and all

three Hes factors, and that these operate in a negative feedback

loop [33]. Here, we show that miRNA-mediated regulation of

Notch signaling can be incorporated into the parameter repre-

senting the decay rate of the Notch variable, and that modulation

of the Notch decay rate in the model accurately mimics the ESN

pattern observed in wild type larva and in miR-124 overexpressing

transgenic larvae that have altered ESN spacing patterns. Finally,

through a bioinformatics analysis we demonstrate that the

majority of miRNAs expressed in sensory cell types of other

animals are predicted to target Notch pathway genes in their

representative systems, suggesting that miRNA interactions with

the Notch signaling pathway may be functionally conserved.

Results

Sensory neuron patterning in Ciona intestinalis is sparse
and irregular

In Ciona intestinalis, the tail epidermal sensory neurons (ESNs)

differentiate from epidermal precursor cells within the dorsal and

ventral midlines. Previous work in our lab and others

[33,34,46,51] has qualitatively shown that the midline ESN

pattern is very irregular, although a quantitative investigation of

the number, spacing and distribution of ESNs has not been done.

Thus, we began by quantifying ESN numbers and ESN spacings

in wild-type embryos by immunohistochemically-labeling the

associated cilia with an anti-acetylated tubulin antibody. We

focused on an older developmental stage (22 hours post-

fertilization at 180C), when the larvae have extended their tails

and when the final midline ESN pattern has emerged [32–34]. To

identify the midlines, we generated transgenic embryos expressing

either an Acete-Scute homolog(ASH) RFP reporter or a Delta

RFP reporter (see Materials and Methods) [34]. To identify the

ESNs, we used fluorescent microscopy to image cilia in embryos

immunohistochemically detected with an antibody against acety-

lated-tubulin. ESN cell nuclei are smaller than those found in the

surrounding epidermal cells, and could be visualized with DAPI

staining [32].

Figure 2 shows a representative embryo used for quantitation.

In agreement with previous qualitative observations [33,34,51], we

found that the number, distribution, and spacing of ESNs varied

considerably from embryo to embryo (n~32 embryos quantitated

across three independent biological replicates). Overall, we found

no obvious differences between the number of midline cells,

number of ESNs or the spacing between ESNs along the dorsal

versus ventral midline at 22 hours post-fertilization (see Figure S1).

Therefore, we only considered statistical averages per midline

without distinction between dorsal and ventral counts. No larvae

had fewer than six ESNs per midline, consistent with previous

observations that six dorsal midline precursor cells express Delta

early in embryogenesis prior to midline formation [32]. We

observed as many as eleven ESNs along a single midline in 22 hr

larvae. We never observed more than eight or nine ESNs in earlier

embryos (*12 hours post-fertilization) [34], suggesting that ESNs

continue to be specified as the larval midline develops. We

observed a variable pattern in ESN spacing with as few as one and

as many as thirteen epidermal (non-ESN) cells separating

consecutive ESNs. We never observed two ESNs next to each

other, consistent with the hypothesis that Notch-Delta-mediated

Figure 2. Wild-type sensory neuron pattern in the Ciona larval
PNS. A representative transgenic embryo expressing an ASH::RFP
reporter in midline cells. Cilia (green) have been detected with an anti-
acetylated tubulin antibody; ESN cilia (arrows). Coupled with DAPI
staining (blue), these markers facilitated counting the number of ESNs
and the number of midline cells between ESNs.
doi:10.1371/journal.pcbi.1003655.g002

Figure 1. Core Notch-Delta signaling pathway.
doi:10.1371/journal.pcbi.1003655.g001

Expanded Notch-Delta Model
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lateral inhibition is active between neighboring ESN-epider-

mal cells [32,33]. These results are summarized in Figure 3A–

B. Regarding the distribution of ESNs, we found no apparent

bias of ESN position along the anterior/posterior axis.

However, we did observe that consecutive ESNs spaced at

least ten cells apart were almost invariably flanked on at

least one side by two or three ESNs spaced very closely

(Figure S2).

Figure 3. Expanded Notch-Delta model. (A) Monte Carlo simulations show that our expanded model produces ESN numbers and spacings that
match with experimentally determined values. (B) The distributions for the number and spacing of ESNs, including the minimum/maximum and
variances of the distributions, are all very similar between model and experiment. For the top graphs, the y-axis shows the number of midlines with
the given number of ESNs. For the bottom graphs, the y-axis shows the number of times a given ESN spacing occurs. (C) Schematic showing the
intra- and inter-cellular interactions between Notch and Delta. The squiggle arrow represents cis-inhibition of Notch by Delta. Note that for clarity
only two cells are shown, but the interactions extend over a linear array of cells. (D) The general form of the ordinary differential equations of our
expanded model for Cell i, with addition of a Notch activity gradient term indicated in red. (E–F) Shown are the equilibrium values of Delta after a
typical run of our expanded model in comparison with the original core model [12,20].
doi:10.1371/journal.pcbi.1003655.g003
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An expanded Notch-Delta model exhibiting long-range
ESN patterning

With this quantitative experimental data in hand, we began

drafting a Notch-Delta mathematical model that could adequately

explain the patterning of midline ESNs in Ciona. We began with a

linear array of C cells representing a single midline at a fixed time

point. As mentioned, we did not notice any obvious differences

between the dorsal and ventral midlines at the larval stage (see

Figure S1), so our model is appropriate for modeling either

midline. Future models will modify this static array into a dynamic

array that includes cell division. This 1-D model could also be

easily expanded to a 2-D array for modeling planar systems such

as the proneural clusters in Drosophila [5,12,20,30].

Consistent with previous minimal models, each cell tracks the

activity of just two biochemical species, Delta (D) and Notch (N) or

some closely affiliated biochemical species, such as a transcription

factor directly linked to these primary proteins. Note that because

our model can be applied to other biochemical and physical

systems, when we present the differential equations of our model

below, we will denote the Delta and Notch species more generally

as x and y, respectively. As discussed in the original Monk model

[20], y could be taken to represent the quantity of activated Notch

(i.e., Notch ICD) in the cell; or it could be taken to stand for the

quantity of downstream Hes TF in the cell. In addition, since the

Notch-SuH-Hes cascade is linear and exhibits bistability (i.e., there

are only one of two stable states for each node - either all "ON’’ or

all "OFF’’), we can regard the states of Notch, SuH and Hes as

equivalent, and can therefore consider any of these or all of these

lumped together as the variable y [52]. Analogously, since we

know that the bHLH proneural genes are expressed in a linear

cascade and are upstream of Delta [34], x could represent the

quantity of membrane-bound Delta in the cell or could

incorporate the activity of the upstream proneural TFs [52].

Figure 3C shows a schematic of our model for the interaction

between neighboring cells. All the cells in the linear array interact

with their nearest neighbors with the exception of the end cells.

The model localizes x inside the cell or expressed on the cell

surface to signal only the neighboring cells. It is repressed

internally by y and activates neighboring cells to stimulate

production of y. The species x also catalyzes the cis-inhibition of

y inside the same cell. The production of y depends on the activity

of x in the neighboring cells. Both species have linear decay terms

based on the half-lives of Notch, y, and Delta, x. Finally, we

include a communication term for y to neighboring cells based on

the gradient in activity of active Notch or a related biochemical

species between the cells. The addition of this gradient term is the

primary distinction of our model from previous Notch-Delta

models. In earlier models, interactions are exclusively with

neighboring cells, which restricts the patterning to primarily

alternating on and off states, while our model by including a Notch

activity gradient can simulate larger cell spacings, which match

that found in Ciona and in other analogous Notch-Delta systems

[7,30,37]. Although the exact mechanism of long-range commu-

nication is currently unknown in Ciona, we favor a nearest-

neighbor Notch gradient term versus other possibilities based on

our current biological knowledge of Notch-Delta signaling in the

Ciona PNS (see Discussion).

All of the above interactions represent the core conserved

interactions of Notch-Delta signaling and are supported by

extensive experimental evidence [4,5,10,53]. Let xi and yi be

the activity levels of Delta and Notch in cell i, respectively, then

the dynamics for the model described above is given by the

following system of differential equations:

dxi

dt
~

a

1zk1y
n1
i

{bxi, ð1Þ

dyi

dt
~{axiyiz

b(xi{1zxiz1)n2

1zk2(xi{1zxiz1)n2
{cyi

zm(yi{1zyiz1{2yi), i~1,:::,C:

In the system above, we let the boundaries satisfy:

x0~xCz1~xave~
1

C

XC

i~1

xi and y0~yCz1~yave~
1

C

XC

i~1

yi,

where xave and yave are the average activity levels of Delta and

Notch over the entire array of cells. Clearly alternate boundary

conditions could be considered, although other common boundary

conditions such as zero or periodic boundary conditions are not

appropriate for modeling the Ciona midline.

