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Abstract

Development produces correctly patterned tissues under a wide range of conditions that alter the rate of development in
the whole body. We propose two hypotheses through which tissue patterning could be coordinated with whole-body
development to generate this robustness. Our first hypothesis states that tissue patterning is tightly coordinated with
whole-body development over time. The second hypothesis is that tissue patterning aligns at developmental milestones. To
distinguish between our two hypotheses, we developed a staging scheme for the wing imaginal discs of Drosophila larvae
using the expression of canonical patterning genes, linking our scheme to three whole-body developmental events:
moulting, larval wandering and pupariation. We used our scheme to explore how the progression of pattern changes when
developmental time is altered either by changing temperature or by altering the timing of hormone synthesis that drives
developmental progression. We found the expression pattern in the wing disc always aligned at moulting and pupariation,
indicating that these key developmental events represent milestones. Between these milestones, the progression of pattern
showed greater variability in response to changes in temperature and alterations in physiology. Furthermore, our data
showed that discs from wandering larvae showed greater variability in patterning stage. Thus for wing disc patterning,
wandering does not appear to be a developmental milestone. Our findings reveal that tissue patterning remains robust
against environmental and physiological perturbations by aligning at developmental milestones. Furthermore, our work
provides an important glimpse into how the development of individual tissues is coordinated with the body as a whole.
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Introduction

Organisms require robust developmental processes to guarantee

that developing tissues pattern correctly in the face of a wide range

of environmental and physiological perturbations [1,2]. A

developmental process can be considered robust if variation in

this process is uncorrelated with variation in genetic, environmen-

tal or physiological conditions [3]. To achieve robustness, the

developmental processes that generate individual organs must, at

some level, be integrated across the whole body to ensure that a

correctly patterned and proportioned adult is produced at the end

of development. It is therefore thought that the progression of gene

expression that occurs in tissues as they pattern needs to be

somehow integrated with the systemic hormone levels that trigger

transitions between developmental stages (hereafter termed

developmental events) across the whole body [4,5]. The timing

of these developmental events changes with environmental and

physiological conditions but how this affects tissue development is

not fully understood.

There are several hypotheses to explain how tissue patterning is

integrated with whole-body development under different environ-

mental and physiological conditions. One hypothesis is that tissue

patterning and whole-body development progress synchronously,

so that the rate of the former matches the rate of the latter. If this

were the case, a change in the duration of development would

extend or contract the progression of patterning in a linear manner

(Figure 1a). Consequently, normalizing the progression of pattern

to a developmental endpoint, that is using relative rather than

absolute developmental time, would produce the same progression

of patterning independent of the duration of development

(Figure 1b).

Alternatively, tissue patterning may only be coordinated with

whole-body development at key developmental events (Figure 1c),

for example moulting in holometabolous insects, or the onset of

puberty in humans. Although not all developmental events act to

coordinate, those that do are often referred to as developmental

milestones [6]. Thus if the duration of development varies, the

progression of patterning would nonetheless converge at these

milestones while showing greater variability between them.

Consequently, normalizing the progression of pattern to relative

developmental time would produce patterns that overlapped only

at developmental milestones (Figure 1d). This would essentially

mean that if patterning were to drift in rate with respect to whole-

body development, developmental milestones would ensure that
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the rate of patterning would decelerate or accelerate to achieve the

correct stage by the onset of the milestone.

Problematically, it has been difficult to test these alternative

hypotheses because, while the process of patterning has been

described in exquisite detail in a variety of tissues, the dynamics of

patterning is rarely tied to organismal age or whole-body

physiology. Several authors have explored how genetic back-

ground contributes to the robustness of development (see examples

[7,8]). Their approaches have focussed on the endpoints of

development and on changes in the sequences of specific

patterning cascades. Furthermore, studies in organisms ranging

from insects to nematodes to vertebrates have explored the

progression of gene expression in relation to embryonic stage to

identify developmental milestones, called phylotypic stages, where

gene expression converges upon an embryonic stage common

across species [6,9–12]. Such developmental milestones are

thought to constrain development like an hourglass, as develop-

ment across species varies more both before and after the

milestones [6,9,10,12]. However, these studies do not address

how environmental/physiological conditions affect the progression

and sequence of pattern, and how this is coordinated with whole-

body development within a species. We therefore took advantage

of the extensive knowledge of tissue patterning and whole body

physiology of the fruit fly, Drosophila melanogaster, to elucidate the

extent to which tissue patterning is coupled with whole-body

development.

In Drosophila, the juvenile period comprises three larval moults.

This is followed by a wandering stage where larvae leave the food

and search for a pupariation site. Larval development ends with

pupariation, whereupon the fly metamorphoses into its adult

form. These events provide useful markers of whole-body

development. Each of these developmental events (moulting,

wandering and pupariation) is regulated by pulses in the titre of

the steroid hormone ecdysone [13], synthesized by the protho-

racic gland.

Most of the adult tissues of Drosophila arise from pouches of cells

that grow and pattern within the body of the developing larvae,

the imaginal discs [14–17]. Pulses of ecdysone have also been

shown to regulate some stages of imaginal disc development. Early

in the third larval instar a pulse of ecdysone controls the expression

of three patterning gene products, Cut (Ct), Senseless (Sens) and

Wingless (Wg), in response to nutrition [17]. After pupariation,

ecdysone regulates Sens expression to control the differentiation of

sensory organs in the wing [15,16]. Thus, these pulses of ecdysone

have been interpreted to be checkpoints that coordinate the

patterning and development of tissues with whole-body develop-

mental events [5,18]. Nevertheless, it remains to be determined if

this coordination between tissues and the whole body is necessary

and happens at all developmental events, or only at specific

developmental milestones.

The rate of developmental progression and the timing of these

developmental events can be altered both environmentally and by

genetically manipulating the timing of ecdysone synthesis. For

example, Drosophila larvae raised at lower temperatures take longer

to eclose as adults [19–23] while larvae reared at higher

temperatures eclose more quickly [20,22]. Similarly, altering the

timing of ecdysone synthesis, by suppressing or activating insulin

signalling in the prothoracic gland, also changes developmental

timing and retards or accelerates eclosion [17,24,25].

To test the extent to which whole-body development and the

progression of pattern in individual tissues are coordinated, we first

generated a staging scheme to describe how patterning progresses

over time in the wing imaginal discs of third instar larvae. This

staging scheme was based on the changes in expression pattern of

key patterning genes. We then altered developmental rate either

environmentally, by using temperature manipulations, or physio-

logically, by altering the timing of ecdysone synthesis. We

compared the progression of patterning, as determined by our

staging scheme, in larvae that differ in their developmental rates.

Our results indicate that the progression of patterning is

coordinated with some, but not all, developmental events and

varies between events.

