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BACKGROUND: Understanding the physiology of pregnancy enables effective management of pregnancy complications that could otherwise
be life threatening for both mother and fetus. A functional uterus (i) retains the fetus in utero during pregnancy without initiating stretch-induced
contractions and (ii) is able to dilate the cervix and contract the myometrium at term to deliver the fetus. The onset of labour is associated with
successful cervical remodelling and contraction of myometrium, arising from concomitant activation of uterine immune and endocrine systems. A
large body of evidence suggests that actions of local steroid hormones may drive changes occurring in the uterine microenvironment at term.
Although there have been a number of studies considering the potential role(s) played by progesterone and estrogen at the time of parturition,
the bio-availability and effects of androgens during pregnancy have received less scrutiny. The aim of this review is to highlight potential roles of
androgens in the biology of pregnancy and parturition.

METHODS: A review of published literature was performed to address (i) androgen concentrations, including biosynthesis and clearance, in
maternal and fetal compartments throughout gestation, (ii) associations of androgen concentrations with adverse pregnancy outcomes, (iii)
the role of androgens in the physiology of cervical remodelling and finally (iv) the role of androgens in the physiology of myometrial function
including any impact on contractility.

RESULTS: Some, but not all, androgens increase throughout gestation in maternal circulation. The effects of this increase are not fully under-
stood; however, evidence suggests thatincreased androgens might regulate key processes during pregnancy and parturition. For example, andro-
gens are believed to be critical for cervical remodelling at term, in particular cervical ripening, via regulation of cervical collagen fibril organization.
Additionally, a number of studies highlight potential roles for androgens in myometrial relaxation via non-genomic, AR-independent pathways
critical for the pregnancy reaching term. Understanding of the molecular events leading to myometrial relaxation is an important step towards
development of novel targeted tocolytic drugs.

CONCLUSIONS: The increase in androgen levels throughout gestation is likely to be important for establishment and maintenance of preg-
nancy and initiation of parturition. Further investigation of the underlying mechanisms of androgen action on cervical remodelling and myometrial
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contractility is needed. The insights gained may facilitate the development of new therapeutic approaches to manage pregnancy complications

such as preterm birth.
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Introduction

Preterm birth (PTB), the outcome of preterm labour (PTL), is a major
cause of maternal and perinatal morbidity and mortality, occurring in
~ 1% of recorded live births worldwide ranging from 5% in developed
countries to 18% in developing countries (Blencowe et al., 2012). The
exact cause of PTL is unknown, although the concomitant activation of
endocrine and immune pathways are believe to drive events, resulting
in spontaneous initiation of uterine contractions and cervical ripening
(CR) (Norman et al., 2007; Romero et al., 2007; Smith et al., 2012).
There is no fully effective agent for prevention of PTL. Progesterone
(P4) to maintain uterine quiescence, and cervical cerclage to prevent
premature CR have some efficacy in terms of reducing PTB, but there
is little evidence of long-term beneficial effects for the baby (Alfirevic
etal., 2012; Likis et al., 2012). Similarly, short term, but not long-term,
benefits were demonstrated in a recent network analysis of tocolytics
(Haas et al., 2012). Thus, new strategies are needed.

Sex hormone steroids, including androgens, increase with normal
pregnancy. The role of androgens in female physiology has been an
active area of investigation for several decades. The major androgens
synthesized in women are dehydroepiandrosterone (DHEA), dehydroe-
piandrosterone sulphate (DHEAS), androstenedione (A4), testosterone
(T) and dihydrotestosterone (DHT) (Burger, 2002; Labrie et al., 201 I;

Rothman et al., 201 1) (Fig. ). Although their impact on women’s
health has been investigated, particularly in the context of polycystic
ovarian disease, the role they play during pregnancy remains less well
described. A number of studies have explored androgenic actions in
systems critical for pregnancy reaching term, and further understanding
of their roles will facilitate management of potentially life-threatening
complications for the mother and the fetus.

Such key systems are cervical remodelling and myometrial contractil-
ity. In this review we discuss (i) the biosynthesis, clearance and availability
of androgens during pregnancy, (ii) the associations of androgens with
adverse pregnancy outcomes, (iii) the role of androgens in physiology
of cervical remodelling and (iv) the roles of androgens in the physiology
of the myometrial function with a focus on the crosstalk between andro-
gens and myometrial contractile machinery.