The functions and the parameters in the model are common in

biochemical control models [12,20,25,54]. The essential form of

each function is the same as those found for earlier minimal

Notch-Delta models [12,20] (Figure 3D). A full explanation of

each of these functions and parameters can be found in Materials

and Methods, but here we briefly mention the functions and

parameters that are immediately relevant for our analysis. The first

term on the RHS of the y equation represents cis-inhibition by x.

The parameters b and c are the linear decay rates of Delta and

Notch or a related biochemical species, respectively. Because our

biochemical species do not distinguish between mRNA and

protein levels, we may take them as representing mRNA and/or

protein decay rates. The last term in the y equation is the linear

gradient term representing long-range communication. This cell-

to-cell gradient term could result from bound Notch molecules

self-signaling to create a gradient-like pattern of activity. It could

be the result of another signaling biochemical closely aligned with

Notch, but not necessarily bound so strongly to the membrane.

From a modeling perspective this gradient form of nearest

neighbor communication is the simplest mechanism of long-range

patterning and makes a good first order approximation to the

kinetic interactions of this signaling pathway. For the remainder of

the article, we will refer to xi as Di and yi as Ni to associate the

model state variables with the Delta (D) and Notch (N) pathways.

Monte Carlo simulation of expanded model reproduces
sensory neuron pattern in Ciona

We wrote programs to simulate our Notch-Delta model using

the Matlab ode23 solver. We began our simulations with

random low activity levels of N and D in all cells and first

observed the qualitative behavior of our system over time. After

some time passed, a few cells developed a high level of D. The

high level of Di in Cell i suppressed Ni in the same cell (cis-

inhibition) and led to above average levels of N in Cells i{1
and iz1 (lateral inhibition). Via the linear gradient term,

subsequent neighboring cells had decreasing levels of N, until

some critical threshold was reached with N sufficiently low that

another cell could once again produce a high level of D, then

the pattern repeated. The dynamical system exhibited very

stable behavior for the levels of D and N in the immediate

region near Cell i. However, we observed decreasing stability of

the activity levels as levels of N decrease.

Expanded Notch-Delta Model
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When there was sufficient spacing between cells with high levels

of D, then we observed later development of cells with high levels

of D in the intervening area of cells. These later developing cells

arose from two distinct dynamical behaviors. In one case there

were sufficiently low levels of N far from the ones with high levels

of D, resulting in the smooth development of an intervening cell

with a high level of D. This case was most common early in the

simulation. In the second case, the levels of D and N oscillated in

the regions between stable areas of high D, with the amplitude of

the oscillations appearing to increase with increased ESN spacing.

With enough spacing, the oscillations increased until a threshold

was crossed, allowing the development of another cell with a high

level of D.

Because of the random initial conditions, different patterns of

cells with high D levels arose. The spacings in these patterns

depended strongly on the parameter values; however, after

sufficient time a stable pattern emerged. A representative example

is shown in Figure 3F. Note that spacings of more than two cells

cannot be achieved with either the original Monk model [20] nor

the model incorporating cis-inhibition [12] (Figure 3E).

To determine if our model could explain the ESN pattern along

the Ciona midline, we ran a Monte Carlo simulation with

M = 1000 runs over t = 4000 time steps for each run, and

compared the number, spacing, and distribution of high Delta-

expressing cells with that of the ESNs from wild-type embryos.

Our simulations used the parameter values listed in Table 1.

The parameters were chosen for the following properties. The

value for C, the number of cells, was chosen to match the average

number of midline cells from our experiments. The parameters a,

k1, k2, a, and b were fairly arbitrary, although they were chosen

based on our knowledge of similar biochemical control models

from previous work [12,20,25,54]. As off-diagonal elements, these

parameters should not be as significant to the behavior of the

system as the other parameters (though the D-mediated decay a
could be an important parameter when considering the effect of

modulating cis-inhibition, as in a previous study [12]). The most

significant parameters for the switching behavior are the

parameters n1 and n2, the Hill coefficients. These are chosen be

be greater than one, but not too large to be biologically relevant.

The decay rates b and c along with the gradient parameter m are

very significant as we will see in the bifurcation analysis. In

particular, c will be important when we consider the effect of

microRNA-mediated regulation of Notch signaling. For these

simulations, c was adjusted so that the average number of high-

Delta cells over the 1000 runs closely matched the number of

ESNs from wild-type experiments. Since Delta is an epidermal

sensory neuron marker [34], throughout the text we will refer to

high-Delta cells and ESNs interchangeably.

Figure 3F shows the end results of a typical run, with Movies S1

and S2 showing the dynamics of two separate runs starting with

random low initial conditions for both Delta and Notch. Both

movies show the appearance of new ESNs in regions where the

spacing between existing ESNs is large. In movie S1, the levels of

Notch and Delta settle into a very stable equilibrium; while in

movie S2, the levels of Notch in the cells between the ESNs at

Cells 27 and 39 show distinct stable oscillations. Figure 3A–B

shows the statistics for the number and distribution of ESNs and

inter-ESN spacing from 1000 runs. While agreement between the

average number of ESNs predicted by the model and experimen-

tally observed in larvae is expected, surprisingly the distribution of

ESNs and the average ESN spacing matched very well with

experimental observations. The majority of runs in our Monte

Carlo simulations produced between 6 and 11 ESNs, with a peak

of 9 ESNs, matching experimental observations. There were some

instances of outliers on either side in our simulations, although if

we were able to quantify an equivalent number of embryos

(M~1000), we might expect some experimental outliers as well.

Similarly, the ESN spacing in our simulations matched experi-

mental observations, with the frequency histograms following an

identical gamma distribution with a peak at 4 cells and dropping

off after 13 cells. There were a few rare outliers where ESN

spacing exceeded 13 cells. When we analyzed these outliers more

closely, we noticed that these large spacings were flanked on at

least one side by two closely ESNs (Figure S2). These closely

spaced ESNs likely stabilize the cells within the large-spacing

valley. This is in agreement with our experiments showing that

cases of high inter-ESN spacing were flanked on at least one side

by consecutive ESNs with tight spacing (Figure S2). Finally, we

note that our model has a disproportionate number of one-cell

spacings compared with experimental observations. This is likely

due to the intense stability of the high-Delta cells and the strong

effect of lateral inhibition in our model.

We chose our Hill coefficients n1 and n2 based on our

knowledge of previous biochemical control models [12,20], which

produced the reasonable fits seen in Figure 3A–B. However, we

know that changing the coefficients, n1 and n2, affects the lateral

inhibition and induction of immediately neighboring cells and

results in differing distributions of cell spacing. Simulations with

n1~3 and n2~3 produced significantly broader distributions

(similar means, but a much larger variance), while n1~5 and

n2~3 produced a much narrower distribution (similar mean with

a smaller variance). Our modeling experiments suggest that

increases, especially in n1, would produce more two-cell spacings

at the expense of one-cell spacings as suggested in the experiments.

However, since Figure 3A–B shows our model adequately

represents the experiments, we chose to center our studies around

the case n1~4 and n2~2.

Stability analysis explains midline ESN patterning
A stability analysis is used to determine equilibrium states of a

system and the change in behavior of a system as the parameter

values vary. This analysis is important because it allows us to

determine the possible ESN patterns that can be produced from

our model, and to rigorously determine if our model can really

explain the biology. We therefore designed programs to help

numerically find equilibria and allow the stability analysis of the

equilibria. The stability analysis uses the Jacobian matrix

analytically derived from linearizing the system (1) (see Materials

and Methods).

There is a unique homogeneous equilibrium for system (1).

Related systems [20,42–44] have been analyzed in terms of the

stability of the homogeneous equilibrium, showing the existence of

Table 1. Parameters used for the Monte Carlo simulations.

C~58 a~10 k1~10 n1~4 b~0:1

a~1:2 b~10 k2~2 n2~2 c~0:069 m~0:1

doi:10.1371/journal.pcbi.1003655.t001
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Turing solutions. For system (1) with the parameters in Table 1,

there is a homogeneous equilibrium with xe~0:1418 and

ye~2:897, which is unstable with multiple positive eigenvalues.

Since the experimental studies do not suggest a periodic pattern,

we did not explore Turing solutions. Our primary interest was the

behavior of the many inhomogeneous equilibria.