Results

Developmental Staging Scheme for Wing Discs
To compose our developmental staging scheme for wing

discs, we used immunocytochemistry to identify changes in the

expression of eleven patterning gene products at five hour

intervals from 0–40 h after third instar ecdysis (AL3E), at

wandering, and at pupariation for a total of eleven time points

(Figure 2 and Supplementary Figs S1, S2, S3). We used wing

discs from larvae of an isogenic wild-type strain Samarkand

(SAM) reared at 25uC (wild type at 25uC). Three of these time

points coincided with three developmental events – the moult to

the third instar, wandering and pupariation. We have a strong

understanding of the physiology underlying these developmental

events, and so assaying patterning at these time points allowed

us to test for coordination between tissue patterning and whole-

body development. Collectively, we used the progression of

patterning in wild type at 25uC as a baseline for all comparisons

in this work.

We identified elements of pattern that we could reliably

distinguish across discs of a given time point (Figs 2, 3). New

elements of pattern included the addition of a new region of

expression, for instance the appearance of expression in a cell or in

cells that previously had not expressed a particular gene product;

the refinement of an expression field from diffuse expression in a

group of cells to more focussed expression in a reduced subset of

cells; or the disappearance of expression in a region that had

previously expressed that gene product. For each patterning gene

product, we discerned the time each patterning element arose,

thereby characterizing the transitions in pattern for each gene.

From this, we defined stages for each gene product (referred to as

gene-specific stages) (Figure 3).

Author Summary

Between distantly related species, development converges
at common morphological and genetic stages, called
developmental milestones, to ensure the establishment of
a basic body plan. Beyond these milestones greater
variability in developmental processes builds species-
specific form. We reasoned that developmental milestones
might also act within a species to achieve robustness
against environmental or physiological perturbation. To
address this, we first developed a staging scheme for the
progression of pattern in the wing disc across develop-
mental time. We then explored how perturbing environ-
mental or physiological stimuli known to alter the rate of
development affected the progression of pattern in the
wing disc. We found two developmental milestones, the
moult to the third instar and pupariation, where wing disc
patterning aligned with the development of the whole
body. This suggests that robustness against environmental
and physiological conditions is achieved by coordinating
tissue with whole-body development at developmental
milestones.

Developmental Milestones Ensure Robust Pattern
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Not all gene products displayed clear gene-specific stages.

Engrailed and Patched did not undergo patterning transitions in

the third larval instar, consistent with previous studies [17].

Scabrous localization within single cells appeared to be restricted

to vesicles, making changes in pattern hard to identify. Hindsight

expression in the wing disc was difficult to distinguish from

expression in associated tracheal cells. Finally, the patterning

transitions for Delta and Notch (N) occurred at the same time. For

these reasons, we chose to exclude Engrailed, Patched, Scabrous,

Hindsight, and Delta from our characterizations of overall disc

stage.

We tabulated the gene-specific stages for each time point from

the remaining six gene products, Achaete (Ac), Ct, N, Sens,

Dachshund (Dac) and Wg. These combinations of gene-specific

stages allowed us to define eleven disc stages (A-K), corresponding

to each of the eleven time points sampled from wild-type larvae at

25uC (Figure 3 and see Materials and Methods).

Two of the gene products, Ac and Sens were staged

simultaneously in individual discs (Ac is a mouse monoclonal

antibody and Sens is a guinea pig antibody). Using these two gene

products alone, we can assign discs to nine of the eleven disc stages

(Figure 4a). The bubbles in Figure 4a represent the proportion of

discs at each time point that fall into a particular disc stage based

on their Ac and Sens pattern combined. These data show that

using Ac and Sens alone, for five time points all discs are

categorized into a single stage. For the remaining six time points

sampled, most discs (67–89%) can be attributed to one disc stage,

with a smaller proportion of discs (,24%) falling into one or two

additional stages. Thus, staging with Ac and Sens alone provides a

reliable measure of disc stage across developmental time.

We expected that adding more markers to our staging scheme

would increase its resolution. Problematically, due to the nature of

antibody staining, it was not possible to stain a single disc for more

than two gene products. Consequently, we cannot assign an

individual disc to a particular developmental stage with the

complete set of markers. To circumvent this problem, we

simulated what a disc would look like if we could stain the same

disc for all six gene products. We first tabulated the observed stages

for each gene product at each time point. The number of discs

scored for each gene product ranged from five to sixteen

(Supplementary Table S1), depending on the time point and the

gene product. We then randomly sampled from this table to

Figure 1. Hypotheses to explain how organ and whole-body development are coordinated. (a-b) Hypothesis 1: Whole-body
development and individual tissue patterning are tightly coordinated throughout development. Changing the length of time required for
development extends or contracts the progression of pattern in a linear manner (a) and, consequently, normalizing the data to a developmental
endpoint, referred to as relative developmental time, produces overlapping progressions of pattern (b). (c-d) Hypothesis 2: Whole-body development
and individual tissue patterning are coordinated only at key physiological transitions. Changing the length of time required for development alters
the relationship between tissue patterning and developmental time non-linearly and patterning converges only at these transitions (c).
Consequently, in relative developmental time, the progression of pattern overlaps at these events and shows greater variability in the intervals
between them (d). Note that the curve of the two lines between the developmental events is illustrative showing two ways the curves could differ
under altered developmental conditions. Tissue patterning of a reference/condition is represented in black dashed lines; fast developers are
represented in orange and slow developers are shown in blue. Stars and circles symbolize developmental events 1 and 2.
doi:10.1371/journal.pgen.1004408.g001
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simulate all the possible combinations of gene-specific stages for a

single disc dissected at this time point. We repeated these

permutations 1000 times to generate 1000 simulated discs for

each time point. We then applied a Naı̈ve Bayes Classifier (NBC)

to the simulated data set to assign each simulated disc to a

developmental stage, based on our staging scheme. The NBC

analysis does not return a p-value, but instead provides the

probability that a disc of a given time point would be assigned to a

particular disc stage.

The results of this analysis are represented using a bubble plot

(Figure 4b-d). In this plot, the area of each bubble is the proportion

of the 1000 simulated discs that were assigned to each disc stage,

using the NBC. As a proof of principle, we applied our analysis to

the staging scheme devised from the Ac and Sens data. The plot

generated from the simulated discs looks very similar to the staging

scheme derived from the sampled disc data (Figure 4a, b),

although the NBC appears to slightly overestimate the amount of

variation in the data (dashed boxes in Figure 4b). Overall,

however, our stimulated data set represents well the patterns seen

from the sampled discs.

Next, we simulated discs with all six patterning gene products

and applied the NBC (Figure 4c). Using all six gene products, we

could resolve eleven disc stages in the simulated discs. For six time

points, there is a single bubble, indicating that all the simulated

discs at that time point share a stage-specific combination of gene-

product patterns. This suggests that the criteria for classification

are unambiguous at that time point. In the remaining time points,

the NBC assigned discs to two or three stages. This indicates that

the discs dissected at these time points did not all share the

characteristics used to define a single stage. That is, there is

variability in patterning among discs dissected at the same time

point. Nevertheless, even at these time points the NBC classified

the majority of simulated discs (65–94%) to a single stage. Further,

the amount of variation for these time points was reduced if the

complete data set was used in the simulation instead of using Ac

and Sens alone.