Methods

Search strategy

We searched Pubmed using the keywords ‘androgens’ and ‘pregnancy’ to
conduct to our knowledge the first narrative review decribing what is
known about androgens during pregnancy. The initial Pubmed search identi-
fied 5976 manuscripts. Although the focus of this report was manuscripts
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published between 1980 and 2013, seminal references from 1930 to 1980
were included. Fora study to be included in this review, it had to focus on po-
tential roles for androgens in adverse pregnancy outcomes and processes
involved in parturition, such as cervical remodelling and myometrial contract-
ility. In addition, studies on androgen metabolism and papers documenting
levels of androgens during pregnancy were included. Reports on the role
of androgens on fetal gonadal development, fetal lung development and
fetal immune system were not included. Following these inclusion and exclu-
sion criteria, ~500 studies were judged as relevant and used to form the basis
of this review.

Results

Androgen biology during pregnancy

Herein we introduce androgens in female physiology focusing on andro-
gen biosynthesis and androgen metabolic clearance at the time of preg-
nancy. Concentrations of androgens in the feto-maternal unit
throughout gestation are reviewed. Afterwards, we highlight studies cor-
relatingandrogen levels in the feto-maternal unit with adverse pregnancy
outcomes.

Androgens in female physiology

Androgens are critically important for the development of the male re-
productive tract during fetal life and the maintenance of male secondary
sexual characteristics in adulthood (Scott et al., 2007; Welsh et al., 2008;
Macleod et al., 2010). Androgens can also act as pro-hormones for bio-
synthesis of estrogens in both sexes (Rivas etal., 2002; Traishetal., 201 |;
Purohit and Foster, 2012). In women, androgens are synthesized by cells
within the ovaries, the adrenal glands, and also in fat, acting in an endo-
crine, paracrine or intracrine manner. In addition to playing key roles in
the regulation of reproductive tissues such as the ovary and endomet-
rium, androgens have a functional impact on the liver, kidney, bone
and muscle (Brenner et al., 2003; Walters et al., 2008; Sen and
Hammes, 2010). An excess production of androgens in women, for
example in association with conditions such as polycystic ovarian syn-
drome (PCQOS), can result in acne, hirsutism and infertility as well as to
an increase in the risk of other complications, such as high blood pres-
sure, cardiovascular disease and type 2 diabetes mellitus (Rosmond,
2006; Dewailly, 2010; Escobar-Morreale et al., 2012). Since the 1960s,
it has been generally hypothesized that, during pregnancy, androgens
act as substrates for estrogen formation in the placenta (Pion et dl.,
[965; Siiteri and MacDonald, 1966; Edman et al., 1981; Smith, 2007).
According to this hypothesis, DHEAS, produced by the fetal adrenals,
and to a smaller extent from the maternal adrenals, enters the placenta,
where it is metabolized to A4 and T, which is then converted into E|
(estrone) (Strauss etal., 1996). El isin turn converted into E2 (estradiol),
which enters the fetal circulation where itis taken up by the liver and con-
verted into E3 (estriol) (Hirano, 1961; Schwarzel et al., 1973). E3 can
then pass to maternal circulation and be cleared in maternal urine
(Willows, 1966). Androgen biosynthesis during pregnancy is extensively
discussed later in this review and shown in Fig. |.

Androgen-dependent signalling

Theimportance of the androgen receptor (AR) in mediating the effects of
androgens is well documented. For example, mutations or deletions in
the AR gene located on the X chromosome are associated in both man
and mouse with failure to masculinize. This results in ‘testicular