The Monte Carlo simulations showed the variety and large

number of possible stable equilibria for model (1). This model can

easily reproduce the stable alternating pattern of the previous

Monk [20] and Elowitz [12] models. These models are very

similar to (1) with m = 0 and a = 0, respectively; however, non-zero

values of m and a allow the richer stable patterns shown in the

Monte Carlo simulations. From the many equilibria for this system

we chose to systematically explore the stability of the system with

different spacings of high D levels. The numerical observations

showed decreased stability of the cells some distance from the cells

with high D levels, so we wanted to explore the nature of any

bifurcations leading to limits on the spacing of the cells. Below we

present the stability analysis for different ESN spacings, giving

information about the dominant eigenvalues and commenting

more about the observed eigenvalue structure. The parameters we

use in this analysis come from Table 1. In biological terms, the

eigenvalues and eigenvectors tell us the differentiation state of each

of the midline cells. Roughly speaking, if a cell aligns with an

eigenvector associated with the most negative eigenvalues, then it

is stable and has fully differentiated into an ESN. The cells that

align with the largest components of the eigenvectors associated

with eigenvalues with positive real part are unstable and remain

bipotent.

To help minimize the effects of the boundary, we varied the

number of cells in our simulations to be as close as possible to

C~58 (which is the average number of midline cells found in all

of our experiments), while maintaining symmetry at the bound-

aries. Suppose two consecutive ESNs are Cell i and Cell j, then

define P~j{i (1 ESN and P{1 epidermal cells). We numerically

find the equilibrium of (1) for each value of P. From the linearized

form computed in Materials and Methods, we can readily find the

eigenvalues and eigenvectors for this system. Table 2 summarizes

the results of different spacings using the parameters from Table 1

and shows the dominant eigenvalues of the system.

The linear stability analysis of (1) with the parameters from

Table 1 and the spacings and numbers of cells from Table 2 gives

a better understanding of this system. The overall stability of

system (1) is determined by the real part of the dominant

eigenvalue, lmax, with this system being asymptotically stable if

and only if Re(lmax)v0. However, this is a high-dimensional

system, and different components of the model behave differently

near an equilibrium based on its structure. The time-series local

behavior of different components vary more or less depending on

their location, and their fate can be understood by careful

examination of the eigenvector associated with specific eigenval-

ues.

With MatLab we computed all eigenvalues and eigenvectors for

each of the cases in Table 2. In every case we had the smallest

eigenvalue lmin&{120 with a multiplicity matching the number

of cells with high levels of D. By examining the corresponding

eigenvectors, we found the largest components centered on the

highest D (lowest N) values. (Note that because of the scaling, the

D components of the eigenvectors are much smaller than the N
components, so we compared only relative size within D or N
components.) Each of the eigenvectors associated with one of the

eigenvalues, lmin, had a large D component and a large N
component at one of the ESN positions with all other components

at least four magnitudes of order smaller. This agrees with our

observation that the model produces extremely stable regions near

cells with high levels of D, i.e., differentiated ESNs.

The real part of the dominant eigenvalue, lmax, becomes larger

as the spacing, P, increases. This correlates to the decreasing

stability of the levels of D and N as the spacing increases. The

multiplicity of lmax matches the number of interspacings between

cells with high D. When examining the particular components of

the corresponding eigenvectors, the patterns were more complex,

spreading across several interspacings. However, the maximum D-

component occurred near the center of the interspacings with the

maximum N-components flanking either side of the maximum D.

This is in line with the observation that the next highest D-

component always occurs near the middle of our cells with high

levels of D, while the flanking cells show the highest N responses in

agreement with Notch being highest in cells neighboring a cell

with high Delta.

As P increases, the real part of lmax changes signs between

P~12 and P~13, giving a Hopf bifurcation. Figure 4A–B shows

the equilibrium state of the system at P~12 and 13, and the

simulations show distinct oscillations. From Table 2, any

simulation with P~12 would show damped oscillations with the

solution settling to the equilibrium. The eigenvalue for P~13 has

a frequency of 0.1877, which implies a period, T&33:5.

Figure 4C–D shows the oscillatory solutions from a simulation

with P~13, and the period of oscillation agrees with the frequency

of lmax. The eigenvectors of lmax with P~13 show a structure

Table 2. Different spacings of high D given by P.

P C lmax nl Stability

5 58 {0:0933 11 Stable

6 59 {0:0775 9 Stable

7 54 {0:0472 7 Stable

8 55 {0:0189+0:1258 i 12 Stable

9 61 {0:0118+0:1608 i 12 Stable

10 59 {0:0069+0:1777 i 10 Stable

11 53 {0:0068+0:1820 i 8 Stable

12 59 {0:0057+0:1837 i 8 Stable

13 63 0:0014+0:1877 i 8 Unstable

C gives the number of cells in the array. lmax gives the dominant eigenvalue, and nl gives the multiplicity of the dominant eigenvalue.
doi:10.1371/journal.pcbi.1003655.t002
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very similar to the graph in Figure 4D, where variation for each

cell from its equilibrium is displayed. The variation in D is very

small (about 1%) compared to the size of the high Delta cells, while

the oscillations in N are quite substantial relative to the

equilibrium Notch levels, especially in the cells flanking the cell,

which has the greatest variation in D near the middle of the

interspacing region. This example with P~13 has an unstable

equilibrium, but its oscillations are insufficient in magnitude to

cross a threshold and pass to a different equilibrium with high

Delta cells between the ones shown in Figure 4B. We note that

slightly different initial conditions away from the equilibrium will

cause new ESNs to arise, indicating that the basin of attraction for

the P~13 equilibrium shown is quite small.

Once P§14, our numerical algorithms cannot find an

equilibrium solution to linearize around and any simulation results

in new ESNs appearing, indicating the P§14 spacings are too

unstable when evenly spaced. Thus, our model suggests that when

the number of cells between ESNs becomes too large, then new

ESNs appear in between. Importantly, in agreement with this

bifurcation analysis on P, our wild type experiments show a

maximum spacing of 13 cells between ESNs. This suggests that if

the midline cells divide and the spacing becomes greater than 13,

the instability of such a state will cause a new ESN to appear. Also

recall that with our parameter values the spacing mean and

distribution matched the wild type experiments. Thus, our

experimental results are in harmony with our numerical analysis

of the spacing, P.

The analysis above examines discrete changes in the spacing, P.

We next chose to explore continuous changes with the gradient

parameter m. For these studies we set P~10, C~59, and all other

parameters from Table 1 except for m. From the analysis above we

know that instabilities should cause an ESN to appear midway

between and create a P~5 pattern. Our interest is to determine

something about the dynamics of change from a larger spacing,

P~10, to a smaller spacing, P~5.

Decreasing m in essence shortens the effective distance of Notch

signaling. As noted before, when m~0, the Monk model only

produces an alternating pattern of high D and N with no spacings

larger than two and most being one. Thus, we expect the stability

of the P~10 pattern to be lost as m decreases. We studied the

linear stability of the P~10 pattern as m ranged from 0.2 to

0.08845. At the ESNs, where xi is high, i~5,15,:::,45,55, the

smallest eigenvalue is lmin&{120, making this region of the

cellular array extremely stable. The maximum eigenvalue, lmax

has its eigenvector centered between the cells with high D.

Figure 5A shows the variation in the real part of lmax as m varies.

Figure 4. Stability analysis of the ESN spacing, P. (A–B) The top graphs show the equilibrium values for the Delta and Notch levels. (C–D) The
bottom graphs examine the unstable case P~13 and show the time varying oscillations (left) of Cell 13 for D and Cell 12 for N and the variation from
the equilibrium for all cells (right).
doi:10.1371/journal.pcbi.1003655.g004
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When we decrease m to m&0:08985, there is a Hopf bifurcation

(verified with Auto in XPPAUT), introducing oscillations in

cellular activity levels, xi and yi. The maximal oscillations in xi

occur in the middle cells, i~10,20,:::,50, while the maximal

oscillations in yi occur in the adjacent cells, e.g., Cells 9 and 11.

Figure 5B–C shows the equilibrium levels for x10 and y9, and the

maximum and minimum of the oscillating levels after the Hopf

bifurcation. As is typical of a Hopf bifurcation, these oscillations

increase in amplitude away from the Hopf point.

As m decreases further to approximately 0.0885, the instabilities

are sufficient that the solution leaves the basin of attraction for the

P~10 equilibrium. The result is that the solution converges to the

very stable pattern where xi is high at i~5,10,15,:::,50,55,

resembling the P~5 equilibrium. The maximum eigenvalue for

this solution is lmax~{0:09, producing a very stable equilibrium.