We repeated the NBC analysis using only the expression

patterns of Ac, Sens and Dac to classify the discs. The results were

nearly identical from the complete gene set simulations (Figure 4d),

except the NBC classified all discs at 30 h AL3E (stage G) as stage

F. This is because stages G and F share the same Ac, Sens and Dac

expression pattern, and so the NBC classified the discs into the

earliest stage by default. This combination of three gene products

provides greater resolution than Ac and Sens alone and was one of

the combinations that identified most of the disc stages from the

moult to the third instar until pupariation. Hereafter, to minimize

the number of gene products necessary to stage wing discs, we

established the staging scheme composed from Ac, Sens and Dac

as the baseline for all subsequent comparisons. Additionally, we

choose to use Wg for the first time point because Ac, Sens and Dac

were not expressed at the moult to the third instar.

Changing the Rate of Development by Modifying
Environmental Conditions: The Effects of Temperature

Once we had a method of defining the developmental stage of

a disc, we then asked whether the progression of pattern

through these developmental stages was tightly coordinated with

whole-body development when developmental rate was altered

by changes in rearing temperature. Rearing wild-type larvae at

18uC lengthened the time to adult eclosion from larval hatching,

while rearing larvae at 29uC shortened the time, compared to

wild-type larvae raised at 25uC (Figure 5). Surprisingly,

however, the duration of the third larval instar was slightly

longer at 29uC than at 25uC (Figure 5), as was the time to larval

wandering from the beginning of the third instar. Thus, for the

purposes of our study, larvae reared at 29uC were slow

developers.

To assay whether the progression of disc patterning relative to

whole-body development was affected by rearing temperature, we

used a bubble plot to chart wing disc stage, as assigned by the

NBC classifier applied to a permuted data set, expressed in relative

developmental time (normalized to pupariation), at 18uC, 25uC
and 29uC. At all three temperatures, patterning in the discs was

the same at the moult to the third instar and at pupariation

(Figure 6a, b and Supplementary Figure S4a, b). At 18uC the

progression of disc patterning when normalized to pupariation

time was largely the same as at 25uC, indicated by the overlapping

bubble plots at the two temperatures (Figure 6a and Supplemen-

tary Figure S5). In contrast, at 29uC patterning was initially

delayed, evident from discs dissected at the same relative

developmental time showing earlier patterning stages at 29uC
than at 25uC (Figure 6b and Supplementary Figure S4b). The rate

of patterning progression accelerated later in the third instar,

however, to achieve the final disc stage at pupariation (Figure 6b

and Supplementary Figure S4b). Further, there was more

variation in developmental stage among discs dissected at larval

wandering at 29uC, compared to 25uC (Figure 6b). Earlier in

development, the variation and delay observed in disc stage at

29uC was due to Ac and Sens expression, both of which belong to

the Notch signalling pathway (Supplementary Figure S6). In

contrast, at wandering much of the delay was caused by variation

observed in Sens and Dac expression patterns (Supplementary Figs

S6, S7).

Changing the Rate of Development by Modifying Larval
Physiology: Altering the Timing of Ecdysone Synthesis

The timing of ecdysone synthesis is thought to be key to

coordinating whole-body developmental events (moulting,

larval wandering and pupariation) with imaginal disc develop-

ment. To test this hypothesis, we first altered the timing of

ecdysone synthesis by downregulating or upregulating insulin

signalling in the prothoracic gland, lengthening or shortening

the duration of the third larval instar respectively (Figure 5)

[17]. To downregulate insulin signalling in the prothoracic

gland, we used the P0206 GAL4 driver to overexpress PTEN

(P0206.PTEN); to upregulate insulin signalling in this tissue,

we expressed InR using the phm GAL4 driver (phm.InR).

Together with changes in the duration of development, the rate

of patterning in the wing discs was also affected. Early in the

third larval instar, patterning appeared to be retarded in both

phm.InR and P0206.PTEN larvae, while patterning pro-

gressed at an accelerated rate later in development (Figure 6c, d

and Supplementary Figure S4c, d).

Figure 2. Patterning progression of six of the eleven gene products used to construct the staging scheme. The expression of Achaete
(1a-1k), Cut (2a-2k), Notch (3a-3k), Senseless (4a-4k), Dachshund (5a-5k) and Wingless (6a-6k) at 0 (1a-6a), 5 (1b-6b), 10 (1c-6c), 15 (1d-6d), 20 (1e-6e),
25 (1f-6f), 30 (1g-6g), 35 (1h-6h) and 40 (1i-6i) hours after third instar ecdysis (h AL3E), wandering (at the average time of 46 h AL3E, 1j-6j) and white
pre-pupae (at the average time of 49 h AL3E, 1k-6k). Arrows show addition or change of cells or patches of cells, and asterisks highlight changes in
stripes. Scale bar is 100 mm.
doi:10.1371/journal.pgen.1004408.g002
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To explore how wing disc patterning progressed relative to

whole-body development, we again used a bubble plot to chart

wing disc stage in phm.InR and P0206.PTEN, as assigned by the

NBC classifier applied to a permuted data set, against relative

developmental time. We used wild-type SAM larvae reared at

25uC for comparison. Under all experimental conditions, wing

discs displayed the same pattern at the beginning (moulting) and

end (pupariation) of the third larval instar. However, a bubble plot

of relative developmental time (normalized to pupariation) against

disc stage indicated that in both P0206.PTEN and phm.InR

Figure 3. Staging scheme – the developmental transitions for each gene product arranged according to disc stage. Each column
represents a gene product (Achaete, Senseless, Dachshund, Cut, Notch and Wingless) and each row a disc stage (A-K). We characterized disc stages by
the combination of gene-specific stages (numbers under each disc for each gene). We highlighted the key elements characterizing each gene-specific
stage either with arrows (cells or patches of cells) or asterisks (stripes). For Dachshund (Dac) stage 4 where the stripe is highlighted, we did not
consider the length of the stripe for this character, although it increases in length during development. Further, in each disc, in blue we represent
addition or change of elements that are common to all discs sampled (Invariant Element Set), in orange we represent the addition or change of
elements that are variable (Variable Element Set, ie. do not appear in all the discs sampled) and in grey the elements that do not change in
comparison to the previous gene stage (Previous Invariant Element Set). We only used the invariant element set to construct the staging scheme.
Black vertical arrows represent the transition between the gene-specific stages. Disc stages A-K correspond to the time points sampled (0, 5, 10, 15,
20, 25, 30, 35, 40, 46 (average time for wandering) and 49 (average time for pupariation) hours after third instar ecdysis (h AL3E).
doi:10.1371/journal.pgen.1004408.g003