feminization’, a condition where a male with a 46 XY karyotype is pheno-
typically female (Lubahn et al., 1988; Charest et al., 1991; Hughes et al.,
2012). The AR is a member of a superfamily of ligand-activated transcrip-
tion factors; only T and DHT bind AR with high specificity and affinity
(Pereira de Jesus-Tran et al., 2006). Ligand binding within the cytoplasm,
where the classic AR resides, results in a conformational change in recep-
tor protein, dimerization, nuclear translocation, association with
co-factors and ultimately interaction with specific regions of the
genome known as androgen response elements (Denayer et al., 2010).
The net result of these changes is an up- or down-regulation in gene ex-
pression. Such a response is termed ‘genomic’ as it involves gene tran-
scription. In addition to their genomic effects, androgens are also able
to exert their effects in a ‘non-genomic’ manner, independent of gene
transcription or protein synthesis (Lang et al., 2013). Non-genomic
effects of androgens involve interaction with the cell membrane via a
number of signalling molecules, includingmembrane receptors, ion chan-
nels or enzyme-linked receptors and cytoplasmic regulatory proteins
(Foradori et al., 2008). These non-genomic effects are rapid and can
be observed within seconds, in contrast to genomic effects, which may
take hours or even days.

Androgen biosynthesis

The biosynthetic conversion of cholesterol (Ch) to androgens involves
several steps and enzymes. A fundamental step in this process is the syn-
thesis of pregnenolone. Only certain cell types in humans are capable of
pregnenolone manufacture, including testicular Leydig cells, ovarian
theca and corpus luteum cells, placental trophoblast cells, adrenal
cortex cells and some specific cells in the brain (reviewed in Ghayee
and Auchus, 2007). Pregnenolone is metabolized to DHEA, which is
further metabolized to A4, the precursor of T. T can be reduced to a
number of androgens, such as 5a-DHT (DHT), 5B-DHT, 5p3-
androstandiol, 3a-Adiol, 33-Adiol or further metabolized to estrogens.
The reduction of T to DHT and the conversion of T to estrogens is cat-
alysed by the metabolising enzymes 5a-reductase and aromatase
(CYP19), respectively (Fig. I). Androgen biosynthesis has been exten-
sively reviewed by Penning (2010).

In the non-pregnant premenopausal woman, ~50% of all DHEA is
secreted by the adrenal glands, 20% from the ovaries and 30% from
the peripheral tissues (Abraham, 1974). In contrast, the adrenals and
ovaries produce equal amounts of A4 (Longcope, 1986). Regarding T,
~50% is equally synthesized in the ovaries and adrenals and the other
half is produced from A4 in the peripheral tissues (Piltonen et al.,
2002). Finally, DHT is not secreted by the endocrine glands, and this an-
drogen is synthesized from T in the peripheral androgen target tissues
(Ito and Horton, 1971; Marchetti and Barth, 2013). During pregnancy,
an additional source of androgens is the fetus and the placenta. In particu-
lar, the developing fetus is the source of placental | 6a-hydroxy-DHEA, a
product of |6a-hydroxylation of DHEAS in the fetal liver (Cantineau
et al, 1985). In a similar way to its non-16a-hydroxylated form,
| 6a-hydroxy-DHEA can be metabolized to |6éa-hydroxy-A4. The
latter is the predominant source of E3 (Milewich et al., 1986) (Fig. I).

Once synthesized, androgens enter the maternal circulation, where
their levels can be detected. Usually T levels are reported as either
total (tT) or ‘free’ (fT) with an important distinction between them;
the latter are unbound to plasma proteins, such as sex-hormone-binding
globulin (SHBG), and therefore able to pass freely across plasma mem-
branes to interact with AR, whereas bound T is unable to penetrate
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the cell membrane (Mendel, 1989). The percentage binding of SHBG is
greater for DHT (59%) than for T (44%) and E2 (20%) and is very low for
A4, DHEA, EI and E3 (Avvakumov et al., 2010). The affinity of each
androgen for SHBG is dependent on their structural characteristics.
For example, a 173-OH group and a 5a-hydrogen moeity increase the
affinity for SHBG binding, whereas androgens with either a double
bond in ring A or an aromatic ring A are less SHBG potent (Siiteri and
Simberg, 1986). Therefore, DHT, which has both the |73-OH group
and a 5a-hydrogen atom, has 2-fold greater affinity for SHBG than T,
which has a double bond in ring A (Siiteri and Simberg, 1986).

Concentrations of androgens during pregnancy
A number of studies have reported elevated levels of some, but not all,
circulating androgens during normal pregnancy (Mizuno et al., 1968;
Rivarola et al.,, 1968; Saez et al., 1972; Dawood and Saxena, 977,
Buster et al., 1979; Bammann et al., 1980).