We note that the basin of attraction for this solution is significantly

larger than the basin of attraction for the P~10 case. Figure 5B–C

shows the increase of both D and N as m decreases. It appears as

though some threshold is reached, which results in x10 approach-

ing 100 and y10 going to very low levels quickly. It is not clear if

this transition is smooth and very rapid or if some saddle node

bifurcation is occurring. At this time the specific type of bifurcation

moving from the P~10 to the P~5 spacing has not been

determined and needs further analysis.

Finally, we analyzed the change in behavior of the system as we

increased the Notch decay rate parameter, c. We began with a

constant spacing of P~10 cells and the corresponding value of

C~59 from Table 2, with all other parameters from Table 1.

Starting with a low value of c~0:04, we increased the value of c
with a step size initially of 0.01. As we stepped from c~0:11 to

c~0:12, a significant change in the system occurred whereby new

ESNs appeared halfway between existing ESNs, similar to what

occurs when we decrease m. Through repeating this stepping

process with decreasing step sizes, we determined the exact value

of this critical value of c to be ccritical~0:112607. With every

iteration of this process, we kept track of the minimum and

maximum eigenvalues and associated eigenvectors (Figure 6A), as

well as the equilibrium values of D and N (Figure 6B).

As in the case of m, analysis of the min/max eigenvalues and

associated eigenvectors revealed that the existing ESNs (e.g., Cell 5)

are highly stable, while the middle intervening cells (e.g. Cell 10)

are in regions of lower stability. However, unlike with m, the levels

of y9 and x10 do not exhibit oscillations as we approach the critical

value ccritical~0:112607 (Figure 6B). The real part of the

maximum eigenvalue lmax remains negative as we vary c,

indicating that there is no Hopf bifurcation (Figure 6A). At

ccritical , the system moves out of the basin of attraction for P~10
and converges to a new stable pattern with smaller spacings

resembling the P~5 equilibrium (Figure 6C–D). The behavior in

Figure 6B is similar to a saddle node bifurcation, but a more

detailed analysis is required. As we decrease c back to c~0:04, the

system remains in the new equilibrium, indicating that this

equilibrium is very stable and has a very large basin of attraction.

In biological terms, we may interpret this hysteresis effect as the

newly formed neurons have committed to their new state and will

not easily revert back to being bipotent.

Significantly, our analysis shows that increasing c beyond a

critical value can produce new cells with high levels of D, which

demonstrates that, based on our model, increasing the Notch

decay rate can produce new ESNs. This directly relates to our

consideration of the influence of microRNAs on Notch decay rates

and ectopic ESN formation in the last two sections.

Parameter sensitivity analysis
In the study of any model, it is important to determine which

parameters have the greatest effects on the system. Our model is a

high dimensional, nonlinear model with a large number of

Figure 5. Stability analysis of the parameter m. (A) Re(lmax) for
P~10 (blue) and P~5 as m varies. (B) The equilibrium levels of Delta
(top) and Notch (bottom) for our cases P~10 (blue) and P~5 as m
varies. (C) Extreme close-up of the graph in (B), showing the
supercritical Hopf bifurcation with the stable oscillating periodic orbit.
doi:10.1371/journal.pcbi.1003655.g005
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equilibria, so one would expect that the sensitivity of the model

depends on the region of parameter space where the analysis is

performed. Some equilibria will have large basins of attraction and

will therefore be very robust to parameter changes, while other

equilibria will have smaller basins of attractions and will be more

sensitive. For this parameter sensitivity analysis, we examine

variations of +10% in each of the parameters for our case where

C~59 and P~10, using the other parameter values from Table 1.

This equilibrium is associated with a pattern of six neurons with 9

cells between each neuron, and we chose to focus on this

equilibrium since this was the mean spacing and neuron count

found experimentally and therefore should give us a general idea

as to which parameters have a greater effect on our system. We

established that the equilibrium for this system was stable and

found the eigenvalues.

One measure for the sensitivity is the change in the value of the

real part of the maximum eigenvalue. With the base parameters,

we found Re(lmax)~{0:00688. Figure 7A shows that increasing

the coefficient of the negative feedback function, n1, has the

greatest effect, and even results in the system going through a Hopf

bifurcation. Decreasing the parameter m has the next largest

effect, which is not too surprising given that its parameter value is

close to the Hopf bifurcation for that parameter. As we would

expect, the parameters, a, k1 and k2 have minimal effect on the

eigenvalues, while the other parameters have more varied effects

increasing or decreasing the stability. Figure 7A shows the effects

of variations of +10% for all the parameters on the real part of

the largest eigenvalue, lmax.

Our study shows that in the case where C~59 and P~10, the

greatest instability lies in the center between two ESNs. This can

be visualized by examining the eigenvector for Re(lmax). The

largest level of x away from the ESNs occurs at x10, x20,… x50 (see

Figure 6C). The least stable levels of y occur in the neighboring

cells, such as y9 and y11 (see Figure 6C). Figure 7B–C provide

information on how much a variation of +10% in a given

parameter shifts the equilibrium values at x10 and y9, where

changes in amplitude are observed to be the largest. When a shift

becomes sufficiently large at x10 and a threshold is crossed, a new

ESN forms in this location, completely changing the equilibrium

values for x and y. Figure 7 shows that a description of parameter

sensitivity for this system depends on the measure that is

employed. Clearly, this system is most sensitive to the negative

feedback coefficient, n1. However, the Hill coefficients relate to the

degree of cooperativity for binding between Notch and Delta,

Figure 6. Stability analysis of the parameter ª. (A) Re(lmax) for P~10 (blue) and P~5 (red) as c varies. (B) Equilibrium levels of Delta (top) and
Notch (bottom) for our cases P~10 (blue) and P~5 (red) as c varies. Note that Delta is shown as a semilog-y plot to show the change in Delta. (C–D)
Equilibrium levels for Delta and Notch across all midline cells as we cross ccritical~0:112607.
doi:10.1371/journal.pcbi.1003655.g006
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Figure 7. Parameter sensitivity analysis. (A) The values of Re(lmax) are shown for all the parameters of the model with variations of +10% in
each of the parameters. The ordering of the parameters shows which parameters had the largest increase in the eigenvalues for either a +10%
change with the largest on the left. The dotted line indicates the value of Re(lmax) for the original set of parameters used in Table 1. (B) The change in
equilibrium value for x10 after +10% change in parameter values. The y-axis shows the ratio change of the equilibrium with the new parameter value
divided by the original equilibrium value x10~0:4405. The ordering of the parameters shows which parameters had the largest increase in the
magnitude of x10 for either a +10% change with the largest increase on the left. Since the equilibrium is unstable for n1~4:4, x10 oscillates 17%
above and 14% below the equilibrium marked with a � . (C) The change in equilibrium value for y9 after +10% change in parameter values. The y-axis
shows the ratio change of the equilibrium with the new parameter value divided by the original equilibrium value y9~8:695. The ordering of the
parameters shows which parameters had the largest increase in the magnitude of y9 for either a +10% change with the largest increase on the left.
Since the equilibrium is unstable for n1~4:4, y9 oscillates 13% above and 10% below the equilibrium marked with a � .
doi:10.1371/journal.pcbi.1003655.g007
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which are intrinsic properties of the proteins not likely to change

over development. As we alluded to before though, decreasing n1

broadens the ESN count and spacing distributions, while

increasing n1 narrows the distributions (Figure S3). We found

that a 10% change in m caused a *20–25% shift in the ESN

spacing and count distributions, suggesting that the system is

indeed sensitive to this parameter (Figure S3). The least significant

parameters are the kinetic constants, a, k1, and k2. A 10%

variation in k1 results in a *10% change in ESN count and

spacing distributions (Figure S3). The robustness of this model to

variations in most of the parameters allows reasonable stability for

patterning of ESNs, while providing flexibility to produce novel

patterns when new adaptations are necessary, such as a need for

more or less dense ESNs.

Incorporation of miR-124 regulation of Notch signaling
into the expanded model

We previously showed that the microRNA miR-124 is

expressed in the larval midline ESNs of Ciona intestinalis [33,46].

We demonstrated that miR-124 is activated by proneural bHLH

genes and negatively regulates Notch signaling by downregulating

Notch and all three Hes genes [33,34] through binding to

canonical target sites in the corresponding transcript 3
0
UTRs [33].

Mis-expression of miR-124 along the entire epidermal midline

increases the number of midline ESNs presumably because of

ectopic suppression of Notch signaling [33], although a detailed

quantitative analysis was not performed.