Figure 4. The probability of attributing a wing disc dissected at a given age to a particular disc stage. (a) Proportion of discs attributed
to each disc stage based on individual discs simultaneously staged for Ac and Sens. (b) By applying the Naı̈ve Bayes Classifier (NBC) to the permuted
data set based only on Ac and Sens expression patterns, our staging scheme was able to distinguish between discs from each time point and classify
them into their appropriate stages. Dashed boxes highlight regions where the simulated data set showed greater variation than the actual data from
a. (c) We repeated the NBC classifier analysis using the expression patterns of Ac, Sens, Dac, Ct, N and Wg. (d) Using the expression patterns of Ac,
Sens and Dac to classify the discs, the results were nearly identical, except the NBC classified all discs at 30 h AL3E (stage G) as stage F. This is because
stages G and F share the same Ac, Sens and Dac expression patterns. The dashed box marks a time point where the simulated data from Ac, Sens and
Dac alone showed greater variation than the simulated data generated using the complete panel of six patterning gene products. Developmental
events are identified by m (moult to the third instar), w (wandering) and wpp (white pre-pupae – pupariation).
doi:10.1371/journal.pgen.1004408.g004
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larvae, disc patterning is initially delayed and showed increased

variability compared to 25uC wild-type larvae at the same relative

developmental time (Figure 6c, d and Supplementary Figs. S4, S8,

S9). This delay is more evident in phm.InR discs (Figure 6d),

where it is due to changes in the relative progression of Ac, Sens

and Dac expression (Supplementary Figure S9), than in P0206.

PTEN discs (Figure 6c), where it is primarily due to changes in the

progression of Ac and Sens expression (Supplementary Figure S8).

Furthermore, in phm.InR discs from wandering larvae, patterning

was substantially delayed when compared to wild type at 25uC
(Figure 6d).

Some of the observed changes in wing disc patterning

progression early in the third instar in P0206.PTEN and phm.

InR larvae may result from genetic background effects. Both

parental lines, yw; UAS PTEN (referred to as .PTEN) and yw flp;

UAS InR29.4 (referred to as .InR), showed small but significant

differences in pupariation time compared to the wild type at 25uC
(Figure 5). Additionally, in both .PTEN and .InR larvae, we

observed early delays in wing patterning relative to wild type at

25uC, due to retardation in the progression of all three gene

products – Ac, Sens and Dac (Supplementary Figs S4e, f, S10,

S11). However, after 50% developmental time wing disc

patterning was the same in all three lines (wild type at 25uC, .

PTEN, .InR). Further, wing disc patterning was the same in all

three lines at moulting and pupariation, and largely overlapped at

wandering (Figure 6e, f). A comparison of wing disc patterning in

P0206.PTEN and phm.InR larvae to their genetic controls

suggests that the delays observed before 50% relative develop-

mental time are due to genetic background effects while the delays

after this period are due to changes in physiology (Supplementary

Figure S12).

Examining the Correlation between Gene-Specific Stages
from Two Genes in the Same Patterning Cascade

Our data demonstrate that altering developmental timing of the

whole body changes the progression of patterning in Ac, Sens and

Dac. Next, we explored whether gene-specific stages of Sens

correlated with gene-specific stages of Ac across treatments and

genotypes independently of developmental time (Figure 7). We

found that overall, Ac and Sens stages were tightly correlated and

showed little significant variation with temperature, physiology or

genotype. There were some exceptions; for Ac stages 4 and 5 we

found that Sens stages were significantly delayed in P0206.PTEN

larvae when compared to wild-type larvae at 25uC (Figure 7c).

The .InR larvae showed similar delays in Sens with respect to Ac

at stage 5 (Figure 7f). In contrast at Ac stage 6, Sens was

accelerated in the wild-type larvae at 18uC and in the P0206.

PTEN larvae (Figure 7a, c). Thus, Sens stages show some degree of

plasticity with respect to Ac stages, but only at Ac stages 4–6.

Discussion

In this study, we set out to examine the extent to which tissue

development is coordinated with the development of the whole

body. We tested two alternative hypotheses: 1) the progression of

pattern is tightly coordinated with whole-body development at all

times, and 2) patterning is coordinated only at developmental

milestones.

Figure 5. Schematic representation and table of time from the third instar ecdysis (L3) until wandering, pupariation and time from
egg to eclosion. Developmental times are represented in hours after third instar ecdysis (h AL3E), hours after egg lay (h AEL) and characterized by
mean (AVG) and 95% confidence intervals (CI). Data was tested for normality using Q-Q plots and analyzed using one-way ANOVA (a= 0.025). P
values are from pairwise t-tests, and refer to differences between the temperature treatments (wild type at 18uC and 29uC compared to 25uC),
differences between physiological treatments and wild type at 25uC (P0206.PTEN and phm.InR versus wild type at 25uC) and differences between
parental backgrounds (.PTEN and .InR) and wild type at 25uC.
doi:10.1371/journal.pgen.1004408.g005
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Previous studies demonstrated that the development of tissues

could regulate the timing of whole animal development. Specif-

ically, larvae with slow growing discs greatly delay the develop-

ment of the whole body [26–29]. Discs induce these delays by

regulating the timing of a specific developmental event that occurs

early in the third instar, termed critical weight [26,28]. Slowing

disc growth after critical weight has no effect on developmental

timing [28]. Delaying patterning in the imaginal discs has also

Figure 6. Changing developmental time alters the progression of pattern. Probability (represented by the size of the circle) that a disc with
a given set of gene-specific stages belongs to a particular disc stage, varying with relative developmental time (normalized to pupariation). In all
panels (a-f), we show the wild type at 25uC in black. (a-b) Temperature manipulations: (a) disc stages attributed to discs from wild-type larvae reared
at 18uC are shown in blue and (b) from wild-type larvae reared at 29uC are shown in orange. (c-d) Manipulations of the timing of ecdysis synthesis: (c)
disc stages attributed to discs from P0206.PTEN larvae are shown in green and (d) disc stages attributed to discs from phm.InR larvae are in purple.
(e-f) Parental lines to test for the contribution of genetic background: (e) disc stages attributed to discs from .PTEN larvae in red and (f) from .InR
larvae in pink. Developmental events are identified by m (moult to the third instar), w (wandering) and wpp (white pre-pupae – pupariation).
doi:10.1371/journal.pgen.1004408.g006
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been shown to retard the development of the whole body. If the

spread of Wg protein is restricted in the imaginal discs by replacing

wild-type Wg with a membrane-tethered Wg allele, larvae delay

the onset of pupariation [30]. We do not yet know whether Wg

signalling in the discs affects developmental timing by affecting

disc growth rate nor do we know which developmental events are

affected by altered Wg signalling.

Further, there is ample evidence from many insects that

ecdysone controls the timing of development in the various tissues

of the body [13]. In third instar larvae, ecdysone signalling

stimulates neurogenesis in the optic lobe via the Notch/Delta

pathway [31]. The pulses of ecdysone that stimulate the onset of

pupal development are also known to initiate patterning of the

sensory tissues of the wing [16]. Thus, it seemed likely that

ecdysone pulses at other stages could act as milestones to

coordinate both tissue and whole-body development.

We found that patterning, as determined by disc stage, aligned

at the moult to third instar and at pupariation in all conditions

studied. It is important to note, however, that considerable

patterning occurs in wing discs before the third instar [32].