A notable increase in tT is observed from the first trimester of preg-
nancy and further elevations are reported towards term (Saez et al.,
[972; Bammann et al., 1980; Berger et al., 1984). However, circulating

Table | Levels of androgens in maternal serum.

fT levels only increase significantly at the third trimester of pregnancy
(Dawood and Saxena, 1977). In addition, serum A4 is significantly ele-
vated between 37 —42 weeks of pregnancy compared with non-pregnant
levels, but the relative increase of T during pregnancy is greater than the
increase in A4 (Mizuno et al., 1968). In contrast, maternal circulating
DHEAS levels fall across gestation to ~50% of the non-pregnant levels
(Milewich et al., 1978). Finally, SHBG levels increase during the first tri-
mester of pregnancy and continue to increase dramatically throughout
mid and late gestation (Wilke and Utley, 1987). Table | summarizes
the maternal serum levels of different androgens during pregnancy and
Fig. 2 is a graphical representation of this information.

In the fetus, levels of some androgens are dependent on fetal sex and
gestation. Infetal blood, T levels are higherin males (Rodecketal., 985).
This contrasts with DHT levels, which are similar in both sexes (Diez
d’Aux and Pearson Murphy, 1974; Rodeck et al., 1985). In male
fetuses, serum concentrations of T increase until the end of first trimes-
ter, reachinga peak of 150 ng/ dL atthe end of week |2 of gestation, after
which they decline by 70% to a nadir at 23 weeks (Rodecket al., 1985). In
female fetuses, T levels remain generally lower throughout first and

Androgen Non-pregnant  First trimester  Second trimester  Third trimester ~ References
fT (pmol/1) 6.2 .1 7.5 13.3 Wilke and Utley (1987)
tT (mmol/I) 0.21-2.98 0.90-7.32 1.20-8.40 2.20-10.70 O’Learyetal. (1991)
A4 (ng/ml) .0-2.0 2.5-35 0.6-7.8 1.6—14.0 Castracane et al. (1998), Carlsen et al. (2006)
DHT (ng/ml) 0.022-0.107 0.113 0.18 0.1-0.3 Buster et al. (1979), Dawood and Saxena (1977)
SHBG (nmol/1) 422 68.1 279.3 246.1 Wilke and Utley (1987)
DHEA (nmol/I) 1.0-40.0 10.0-60.0 5.0-50.0 5.0-50.1 Tagawa et al. (2004)
DHEAS (nmol/l)  2000—4000 2000-4000 500-2000 500-200 Tagawa et al. (2004)

The table shows the mean concentrations of androgens as given in references quoted. tT, total testosterone; fT, free testosterone; SHBG, sex hormone binding globulin; DHEA,
dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulphate; A4, androstenedione; DHT, dihydrotestosterone.
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Figure 2 Graphical presentation of the highest (A) and lowest (B) levels of androgens in maternal serum throughout gestation. tT, total testosterone; T,
free testosterone; SHBG, sex hormone-binding globulin; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulphate; A4, androstene-

dione; DHT, dihydrotestosterone.
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second trimester (50 ng/dL) and decline rapidly at term (Diez d’Aux and
Pearson Murphy, 1974). In addition to T, DHEA levels are higherin cord
blood of male fetuses compared with females, whereas A4 levels are
similar (Keelan et al., 2012). Labour is associated with increased levels
of cord blood A4, DHEA and SHGB and decreased levels of tT and fT
(Keelan et al., 2012). In amniotic fluid, T and A4 are higher in male-
bearing pregnancies (Carson et al., 1982). On the other hand, there is
no notable difference in amniotic fluid DHEA levels between male and
female fetuses (Robinson et al., 1977). Although T levels are higher in
the fetal compartment of male fetuses, there is no association
between fetal sex and maternal serum concentrations of any androgen
(Rivarola et al., 1968). The association between fetal sex and androgen
levels, T or A4, in the fetal compartment, including serum and amniotic
fluid, is consistent with androgen biosynthesis within Leydig cells of the
fetal testis (Scott et al., 2009). Therefore, increased T and A4 levels in
the amniotic fluid of male fetuses may reflect androgens excreted in
fetal urine (Mitchell and Shackleton, 1969). The tissue origin and cause
of the increase in androgens in maternal circulation during pregnancy
remains uncertain but is likely to involve production from the ovary or
placenta as discussed below.