Here we generated transgenic embryos using this same miR-124

construct from our previous studies (Epi::miR-124) [33,46]. We

electroporated increasing amounts of the transgene into Ciona

embryos (10mg, 20mg, or 30mg; which we denote as Epi::miR-124+
10, Epi::miR-124+20, or Epi::miR-124+30, respectively). In each

case, we quantified the number and spacing of ESNs at 22 hours

post-fertilization, and compared these results to control wild-type

22 hr embryos. We used immunohistochemistry to detect ESN

cilia with an anti-acetylated tubulin antibody, and visualized the

midlines with either an Ash or Delta fluorescent transgene

reporter. We performed each experiment with independent

biological replicates, and quantified a total of 17, 19 and 20

embryos for the miR-124+10, miR-124+20 and miR-124+30

experiments, respectively. We only quantified embryos for which

we could clearly perform cell counts for both the dorsal and

ventral midlines; since miR-124 overexpression produces kinked

or twirled phenotypes that make counting difficult, we were not

able to quantitate as many embryos as in the wild-type

experiment.

Figure 8A–B shows a representative embryo, and the results of

our Epi::miR-124 titration experiments are shown in Figure 8C–

D. As we increased the amount of the miR-124 transgene

electroporated into embryos, the mean number of ESNs per

midline increased with a corresponding decrease in the mean ESN

spacing. Note that the mean number of midline cells was very

similar between the experiments (mean = 57.7, 57.0, 57.3, 58.9 in

wild-type, +10, +20 and +30, respectively), indicating that miR-

124 overexpression did not affect the number of midline cell

divisions during development (see Figure S1). The largest

difference occurred between wild-type and miR-124+10 embryos

(difference in mean ESN counts = 2.44; difference in mean ESN

spacing = 22.44); subsequent increases in miR-124 concentration

had a linear effect on the number and spacing of ESNs (average

difference in mean ESN counts = 1.45; average difference in mean

ESN spacing = 21.43). Comparison of ESN count and spacing

distributions and the associated minimum/maximum values

among the different miR-124 concentrations also showed a shift

towards an increasing number of ESNs per midline and decreasing

inter-ESN spacing. In particular, the number of zero-spacing cases

(i.e., adjacent ESNs) increased as the concentration of miR-124

was increased. A magnified region of the embryo in Figure 8A

shows one such case of adjacent ESNs (Figure 8B), which we did

not observe in wild-type embryos. This suggests that when

expressed at high levels, miR-124 is able to mitigate the effect of

lateral inhibition.

Since miR-124 downregulates Notch and Hes by base pairing to

their transcript 3
0
UTRs and likely mediating decay at the post-

transcriptional level [33,55–58], we proposed that miR-124

regulation of Notch/Hes could be modeled into the Notch decay

rate, c. An increase in miR-124 concentration would thus be

reflected in our model by an increase in the value for c. To test this

hypothesis, we began with the c value from our wild-type

simulations (c~0:069) and ran Monte Carlo simulations

(M = 1000) continuously increasing the value of c to see if we

could match the average number and spacing of high-Delta cells

with the number of ESNs in our miR-124 titrations. In agreement

with our experiments, we showed in the previous section that

continuously increasing c eventually resulted in the formation of

new neurons, suggesting that production of extra midline ESNs

could be explained by an increase in the Notch decay rate. Indeed,

as we continued to increase c, the average number of ESNs

continually increased. Eventually, we found values for which both

the mean ESN counts and inter-ESN spacing closely matched the

observed values in each of the miR-124 titration experiments

(c~0:100 for miR-124+10; c~0:113 for +20; c~0:126 for +30,

Figure 8C–D). The marginal increase in c is greatest from wild-

type to miR-124+10 embryos, correlating with the high marginal

increase of ESN counts between these two samples. Importantly,

the distributions of ESN counts and spacings closely fit the

experiments, with the model also showing corresponding shifts in

the distributions upon increasing gamma values (Figure 8C–D).

The variance of the model is smaller than the corresponding miR-

124 experiments, even though in the wild-type case the variances

were similar between model and experiment. However, overall the

model agrees very well with the miR-124 experiments, even more

surprising given the fact that we can mimic the experimental ESN

patterns with the tuning of just a single parameter. Coupled with

extensive biological support [33,55–58], we conclude that our

model can accurately incorporate the experimental effect of miR-

124 into the Notch decay rate term.

Evidence that expanded model explains regulation and
patterning in sensory cell types across bilaterians

Notch signaling regulates the specification and patterning of

sensory cell types not just in Ciona, but throughout metazoans

(reviewed by [5,10,26,53]). Examples of processes regulated by

Notch-Delta signaling include the mechanosensory bristles

(macrochaetes and microchaetes) of D. melanogaster [30,31]; the

inear ear hair cells of zebrafish [59–61], chick [41,62], and mouse

[41,63,64]; and the multiciliated cells derived from the respiratory

airway epithelium in humans [65,66]. Interestingly, the sparse

patterning in Ciona appears also to be found in other animals

[7,30,31,35,37], suggesting that long-range Notch-Delta signaling

is also conserved.

Since the inner ear hair cells of vertebrates are likely evolved

from the sensory neurons of invertebrates [26,35], we originally

hypothesized that miR-124 regulation of Notch signaling, as we

described for Ciona [33], should be conserved. However, we found

very little published evidence of miR-124 regulating miR-124

outside of ascidians other than miR-124 regulation of Hes1 in the

mouse inner ear [67–69]. Our own bioinformatic analysis showed
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Figure 8. The microRNA miR-124 modulates the Notch decay rate. (A) Representative embryo for miR-124 titration experiments. (B)
Magnified region of the embryo in (A) shows adjacent ESNs; DAPI staining shows pairs of small nuclei belonging to the ESN pairs. (C–D) Comparison
of the distribution of ESN counts and spacing between miR-124 titration experiments and our model. Based on this data and our previous results
[33,34], we propose that the Notch decay rate, c, is modulated by miR-124.
doi:10.1371/journal.pcbi.1003655.g008
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that miR-124 rarely targets Notch pathway genes in other

organisms [33]. Interestingly though, miR-9 in Drosophila appears

to regulate Notch signaling in a somewhat analogous fashion [70],

suggesting that different organisms deploy different miRNAs to

regulate Notch signaling [33]. This would suggest that

incorporation of miRNA function into the Notch decay

term of our expanded model may be relevant for other

systems.

Figure 9. Canonical target sites for miRNAs expressed in sensory cell types throughout bilaterians. Notch signaling regulates the
differentiation and patterning of each of the sensory cell types shown. Sensory cell expression for each of the miRNAs listed was shown previously
(see text for references). miRNA canonical target sites in the 3

0
UTRs of Notch and Hes homologs were found using our previously described target

prediction algorithm [33]. Some of these targets have been experimentally verified (V) (human: [65]; sea squirt: [33]; fruit fly: [9]). In Drosophila, miR-2,
miR-6 and miR-7 overexpression (O) have all been previously shown to cause a phenotype indicative of suppressed Notch signaling activity and loss
of lateral inhibition, such as increased density or clustering of microchaetes [9]. In human airway epithelial tissue, knockdown (K) of miR-449 has been
shown to cause a decreased rate of ciliated cells indicative of Notch signaling gain-of-function [65].
doi:10.1371/journal.pcbi.1003655.g009
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To determine if this might be the case, we first examined the

literature to identify sensory neuron-expressed miRNAs in

Drosophila, zebrafish, mouse, and human. For miR-124, we only

found one study in mice where weak miR-124 expression was

reported in the vertebrate inner ear [67]. However, many other

miRNAs are highly expressed during mouse inner ear develop-

ment [67,71,72]. In other bilaterians, different miRNAs are

expressed in these sensory cells, with no obvious conservation of

particular miRNA expression (Drosophila: [9,73,74], zebrafish: [71],

human [65,66]).

We then bioinformatically searched for canonical target sites of

these sensory miRNAs in the 3
0
UTRs of Notch pathway genes in

these animals using a target prediction program we developed

previously [33]. Through this, we discovered the presence of

predicted target sites in the primary Notch receptor (Notch1)

among vertebrates, as well as target sites for other Notch homologs

in zebrafish and mouse (Figure 9). In agreement with our

hypothesis, we found Notch1 target sites for different sensory

miRNAs in each of the different organisms (miR-124 in Ciona,

miR-15a in zebrafish, miR-30b, 2100, 2125b, 2133a, 2182 and

183 in mouse; and miR-34 and miR-449 in human airway

epithelium). Among these, miR-34 and miR-449 targeting of

Notch in human airway epithelial tissue has been experimentally

verified [65]. We did not find any target sites for Notch in

Drosophila, suggesting that such sensory miRNA regulation of the

Notch receptor did not evolve until at least after ecdysozoans.