Furthermore, pupariation is not an endpoint for disc pattern, as

the patterning of sensory structures and the specification of the

wing veins continue on during pre-pupal and pupal development

[15,16,33]. Thus pupariation appears to be characterized by an

alignment but not termination of patterning progression.

In contrast, disc patterning among wandering larvae showed

variability, both within the wild type at 25uC and across

experimental treatments. Variation in disc stage at wandering

within the reference genotype at 25uC is likely to be due to the fact

that the wandering stage lasts approximately 8 hours and therefore

occupies a slightly longer time interval than the other intervals of

the staging scheme. This, however, does not explain the difference

in disc stage at wandering across experimental treatments; discs

from phm.InR larvae were mostly at disc stage H at wandering,

whereas the wild-type discs at 25uC were mostly at disc stage J.

Thus, we conclude that wing patterning is not coordinated with

whole-body development at wandering. This was surprising, as

wandering is commonly used to stage larvae to ostensibly the same

developmental point (for examples see [34–36]). Overall, our data

supports hypothesis two: patterning aligns with whole-body

development at specific developmental milestones, the moult and

pupariation, and shows greater variation between these milestones.

Variability in pattern between the moult and pupariation

showed common characteristics across treatments and genotypes.

Generally, patterning showed delays relative to whole-body

development early in the third instar. Disc patterning accelerated

relative to whole-body development towards the end of the third

instar to reach the final stage at pupariation (Figure 6 and

Supplementary Figure S4). Our data highlight the possibility that

because perturbations in pattern occur through delays early in the

third instar, there is an intrinsic checkpoint late in the third instar

that regulates pattern in the discs so that they reach a common

patterning stage at pupariation.

The progression of pattern also varied with genetic background.

This variation between control genotypes was most apparent early

in development. In contrast to the environmental/physiological

treatments, patterning was, however, aligned at wandering. This

observation suggests that our staging scheme would vary

somewhat with the genotype chosen as the reference background.

Genetic variation in the mechanisms controlling developmental

robustness has been previously described in the context of

evolutionary studies. For instance, in Caenorhabditis elegans the types

of deviations observed during the highly robust process of vulval

development depend on genetic background [37]. We expect that

genetic variation in the progression of patterning systems is

common, but that it is often undetected due to alignment at

developmental milestones.

Many of the delays in the progression of pattern that we

observed across developmental time were due to delays in two

genes from the same pathway, Ac and Sens [38,39]. This likely

reflects the observation that the progression of patterning in these

two genes was correlated, independent of developmental time.

Consequently, when one gene was delayed, so was the other. In

contrast, delays in Dac expression tended to occur at later stages of

development. Taken together, this raises the question of how

environmental perturbations might affect gene expression within

or between signalling pathways as an interesting avenue for future

study.

Collectively, our data reveal that tissue patterning is coordinated

with some but not all whole-body developmental events. This

raises two questions: first, across all of development which whole-

body developmental events are developmental milestones for

tissues? Second, do all tissues align their development to the same

milestones?

Because many developmental events are regulated by ecdysone,

whether or not a tissue aligns its pattern to a particular

developmental event may be due to its sensitivity to ecdysone at

that time. The response of a tissue to a given ecdysone pulse is

likely to be tied to its function. If we had examined the

development of tissues that have functions in the larvae, we might

have found tighter coordination with wandering. For example, the

pulse of ecdysone that initiates larval wandering also coordinates

the onset of autophagy in the fat body [40]. Autophagy in this

tissue is thought to sustain the growth and development of other

tissues during non-feeding stages [41]. In the salivary glands, a

pulse of ecdysone in the mid-third instar stimulates glue

production, while the pulse at larval wandering induces movement

of the glue from the cells into the lumen of the gland [42]. This

glue is then expelled in response to the ecdysone pulse at

pupariation to cement the animal to the substrate. Consequently,

development of the fat body and salivary glands may be tightly

coordinated with larval wandering. In contrast, tissues like the

imaginal discs, whose differentiation into their adult form only

starts after pupariation, may not need to respond to these earlier

ecdysone pulses.

Despite the striking effects that environmental and physiological

changes induce in developmental timing, the resulting adults bear

correctly patterned structures. We originally presumed that this

was because developmental time and patterning of the tissues was

tightly coordinated. Using our staging scheme, however, we have

shown that patterning and whole-body development are coordi-

nated only at moulting and pupariation, suggesting these events

Figure 7. Progression of Senseless (Sens) stage as a function of Achaete (Ac) stage independent of developmental time. For each
individual disc sampled, we represented the combination of Ac and Sens stages observed. Inside dashed boxes, all discs were assigned the same
discrete Sens and Ac stage. In all panels (a-f), we show the wild type SAM larvae at 25uC in black. (a) discs from wild type SAM larvae reared at 18uC
are shown in blue and (b) from wild type SAM larvae reared at 29uC are shown in orange. (c) discs from P0206.PTEN larvae are shown in green and
(d) from phm.InR larvae are in purple. (e) disc-specific stages attributed to discs from .PTEN larvae in red and (f) from .InR larvae in pink. Ac stages
with asterisks (on the x-axis) are those that show significant differences between conditions/genotypes (p,0.01, Wilcoxon rank test using Holm’s p-
value adjustment) with reference to the wild type SAM at 25uC.
doi:10.1371/journal.pgen.1004408.g007
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mark milestones during development. A third event, wandering,

does not appear to act as a developmental milestone, at least as far

as wing disc patterning is concerned. We also found that the

progression of pattern in the wing disc is far more plastic than

originally supposed. Further, we found that both the duration of

developmental intervals and rates of patterning can be slowed

down or sped up. Thus underlying the robustness of the adult

phenotype, we have revealed that developmental milestones

coordinate wing disc and whole-body development to cope with

environmental and physiological variation.

Materials and Methods

Fly Stocks and Rearing Conditions
We used an isogenic wild-type strain, Samarkand (SAM), reared

at 25uC to develop the staging scheme, representing the baseline

for all comparisons (referred to as wild type at 25uC). To

manipulate developmental time environmentally, we reared wild-

type SAM flies at 18uC and 29uC (wild type at 18uC and wild type

at 29uC). To alter the timing of ecdysone synthesis and manipulate

developmental time physiologically, we used the progeny from

phm-GAL4 crossed with yw flp; UAS InR29.4 (phm.InR) and from

P0206-GAL4 crossed with yw; UAS PTEN (P0206.PTEN) to up- or

down-regulate insulin signalling in the prothoracic gland, respec-

tively. Even though P0206-GAL4 is a weaker GAL4 driver for the

prothoracic gland and also drives expression in the corpora allata,

we chose to use it to drive UAS PTEN because phm.PTEN larvae

die as first instar larvae [25]. We used the parental lines yw; UAS

PTEN (.PTEN) or yw flp; UAS InR29.4 (.InR) as additional

controls for genetic background effects.