In agreement with previous reports, we also observed sensory

miRNA target sites within many Hes homologs in Drosophila

[9,75]. However, whereas in Drosophila and Ciona almost all of the

Hes homologs have target sites, we observed that in vertebrates

predicted targeting of Hes is much more restricted (Figure 9). This

may be explained by the fact that predicted targeting of the Notch

receptor appears to be much more extensive in chordates

(Figure 9). Since the Notch receptor is the initial effector of Notch

signaling, miRNA-mediated suppression of Notch would relieve

the need to target all of the downstream Hes factors. Another

possible explanation is that the other Hes factors are not expressed

in the sensory cells of vertebrates, and therefore their targeting by

sensory miRNAs is not needed. Indeed, among the many Hes

homologs in mice, only Hes1 and Hes5 are expressed in inner ear

cells, of which Hes1 is the more highly expressed factor [27,76].

Finally, we note that although in C. elegans there is no published

evidence of Notch signaling regulating sensory neuron formation,

the Notch homolog LIN-12 regulates the formation of some of the

adjacent interneurons that relay signals from the sensory neurons

[77]. Recent evidence suggests that the miR-51-56 family is

ubiquitously expressed among neurons in C. elegans [78], and we

bioinformatically found a canonical target site for this family of

miRNAs in the LIN-12 3
0
UTR. Although in this work we focused

on sensory cell types in other organisms, since they are most

analogous to the epidermal sensory neurons of Ciona, but it would

be interesting to explore miRNA regulation of Notch signaling in

other cell types.

Discussion

Our experimental results in Ciona and previous related
studies motivate an expanded Notch-Delta model

Previous Notch-Delta models [12,20–24] were based on early

Notch signaling studies in Drosophila, Xenopus, and mouse [2],

which suggested a checkerboard expression pattern whereby

neighboring cells adopted alternate cell fates. This was supported

by evidence in Drosophila that cells selected to become neurons

activate Notch signaling in neighboring cells thereby preventing

these cells from likewise adopting a neuronal fate [5]. This led to

the classic Monk model [20], which provided the foundation for

later models [12,21–24].

However, more careful analysis has shown that the pattern

produced by Notch-Delta signaling in some cases is not

checkerboard. For example, the sensory microchaetes of the

Drosophila thorax are initially formed at every other cell and

prevent immediately neighboring cells from adopting a sensory

fate via lateral inhibition. However, once the thorax has fully

developed, these microchaetes become spaced about 4–5 cells

apart. Meanwhile, the larger macrochaetes can be spaced dozens

of cells apart [29,30,38]. In these cases, it has been suggested that

dynamic filopodia extensions may provide a mechanism whereby

the Delta ligand can activate Notch signaling in non-neighboring

cells [28,30]. Other examples of experimentally observed non-

checkerboard patterning include sparse patterning of bristle cells

in other fly species [38]; opposing gradients of Notch versus Delta

expression along the apical-basal axis in the developing retina of

both mouse and zebrafish [7,37]; and gradient expression of Notch

in the mouse inner ear [41]. These examples suggest the need for

updated Notch-Delta models that can reproduce these non-

checkerboard patterns. One such model has recently been

developed for describing the sensory bristle patterning in Drosophila

incorporating filopodia extensions [31]. This model requires

dynamic lengthening and shortening of filopodia and incorporates

data on several variables such as length of filopodia, lifetime of

filopodia and sensitivity of Notch signaling to the Delta ligand

specific to their experiments. More general models of juxtacrine

systems have explored periodic patterning with longer wave-

lengths, producing sparser patterns also [42–44].

Here, we developed an expanded Notch-Delta model that

builds upon the minimal equations established first by Monk and

later Elowitz and colleagues [12,20]. Our model incorporates a

simple activity gradient that allows for long-range cell communi-

cation through juxtacrine (cell-cell) signaling. This is actually a

long-range inhibition, mediated by local juxtacrine signaling, using

a linear gradient term similar to Fickian diffusive flux. As

mentioned earlier, specific examples of Notch-Delta patterning

in Drosophila [28–30] and other fly species [38], as well as in the

mouse inner ear [41], mouse retina [37] and zebrafish retina [37]

all demonstrate that sparse or gradient neuronal patterns can arise

from a field of neurocompetent cells. Unlike the model for

Drosophila neuronal patterning [31], our model does not require

the existence of dynamic filopodia extensions, and actually makes

very few assumptions regarding the exact pattern of neurons and

the underlying mechanisms responsible for neuronal patterning.

Our model can produce a large number of possible equilibrium

states and, although here designed for a linear array of cells, is

easily adaptable to a planar field of cells. Therefore, we suggest

that our model is adaptable and able to reproduce a variety of

both sparse and dense spatial patterns, and should be useful for

modeling other Notch-Delta systems.

In this study, we applied our model to the patterning of sensory

neurons in the peripheral nervous system of Ciona intestinalis larvae.

In a previous report [33], we found that the array of cells along the

Ciona midlines are all neurocompetent and can be converted into

neurons by inhibiting Notch signaling. However, in wild-type

animals only a few of these cells are selected to become ESNs.

Specifically, the spatial pattern of ESNs in the larvae of Ciona

intestinalis is sparse and irregular, with variable ESN spacing

ranging from one to thirteen cells between consecutive ESNs in

wild-type animals. The large number of non-ESN cells found

between one ESN and the next demonstrates the need for an extra

term for producing long-range ESN patterns along the midline.
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This is the motivation for updating the previous Monk and Elowitz

models with the addition of a Notch gradient term. For this study,

we represent this long-range term as a simple activity gradient, and

demonstrate that this is sufficient for explaining the patterning of

ESNs in Ciona. We note that this is not necessarily a diffusion term,

since Notch and Delta are membrane-bound and in most cases do

not produce diffusible species. We chose a linear gradient over

other possibilities, such as Hill function interactions [44], because

it is the simplest and most generic form, and can be applied to a

wide variety of biological and physical systems without assuming

anything about the underlying mechanisms of long-range com-

munication. One possible mechanism of long-range communica-

tion via Notch signaling in Ciona may be through the protein Ci-
fibrinogen, which is secreted from the tail notochord and is known

to interact with Notch in the Ciona central nervous system [79]. Ci-
fibrinogen is similar to the fibrinogen-like protein Scabrous, which

is involved in producing large-cell bristle spacings in Drosophila

[28]. We will explore this and other possibilities in future studies

and will update our model accordingly.

Finally, we provide a strong mathematical foundation for our

model by performing rigorous stability analyses and bifurcation

analyses of the key model parameters: the neuron spacing (P), the

Notch decay rate (c), and the slope of the linear gradient (m). The

sensory neurons in Ciona derive from bipotent precursor cells along

the tail midline, which adopt either an epidermal or neuronal fate

[32–34]. Our eigenvector/eigenvalue analysis for different spac-

ings between neurons demonstrates that the cells committed to

becoming neurons occupy regions of high stability, while

epidermal precursor cells more centrally located between consec-

utive neurons occupy regions of instability. These centrally located

cells thus maintain their bipotent character. These cells may have

very small basins of attraction for maintaining low levels of Delta

and thus, are sensitive to perturbations and small changes in the

parameters of the system. As we varied the parameters P, m, and

c, we discovered a threshold phenomenon whereby the system

increasingly loses stability to a point where it jumps to a new

equilibrium with these central cells becoming neurons. For m and

c, these cells exhibit a hysteresis effect and remain committed to a

neuronal fate (i.e., express high levels of Delta), even if the

parameters are adjusted back to their original values.

Motivation for a Notch gradient term
An early study using both in situ hybridization and immuno-

staining demonstrated an apical-to-basal gradient of Notch

expression within neuroepithelial precursor cells in the dienceph-

alon, telencephalon, retina and spinal cord during chick develop-

ment [36]. More recently, apical-to-basal expression gradients of

Notch were also found within neuroepithelial cells in the zebrafish

retina, where Notch-Delta signaling is active [37,80]. The nuclei

within these neuroepithelial cells are able to migrate along the

basal-apical axis, and depending on where these nuclei are within

the Notch gradient, after mitosis the daughter cells either remain

in their precursor state or differentiate into neurons. Although

these studies were examining intra-cellular gradients, this moti-

vated us to consider the possibility that Notch gradients exist

between cells along the midline. Intercellular gradients induced by

cell-cell signaling relays have been well-established for TGF-b
family signaling [44,81], and although not yet definitely shown to

cause gradient patterns, signaling relays also exist in the context of

Notch-Delta signaling through Notch activation of secondary relay

ligands such as Jagged/Serrate [2,41].