Flies were raised from timed egg collections (2–6 hours) on

standard cornmeal/molasses medium at low density (200 eggs per

60615 mm Petri dish) in a 12 h light-dark cycle with 70%

humidity, and maintained at 25uC unless stated otherwise. Larvae

that were reared at 18uC or 29uC were maintained in incubators

without lights due to equipment constraints.

Animal Staging and Developmental Time
Larvae were staged into 1-hour cohorts at ecdysis to the third

larval instar and wing-imaginal discs were dissected at the

following times (in h AL3E): wild type at 25uC: 0, 5, 10, 15, 20,

25, 30, 35, 40, 46 (wandering) and 49 (pupariation) h AL3E; wild

type at 18uC: 0, 10, 20, 30, 50, 70, 96 (wandering) and 101

(pupariation) h AL3E; wild type at 29uC: 0, 10, 20, 30, 35, 40 h,

48 (wandering) and 52 (pupariation) h AL3E; P0206.PTEN: 0,

10, 20, 30, 40, 60, 73 (wandering) and 80 (pupariation) h AL3E;

phm.InR: at 0, 10, 20 and 30 h AL3E, 32 (wandering) and 36

(pupariation) h AL3E; .PTEN control: 0, 10, 20, 30, 48

(wandering) and 53 (pupariation) h AL3E; .InR control: 0, 10,

20, 30, 48 (wandering) and 51 (pupariation) h AL3E.

We measured the average time to wandering and pupariation

by counting the number of larvae wandering/pupariating within a

cohort every two hours. To measure the average eclosion time, we

allowed flies to oviposit for 2–6 hours in food bottles. Larvae were

maintained at low densities, and we checked for adult eclosion

every 12 h.

Dissections and Immunocytochemistry
To develop our staging scheme, we examined the expression of

eleven patterning gene products in the wing discs of wild-type

larvae at 25uC by immunocytochemistry: Achaete (Ac), Cut (Ct),

Delta (Dl), Hindsight (Hnt), Notch (N), Scabrous (Sca), Senseless

(Sens), Dachshund (Dac), Engrailed (En), Patched (Ptc) and

Wingless (Wg). These patterning gene products represent the

main cascades involved in wing disc patterning: the Notch

signalling pathway (represented by Ac, Ct, Dl, Hnt, N, Sca and

Sens), the Hedgehog signalling pathway (represented by Dac, En

and Ptc) and the Wnt/Wg signalling pathway (represented by Wg).

In the wing discs of larvae with altered developmental time (wild

type at 18uC, wild type at 29uC, P0206.PTEN and phm.InR) as

well as the genetic controls (.PTEN and .InR), we examined the

expression of four gene products: Wg for the 0 h AL3E time point,

and Ac, Sens and Dac for all time points. Although it was

impossible to simultaneously stain for all gene products at all time

points for all genotypes under all conditions, we minimized the

effects of variation between experimental blocks by conducting

experiments between at least two genotypes/conditions in parallel.

Further, for any given time point for each of the genotypes/

conditions, we stained for different patterning gene products on

different days.

For each time point, wing imaginal discs from 10 larvae were

dissected in cold phosphate buffered saline (PBS) and fixed for

30 min in 4% paraformaldehyde in PBS. Number of dissected

discs varies from 5–16 depending on the treatment/genotype

(Supplementary Tables S1 and S2). The tissue was washed in PBT

(PBS +1% Triton X-100) at room temperature, blocked in PBT-

NDS (2% Normal Donkey Serum in PBT) for 30 min and then

incubated in a primary antibody solution (Supplementary Table

S3) overnight at 4uC. After washing with PBT, tissue was

incubated with fluorescently-conjugated secondary antibody over-

night at 4uC. Tissue was rinsed with PBT and wing discs were

mounted on a poly-L-lysine-coated coverslip using Fluoromount-

G (SouthernBiotech). Samples were imaged using a Zeiss LSM

510 confocal microscope and images were processed using ImageJ.

Qualifications and Quantifications Used to Characterize
Gene Product Patterns

The expression patterns of each of the gene products examined

had previously been characterised in the literature: individual cells,

patches of cells, or stripes [34,43–45] (Supplementary Figure S1).

To compose the staging scheme, we initially conducted a

qualitative analysis of the patterns observed for each gene product

at each time point (Figure 2 and Supplementary Figure S2) and

described their progression. We then quantified these expression

patterns in two ways (Supplementary Figs S2, S3). First, we

divided the area of gene product expression by the total area of the

disc, to generate a measure of pattern area. Second, we quantified

the number of specific elements (cells, patches of cells or stripes)

that each expression pattern exhibited. By both quantifying gene

product expression and characterising the addition of new pattern

elements through time, we were able to identify the gene products

that varied the most during the third instar as well as those

patterning elements that changed through a stepwise progression.

We then used the change in patterns of these gene products to

generate a staging scheme.

Statistical Analysis
We used a Naı̈ve Bayes Classifier (NBC) to test the power of our

staging scheme to classify dissected discs from each time point into

their correct stage. We first tabulated the observed gene-specific

stages for all the patterning-gene products in the dissected discs

from each time point. We then permuted the data from each time

point 1000 times to simulate a population of 1000 discs with the

range and frequency of gene-specific stages that was characteristic

of wing discs from that time point. We then trained an NBC using

our staging scheme and applied it to the permuted data set to

determine what proportion of the 1000 simulated discs from each

time point would be classified into the ‘correct’ stage. We repeated
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this analysis to assign stages to discs dissected from larvae reared

under all experimental conditions.

All data analyses and statistics were conducted using R. The

R scripts used to analyse the data, as well as the complete

data, are available for download from Dryad (doi:10.5061/

dryad.fq134).

Supporting Information

Figure S1 Definitions of patterning elements used to charac-

terize stages in the staging scheme. (a) The third instar wing disc

is already subdivided into domains that will form the wing pouch,

wing hinge and notum of the adult fly. It has an anterior (A) and

posterior (P) axis and dorsal (D) and ventral (V) domains. (b) The

element cell was defined by one round dot of expression, which

corresponded to the refinement of expression to a sensory organ

precursor (SOP). For later time points, SOPs divide giving rise to

two sister SOPs, referred as doublets (arrow). (c) Patch of cells refers

to a region of pattern that resembles a cluster of cells, either

clearly delimited or diffuse. (d-g) Stripe corresponds to one or

more line of cells (more or less defined) (d, e), that can be parallel

(double stripe) or perpendicular (forming a cross) to each other,

located in the developing wing pouch along the dorsal-ventral

axis. Stripes also appear as lines restricted to the anterior side of

the wing pouch or along the dorsal-ventral boundary with a

surrounding ring (stripe with ring, f), or along the anterior-

posterior axis (g). The stripes correspond to lines of SOPs along

the wing margin (e), or lines of positional information regarding

wing disc boundaries (d). Different compositions of these elements

describe all observed patterns for each gene product through

development.

(TIF)

Figure S2 Patterning progression of three of the eleven gene

products initially assessed but not included in the staging scheme.