We found here (Figure S4) and also in previous studies [32–34]

that Delta expression is restricted to the presumptive ESNs

and is not expressed in the other midline cells, therefore a

Delta-mediated gradient is not appropriate. Studies of the

morphology of Ciona sensory neurons found no evidence for

dynamic filopodia extensions in the PNS [51], and so the Cohen

model is also not appropriate [31]. Conversely, Notch is expressed

in all midline cells and, therefore, could mediate long-range

communication [6]. Also, from our previous experiments [33,34],

we know that blocking midline Notch signaling using a dominant-

negative form of the dowstream effector gene Suppressor-of-

Hairless results in ectopic neuron formation along the entire

midline. On the other hand, ectopic activation of Notch signaling

along the entire midline through mis-expression of Delta causes a

reduction in midline neuron formation and large regions without

ESNs [34]. Thus, given our experimental knowledge in Ciona and

knowledge of long-range patterning in other systems, our current

hypothesis is that the Notch signal is somehow relayed from ESN-

neighboring cells to more distant cells. Therefore, the most

reasonable term to add to the original Collier model, given our

experimental observations, would be a Notch activity gradient.

From a dynamical systems perspective, this is also the simplest

form in our model that can produce distal spacing patterns. This

Notch gradient may be produced through lateral induction of

secondary Notch ligands as in other animals [2,41]. In Ciona, it is

known that Ci-fibrinogen interacts with Notch to regulate

neuronal patterning in the central nervous system [79]. Given

that a similar Notch ligand, Scabrous, is involved in producing

long spacings in the Drosophila PNS [28], it is possible that Ci-

fibrinogen may also act as a Notch ligand in the PNS as well. We

will be exploring these and other possibilities in the future. Overall,

the linear Notch gradient term provides a simple initial model,

which explains the Notch-Delta-mediated patterning of sensory

neurons in Ciona based on our current biological knowledge of the

Ciona PNS, and motivates future experiments and updated models.

Future work and refining our model
The model is a high dimensional system of ordinary differential

equations with many equilibria and 11 parameters, including the

number of cells in the system. Scaling could be used to eliminate

three parameters, but that still leaves 8 parameters. We provided

detailed studies for the parameters C, m, and c, which are

significant in Ciona, and demonstrated when bifurcations occur,

leading to new ESNs forming. In order to examine the stability of

ESN patterning, we have conducted some initial bifurcation

studies, finding Hopf bifurcations and indications of hysteresis

effects through saddle node bifurcations. In the future, more

detailed bifurcation studies will be performed to determine the

exact type of bifurcation occurring when the miR-124-related

parameter c is varied. In addition, we performed a sensitivity

analysis for all the parameters about an equilibrium of six high-

Delta ESNs with a mean ESN spacing of nine cells to show the

relative effects of each parameter as they varied, thus giving a local

understanding of the most significant parameters. The model did

prove to be quite robust for this equilibrium, producing similar

ESN patterns for a range of each of the parameters. We do note

that the system was sensitive to small changes in m. This could

suggest that an organism has limited variability in its cell to cell

communication, or this could be a potential limitation of our

model. More experimental evidence is needed to decide the

precise nature of the long-range inhibition, and it is possible that

our model will require additional nonlinear juxtacrine signaling

functions from lateral induction and/or inhibition. For this current

work, we have added a simple linear gradient term and have

shown that this is sufficient for producing the long-range

patterning of ESNs in Ciona.
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In order to fit our experimental observations, future work needs

to be done on modifying the local interaction terms. Monte Carlo

simulations of our model produce too many one-cell spacings

compared to what we observe in wild-type larvae. When we

adjusted the Notch decay rate parameter, c, in order to simulate

the miR-124 overexpression experiments, the model was not able

to produce the zero-spacing adjacent ESNs of miR-124 overex-

pressing embryos. There are several possibilities for these

discrepancies. In the miR-124 experiments, wild-type ESNs

endogenously produce miR-124, therefore the actual Notch decay

rate is much higher within ESNs compared to the other midline

cells. In our model we use a single ’average’ c value for all midline

cells that does not take this variation in Notch decay rates into

account. Indeed, if we increase c significantly (c§0:8), we are able

to override lateral inhibition and produce adjacent high-Delta

cells. Thus, a more appropriate model may be one that

incorporates a spatially-varying c, whose form perhaps follows a

Gamma distribution. Another possibility is that the level of lateral

inhibition (i.e., the strength of the Hill equations) is too strong in

our initial model, and that tuning of the Hill coefficients may allow

for production of adjacent ESNs more easily. Finally, there may be

other yet unidentified local factors that counterbalance the

feedback effect between neighboring cells, which we have not

accounted for in our model. We will explore each of these

possibilities in future studies.

Finally, although our model is motivated by our studies on

Notch-Delta signaling in Ciona, we emphasize that it can also be

applied to many other biological and physical systems. At its core,

we have developed a general mathematical model involving two

chemical species, D and N, which interact locally as well as over a

distance. Local interactions involve a positive and negative

feedback governed by Hill functions, which were originally

derived by Goodwin [25] to model the reaction kinetics between

two biochemical species and for which extensive experimental

evidence exists [12,20,25]. Distal interactions are governed by a

linear activity gradient, which is the simplest and most generic

gradient form. Since the specific mode of distal interaction has not

yet been determined in Ciona, this gradient is appropriate, since we

do not assume these are diffusible species and are making no

assumptions about the biological mechanism of long-range

patterning. The presence of distal interaction greatly expands

the number of possible equilibrium states of this system. Finally, as

seen from our bifurcation analyses of several parameters, this is a

high-dimensional system rich with at least hundreds of possible

equilibrium steady states and a variety of interesting dynamics for

which we have only begun to explore in this report. Since our

model involves only two species and a minimal set of parameters, it

is applicable not only to Notch-Delta systems, but is general

enough to be applied to analogous biological and physical systems

that exhibit both local and distal effects.

Materials and Methods

Wild type and miR-124 titration transgenic assays
All of our transgene vectors were cloned in a pSP72 vector

backbone (Promega) containing an SV40 Poly(A) site

[33,34,46,82]. To visualize expression in the midline, we used

two promoter constructs fused in frame with an optimized form of

yellow or red fluorescent protein [83]. The first, Ash, contained

the conserved cis-regulatory and promoter region of the Acete-

scute homolog, which showed expression along dorsal and ventral

midlines in tailbud embryos [34]. The second construct, Delta,

contained a conserved cis-regulatory and promoter region as well

as the conserved first intron of the Delta2 gene, which is expressed

in the Ciona PNS [34]. We generated transgenic embryos by

electroporating 10-15 mg of each construct into fertilized and

dechorionated embryos as previously described [46,83]. Both of

these constructs showed midline expression with occasional

ectopic expression elsewhere in the epidermis, although the

number of expressing midline cells varied from embryo to

embryo. This is due to the fact that the genes themselves turn

off early in the midline, although the fluorescent proteins have

a half-life of *24h and often remain expressed in the cells.

DAPI staining of nuclei and acetylated tubulin antibody

staining of cilia was performed as previously described [34].

Images were taken at 206 and 406magnification with a Zeiss

AxioPlan 2e fluorescent microscope equipped with an Ax-

ioCam HrM monochromatic camera.

Detailed explanation of expanded Notch-Delta model
Our expanded Notch-Delta model represented by the ordinary

differential equations in (1) begins with a linear array of C cells.

Later we plan to modify this linear array to a dynamic array,

which includes cell division. Each cell tracks activity levels of two

biochemical species, N and D. Importantly, note that our model

can be generalized to represent the signaling between any two

biochemical species, although for this report we focus on Notch-

Delta signaling. All the cells in the linear array interact with their

nearest neighbors with the exception of the end cells. Here, our

model uses average levels of species N and D as the missing

neighbor for the end cells. The model localizes D inside the cell or

expressed on the cell surface to signal only the neighboring cells. It

is repressed internally by N and activates neighboring cells to

stimulate production of N. The species D also catalyzes the

degradation of N inside the cell. Both species have linear decay

terms based on the natural half-lives of N and D. The production

of N depends on the level of D in the neighboring cells. We also

include a gradient term for N based on the difference in Notch

activity between the cells.

The functions and the parameters in the model given by the

ODEs in (1) are common in biochemical control models. In the D
equation, the first function is a standard negative feedback or

repression function. The parameters a and k1 are primarily scaling

parameters in the production of D. The most significant

parameter is n1, which is the Hill coefficient and reflects the

strength of the negative feedback. The higher the value of n1, the

more effective N works as a repressor in the production of D. It is

well-known that this parameter should significantly affect the

stability of the system with larger n1 values increasing instability.

The parameter b affects the half-life or linear decay of D. From the

indexing in the equation it can be readily seen that production and

decay of D is completely contained in the cell where D is

produced.