Dynamic expression of Delta (1a-1j), Hindsight (2a-2j) and

Scabrous (3a-3j) at 0 (1a-3a), 5 (1b-3b), 10 (1c-3c), 15 (1d-3d), 20

(1e-3e), 25 (1f-3f), 30 (1g-3g), 35 (1h-3h), and 40 (1i-3i) hours after

third instar ecdysis (h AL3E) and wandering (1j-3j). Arrows show

addition or change of cells or patches of cells, and asterisks

highlight changes in stripes. (1f) Arrows highlight Delta expression

mainly in the hinge and notum. Hindsight undergoes four

transitions adding new elements at 15, 25 and 35 h AL3E. Lastly,

Scabrous undergoes four transitions adding new elements at 10, 15

and 40 h AL3E. (3h) shows Scabrous expression in the centre of

the wing pouch, before it refines to a stripe. (Scale bar 100 mm). (k-

o) Quantitative measures of the relative amount of expression

normalized to disc size of the different elements observed. (k) Delta

expression pattern represented by the progression of the stripe. (l-

m) Hindsight expression pattern decomposed into (l) pattern area

and (m) progression of the stripe. (n-o) Scabrous expression pattern

decomposed into (n) pattern area and (o) progression of the stripe.

Delta undergoes four transitions in its pattern, adding new

elements at 5, 35 and 40 h AL3E.

(TIF)

Figure S3 Quantitative measures of the relative amount of

expression normalized to disc size and of the different elements

observed for six of the eleven gene products. (a-c) Achaete

expression pattern decomposed into (a) pattern area, (b) number of

patches of cells and (c) progression of the stripe. (d-f) Cut pattern

broken down into (d) pattern area (whole disc, only notum and

hinge, and only wing pouch), (e) number of patches of cells and (f)

progression of the stripe. (g) Notch expression pattern represented

by the stripe progression. (h-k) Senseless expression pattern

decomposed into (h) pattern area, (i) number of SOPs, (j)

progression of the stripe and (k) number of doublets. (l-n)

Dachshund expression pattern in terms of (l) pattern area, (m)

number of patches of cells and (n) progression of the stripe. (o)

Wingless pattern area in the whole disc, only notum and hinge,

and only wing pouch.

(TIF)

Figure S4 The progression of pattern, in absolute time, in discs

from larvae with altered developmental time and from two

parental lines. The probability (represented by the size of the

circle) that a disc with a particular set of gene-specific stages

belongs to a given disc stage, varied with absolute developmental

time (hours after third instar ecdysis (h AL3E)). (a-b) Temperature

manipulations include (a) 18uC in blue and (b) 29uC in orange. (c-

d) We manipulated the timing of ecdysone synthesis using (c)

P0206.PTEN larvae (in green) and (d) phm.InR larvae (in purple).

(e-f) Parental lines to test for the contribution of genetic

background include (e) .PTEN in red and (e) .InR in pink.

Developmental events are identified by m (moulting), w (wander-

ing) and wpp (white pre-pupae).

(TIF)

Figure S5 Patterning progression of four gene products in discs

from wild-type larvae reared at 18uC. The expression of Achaete

(1a-1h), Senseless (2a-2h) and Dachshund (3a-3h) at 0 (1a-3a), 10

(1b-3b), 20 (1c-3c), 30 (1d-3d), 50 (1e-3e) and 70 (1f-3f) hours after

third instar ecdysis (h AL3E), wandering (1g-3g) (at the average

time of 96 h AL3E) and white pre-pupae (at the average time of

101 h AL3E, 1h-3h). Wingless expression is represented only for

the moult to the third instar (0h AL3E, 4a). Arrows show addition

or change of cells or patches of cells, and asterisks highlight

changes in stripes. Under each time point is the corresponding

relative developmental time (normalized to pupariation). In green

under each disc is the attributed gene-specific stage. (i-k) For each

time point, the size of each circle represents the proportion of discs

attributed to each gene-specific stage, represented in relative

developmental time: (i) Achaete (Ac) stages, (j) Senseless (Sens)

stages and (k) Dachshund (Dac) stages. The differences in axis

spacing between gene-specific stages scale according to develop-

mental time at 25uC. For example, the transition from Ac stage 1

to 2 takes 5 h while the transition from Ac stage 6 to 7 takes 15 h.

Wild type 18uC staged discs are represented in blue while the 25uC
staged discs from our staging scheme are in black. Developmental

events are identified by m (moulting), w (wandering) and wpp

(white pre-pupae).

(TIF)

Figure S6 Patterning progression of four gene products in discs

from wild-type larvae reared at 29uC. The expression of Achaete

(1a-1h), Senseless (2a-2h) and Dachshund (3a-3h) shown at 0 (1a-

3a), 10 (1b-3b), 20 (1c-3c), 30 (1d-3d), 35 (1e-3e) and 40 (1f-3f)

hours after third instar ecdysis (h AL3E), wandering (1g-3g) (at the

average time of 48 h AL3E) and white pre-pupae (at the average

time of 52 h AL3E, 1h-3h). Wingless expression is represented

only for the moult to the third instar (0h AL3E, 4a). Arrows show

addition or change in the appearance of cells or patches of cells,

and asterisks highlight changes in stripes. Under each time point is

the corresponding relative developmental time (normalized to

pupariation). In green under each disc is the attributed gene-

specific stage. (i-k) For each time point, the size of each circle

represents the proportion of discs attributed to each gene-specific

stage in relative developmental time: (i) Achaete (Ac) stages, (j)

Senseless (Sens) stages and (k) Dachshund (Dac) stages. The

differences in axis spacing between gene-specific stages scale

according to developmental time at 25uC. For example, the
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transition from Ac stage 1 to 2 takes 5 h while the transition from

Ac stage 6 to 7 takes 15 h. Wild type 29uC staged discs are

represented in orange while the 25uC staged discs from our staging

scheme are in black. Developmental events are identified by m

(moulting), w (wandering) and wpp (white pre-pupae).

(TIF)

Figure S7 Comparing expression patterns at moulting, wan-

dering and pupariation in larvae reared at 25uC and 29uC. The

expression patterns of Ac, Sens, Dac and Wg between discs from

wild-type larvae reared at 25uC and reared at 29uC at the three

developmental events of moulting, wandering and pupariation.

Comparison of the expression of Achaete (a, e, i, l, o, r),

Senseless (b, f, j, m, p, s), Dachshund (c, g, k, n, q, t) and

Wingless (d, h) at the moult to the third instar (0h, a-h),

wandering (i-n) and pupariation (o-t) between wild-type larvae

reared at 25uC (a-d, i-k, o-q) and reared at 29uC (e-h, l-n, r-t).

The corresponding disc stages are represented in the column to

the right of the images. Arrows show addition or change of cells

or patches of cells, and asterisks highlight changes in stripes.

Scale bar is 100 mm.

(TIF)

Figure S8 Patterning progression of four gene products in discs

from larvae reared with delayed ecdysone production (P0206.

PTEN). The expression of Achaete (1a-1h), Senseless (2a-2h) and

Dachshund (3a-3h) shown at 0 (1a-3a), 10 (1b-3b), 20 (1c-3c), 30

(1d-3d), 40 (1e-3e) and 60 (1f-3f) hours after third instar ecdysis (h

AL3E), wandering (1g-3g) (at the average time of 73 h AL3E) and

white pre-pupae (at the average time of 80 h AL3E, 1h-3h).

Wingless expression is represented only for the moult to the third

instar (0h AL3E, 4a). Arrows mark the addition or change of cells

or patches of cells, and asterisks highlight changes in stripes.

Under each time point is the corresponding relative develop-

mental time (normalized to pupariation). In green under each

disc is the attributed gene-specific stage. (i-k) For each time point,

the size of each circle represents the proportion of discs attributed

to each gene-specific stage in relative developmental time: (i)

Achaete (Ac) stages, (j) Senseless (Sens) stages and (k) Dachshund

(Dac) stages. The differences in axis spacing between gene-

specific stages scale according to developmental time at 25uC. For

example, the transition from Ac stage 1 to 2 takes 5 h while the

transition from Ac stage 6 to 7 takes 15 h. P0206.PTEN staged

discs are represented in green while the 25uC staged discs from

our staging scheme are in black. Developmental events are

identified by m (moulting), w (wandering) and wpp (white pre-

pupae).

(TIF)

Figure S9 Patterning progression of four gene products in discs

from larvae with accelerated ecdysone production (phm.InR). The

expression of Achaete (1a-1f), Senseless (2a-2f) and Dachshund

(3a-3f) shown at 0 (1a-3a), 10 (1b-3b), 20 (1c-3c) and 30 (1d-3d)

hours after third instar ecdysis (h AL3E), wandering (1e-3e,

samples from 30.5 h AL3E) and white pre-pupae (1f-3f). Wingless

expression is represented only for the moult to the third instar (0h

AL3E, 4a). Arrows mark the addition or change of cells or patches

of cells, and asterisks highlight changes in stripes. Under each time

point is the corresponding relative developmental time (normal-

ized to pupariation). In green under each disc is the attributed

gene-specific stage. (g-i) For each time point, the size of each circle

represents the proportion of discs attributed to each gene-specific

stage in relative developmental time: (g) Achaete (Ac) stages, (h)

Senseless (Sens) stages and (i) Dachshund (Dac) stages. The

differences in axis spacing between gene-specific stages scale

according to developmental time at 25uC. For example, the

transition from Ac stage 1 to 2 takes 5 h while the transition from

Ac stage 6 to 7 takes 15 h. phm.InR staged discs are represented in

purple while the 25uC staged discs from our staging scheme are in

black. Developmental events are identified by m (moulting), w

(wandering) and wpp (white pre-pupae).

(TIF)

Figure S10 Patterning progression of four gene products in discs

from the parental line .PTEN. The expression of Achaete (1a-1f),

Senseless (2a-2f) and Dachshund (3a-3f) shown at 0 (1a-3a), 10 (1b-

3b), 20 (1c-3c) and 30 (1d-3d) hours after third instar ecdysis (h

AL3E), wandering (at the average time of 48 h AL3E, 1e-3e) and

white pre-pupae (at the average time of 53 h AL3E, 1f-3f).

Wingless expression is represented only for the moult to the third

instar (0h AL3E, 4a). Arrows mark the addition or change of cells

or patches of cells, and asterisks highlight changes in stripes.

Under each time point is the corresponding relative develop-

mental time (normalized to pupariation). In green under each

disc is the attributed gene-specific stage. (g-i) For each time point,

the size of each circle represents the proportion of discs attributed

to each gene-specific stage in relative developmental time: (g)

Achaete (Ac) stages, (h) Senseless (Sens) stages and (i) Dachshund

(Dac) stages. The differences in axis spacing between gene-

specific stages scale according to developmental time at 25uC. For

example, the transition from Ac stage 1 to 2 takes 5 h while the

transition from Ac stage 6 to 7 takes 15 h. .PTEN staged discs

are represented in red while the wild type 25uC staged discs from

our staging scheme are in black. Developmental events are

identified by m (moulting), w (wandering) and wpp (white pre-

pupae).

(TIF)

Figure S11 Patterning progression of four gene products in

discs from the parental line .InR. The expression of Achaete (1a-

1f), Senseless (2a-2f) and Dachshund (3a-3f) shown at 0 (1a-3a),

10 (1b-3b), 20 (1c-3c) and 30 (1d-3d) hours after third instar

ecdysis (h AL3E), wandering (at the average time of 48 h AL3E,

1e-3e) and white pre-pupae (at the average time of 51 h AL3E,

1f-3f). Wingless expression is represented only for the moult to the

third instar (0h AL3E, 4a). Arrows mark the addition or change

of cells or patches of cells, and asterisks highlight changes in

stripes. Under each time point is the corresponding relative

developmental time (normalized to pupariation). In green under

each disc is the attributed gene-specific stage. (g-i) For each time

point, the size of each circle represents the proportion of discs

attributed to each gene-specific stage in relative developmental

time: (g) Achaete (Ac) stages, (h) Senseless (Sens) stages and (i)

Dachshund (Dac) stages. The differences in axis spacing between

gene-specific stages scale according to developmental time at

25uC. For example, the transition from Ac stage 1 to 2 takes 5 h

while the transition from Ac stage 6 to 7 takes 15 h. .InR staged

discs are represented in pink while the wild type 25uC staged discs

from our staging scheme are in black. Developmental events are

identified by m (moulting), w (wandering) and wpp (white pre-

pupae).

(TIF)

Figure S12 The progression of pattern, in relative and absolute

time, in discs from larvae with altered timing of ecdysis synthesis

and respective parental lines. Probability (represented by the size

of the circle) that a disc with a particular set of gene-specific stages

belongs to a given disc stage varied by relative (normalized to

pupariation)(a, b) or absolute developmental time (hours after third

instar ecdysis (h AL3E))(c, d). Manipulations of the timing of

ecdysis synthesis: (a, c) disc stages attributed to discs from P0206.

PTEN larvae are shown in green and disc stages attributed to discs
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from .PTEN larvae are in red; (b, d) disc stages attributed to discs

from phm.InR larvae are shown in purple and disc stages

attributed to discs from .InR larvae are in pink. Developmental

events are identified by m (moulting), w (wandering) and wpp

(white pre-pupae).

(TIF)

Table S1 Number of discs dissected for the wild type at 25uC for

each gene product at all time points, used to devise the staging

scheme. The asterisk represents discs that were simultaneously

scored for both Achaete (Ac) and Senseless (Sens).

(TIF)

Table S2 Number of discs dissected for all treatments/genotypes

(except for wild type at 25uC) and for each gene product at all time

points. The asterisk represents discs that were simultaneously

scored for both Achaete (Ac) and Senseless (Sens).

(TIF)

Table S3 List of antibodies used in the immunocytochemistry

protocol. Mouse anti-Achaete was used in combination with

guinea pig anti-Senseless [38].

(TIF)
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