The N equation is more complicated. The first term represents

enhanced cis-inhibition of N by D inside the cell. Thus, D
accelerates the degradation of its repressor N with a scaling

parameter a. The second term is a non-linear positive feedback or

induction function, which has surface molecules of D on

neighboring cells signaling the production of N. The parameters

b and k2 are scaling parameters, while the parameter n2 is the Hill

coefficient representing the strength of the positive feedback.

Again, the higher the value of n2, the more switch-like the

behavior of this production term for N by the levels of D in

neighboring cells. The parameter c is the linear decay rate for N.

The last term is a gradient term for communication of N between

neighboring cells. This is a standard linear gradient term for flux of

N with a rate of m between cells with differing activity levels of N.

The value of m will affect the range of communication or signaling
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of N with higher values of m corresponding to longer range

signaling.

Stability analyses and Monte Carlo simulations
The system (1) was coded and simulated in Matlab (R2008b,

revision 20) using the ode23 solver. Stability and bifurcation

analyses on the parameters P, m and c, as well as all Monte Carlo

simulations were performed using custom Matlab scripts.

Linearization of the system
For stability analysis we need to linearize the system (1). We let

x~½x1,x2,:::,xC �T and y~½y1,y2,:::,yC �T and write the system (1)

as follows:

_xx~F(x,y)

_yy~G(x,y)

We assume an equilibrium solution �xx~½�xx1,�xx2,:::,�xxC �T and

�yy~½�yy1,�yy2,:::,�yyC �T , then we define the perturbed variables from the

equilibrium as j~x{�xx and g~y{�yy. The linearized version is

written

_jj

_gg

 !
~J

j

g

� �
,

where J is the Jacobian matrix with

J~
Q R

S T

� �
:

The C|C submatrices Q, R, S, and T are created with their

ith row and jth column satisfying:

Q~
LFi

Lxj

� �
R~

LFi

Lyj

� �
S~

LGi

Lxj

� �
T~

LGi

Lyj

� �
:

Submatrices Q and R are relatively simple with only

diagonal form. All diagonal elements for Q are {b. Since �yyj

is the jth equilibrium value for yj , the diagonal element for

R~(rij) satisfies:

rjj~{
ak1n1�yyj

n1{1

(1zk1�yyj
n1 )2

The diagonal form of the matrices Q and R reflect that the

substance xi is confined to the ith cell. The diagonal elements

in Q reflect the linear decay of D in the model. The diagonal

elements in R reflect the production of D, which is repressed

by N .

Since the N variable of the model is produced and communi-

cated based on the neighboring cells, the submatrices S and T are

predominantly tridiagonal. The values �xxi and �yyi are the ith

equilibrium values for xi and yi. For the submatrix S~(sij), the

diagonal elements are predominantly

sii~{a�yyi:

This term reflects the enhanced degradation of N by D in the

cell. The subdiagonal and superdiagonal elements come from the

production term with most satisfying

si,i{1~
bn2(�xxi{1z�xxiz1)n2{1

(1zk2(�xxi{1z�xxiz1)n2 )2

This reflects the enhanced production of N by D in the

neighboring cells.

For this version of the model we chose to make the boundaries

substitute the average activity level for the end levels. This leads to

small contributions in the 1st and Cth rows of S. In addition to the

terms listed above for S we add the terms:

g1,j~
b

C

n2 �xxavez�xx2ð Þn2{1

1zk2 �xxavez�xx2ð Þn2ð Þ2
, j~1,:::,C

and

gC,j~
b

C

n2 �xxC{1z�xxaveð Þn2{1

1zk2 �xxC{1z�xxaveð Þn2ð Þ2
, j~1,:::,C:

For the submatrix T~(tij), the diagonal elements are predom-

inantly

tii~{a�xxi{c{2m:

This term reflects the enhanced degradation of N by D in the

cell, the linear decay of N, and N part of the gradient term. The

subdiagonal and superdiagonal elements come from the other

terms of the gradient

ti,i{1~ti,iz1~m:

Since the boundaries use the average activity level for the end

levels, we obtain small contributions in the 1st and Cth rows of T .

In addition to the terms listed above for T we add the terms:

h1,j~
m

C
, j~1,:::,C

and

hC,j~
m

C
, j~1,:::,C:

Equilibria
We noted that system (1) has many equilibria. For the Monte

Carlo simulations we began the simulations with random low

values (both x and y [ (0,1)) and allowed long simulation times for

solutions to settle into a stable pattern of ESNs, which is
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determined by the ESNs, where xi&100. Most of these equilibria

did not have their eigenvalues tested, so several of the stable

patterns of ESNs, undoubtedly had eigenvalues with positive real

parts, making system (1) unstable and leaving some cells to have

low amplitude oscillations. (See Movie S2.) These oscillating cells

could be considered bipotent, but the local environment remains

sub-threshold, so they fail to convert to ESNs.

For the bifurcation studies in spacing, P, the gradient

parameter, m, and the Notch decay parameter, c, initial conditions

were provided that favored a particular pattern. For some patterns

with certain parameter values, the basins of attraction for the

particular pattern were very large, and simulations easily settled to

the desired pattern with initial conditions only roughly exhibiting

the planned pattern. Nearer bifurcation points, the initial

conditions required using equilibria from nearby (stabler) param-

eters. The equilibria used for stability analysis were found by a

long time simulation "near’’ a particular equilibrium. Subsequent-

ly, this simulated equilibrium had Newton’s method with the

Jacobian shown above applied to system (1) with the derivatives set

to zero. The equilibrium results from the Newton’s method were

used for the local analysis described above to find eigenvalues and

eigenvectors.

Supporting Information

Figure S1 Cell counts in the dorsal and ventral mid-
lines. The average number of midline cells, ESNs and number of

cells separating consecutive ESNs (spacing) were counted for wild-

type (wt) and miR-124 overexpression embryos (+10, +20, +30).

Significant differences between dorsal and ventral midlines are

marked with an asterisk (p,0.05, t-test with multiple testing

correction). Errors bars indicate SD. In the text, we consider

statistical averages per midline without distinction between dorsal

and ventral midlines, since overall across all experiments there are

no substantial differences between dorsal and ventral counts.

(EPS)

Figure S2 Large ESN spacings are flanked on at least
one side by a pair of closely spaced ESNs. (A) Represen-

tative image of a large (11-cell) spacing flanked on the anterior side

by two neurons closely spaced. (B) Representative simulation run

of our model showing the same phenomenon.

(EPS)

Figure S3 ESN counts and spacing distributions for
changes in the parameters n1, m and k1. (A–D) Monte Carlo

simulations were performed when increasing or decreasing n1 and

m, the more sensitive parameters identified in our parameter

sensitivity analysis. The resultant distributions are shown for ESN

counts (left) and spacing (right) for increasing or decreasing n1

from the original value of n1 = 4 with n2 held constant (n2 = 3) (A–

B) and for increasing or decreasing m by 10% from the original

value of m = 0.10 (C–D). (E) Resultant distributions from running

Monte Carlo simulations after increasing the value of k1 by 10%.

The mean + standard deviation of the distributions are as follows:

(A) ESN count = 8.07 + 2.25, spacing = 5.30 + 4.51; (B) ESN

count = 7.46 + 1.05, spacing = 5.83 + 2.40; (C) ESN count

= 10.83 + 1.34, spacing = 3.94 + 1.86; (D) ESN count = 6.93 +
1.30, spacing = 6.27 + 3.35; (E) ESN count = 7.56 + 1.46,

spacing = 5.78 + 3.34. For the original parameters (Table 1,

Fig 4), the Monte Carlo simuations produced average ESN count

= 8.48 + 1.37, average spacing = 5.12 + 2.84.

(PDF)

Figure S4 Delta expression in the tail midlines detected
using in situ hybridization. Delta shows specific expression in

the presumptive ESNs along both the ventral and dorsal tail

midlines.

(PDF)

File S1 MATLAB code for simulating the expanded
Notch-Delta model.

(TXT)

File S2 MATLAB code for running Monte Carlo simu-
lations.

(TXT)

Movie S1 Simulation run of expanded model leading to
a stable equilibrium. The simulation begins at random low

initial conditions. Because of the fast dynamics of the initial

patterning, the first seconds are simulated at 5 time units per

second, while the remainder of the movie is simulated at 50 time

units per second.

(AVI)

Movie S2 Simulation run of expanded model leading to
stable oscillations. The simulation begins at random low initial

conditions. Because of the fast dynamics of the initial patterning,

the first seconds are simulated at 5 time units per second, while the

remainder of the movie is simulated at 50 time units per second.

(AVI)
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