Tissue origin of androgen synthesis during pregnancy

Within the ovary, androgens are synthesized in small luteal cells (SLC) of
the corpus luteum (former theca cells of ovarian follicle) (Sanders et al.,
[996). Once pregnancy occurs, it is plausible that SLC stimulation by
human chorionic gonadotrophin (hCG), which is elevated in first trimes-
ter, results in the reported increase in T levels at this time (Braunstein
et al., 1976; Liu and Hsueh, 1986). However, hCG levels reach a peak
at the end of first trimester and then decline, in contrast to T, which
increases steadily, suggesting either an alternative regulation of androgen
production by the corpus luteum or an alternative source of androgen
increase following the end of the first trimester (Braunstein et al.,
[976). Studies on women with premature ovarian failure (POF) who
become pregnant following in vitro fertilization (IVF) with donor oocyte
transfers suggest that the ovary is the major contributor to circulating
concentrations of T and A4 during pregnancy (Castracane and Asch,
[995). Such women were shown to have significantly lower levels of T
and A4 when compared with pregnant women without POF. Perhaps
not surprisingly, such studies are yet to be replicated by other research
groups.

In addition to the maternal ovary, the maternal adrenal is an important
source of androgen production throughout pregnancy. Indeed maternal
and fetal virilization due to androgen excess have been reported in cases
ofadrenaladenomas (Fulleretal., 1983). Studies in baboons showed that
the maternal adrenal production of DHEA and DHEAS is suppressed
during pregnancy by E2; this is in line with a reported decrease in
DHEAS in maternal circulation throughout pregnancy (Albrecht and
Pepe, 1995; Umezaki et al., 2001; Tagawa et al., 2004). These studies
demonstrated that removal of the fetus but not the placenta (fetectomy),
in order to eliminate a fetal source of DHEA/DHEAS, induced a decline
in E2 and an increase in DHEA/DHEAS levels in the maternal circulation
(Albrecht et al., 1980; Albrecht and Pepe, 1995). The decrease in E2 is
probably due to withdrawal of fetal precursors for E2 formation. Interest-
ingly, the authors showed that exogenous E2 could inhibit the
fetectomy-induced increase in DHEA/DHEAS. The observation that
metabolic clearance rate of DHEA/DHEAS remained unchanged
before and after E2 administration, led authors to conclude that the

estrogen-induced decline in maternal DHEA/DHEAS levels reflected a
decrease in maternal adrenal production of these androgens.

Despite the prevailing belief from studies from 1960s that the placenta
does not hold the metabolic capacity to synthesize androgens de novo,
but relies solely on fetal androgens, a recent study has demonstrated that
placental syncytiotrophoblast (but not cytotrophoblast) can synthesize
androgens (Pion et al., 1965; Siiteri and MacDonald, 1966; Escobar
et al., 201 1). Specifically, syncytiotrophoblast expresses both mRNA
and protein of the metabolising enzyme CYP17, which converts C21
steroids (such as P4) to CI9 steroids (such as T). The syncytiotropho-
blast has been confirmed to have CYP|7 activity in vitro (Escobar et al.,
2011).

The non-pregnant human myometrium has been shown to possess
the metabolic capacity to convert A4 to T and DHT in vitro, but
whether this system is functional in pregnancy is unknown (Jasonni
et al., 1982). Consistent with this, a more recent study has reported
that myometrium, derived from non-pregnant and early pregnant pig
uteri, can synthesize A4 and T in vitro (Franczak, 2008). Whether the
cervix during pregnancy has the metabolic capacity to synthesize andro-
gens is unknown.

Figure 3 summarizes possible sites for androgen production in the
materno-placental unit.

Androgen clearance during pregnancy

The concentrations of androgens measurable in blood (Pc) are also influ-
enced by their metabolic clearance rate (MCR), the volume of blood
cleared of a steroid per unit time (Baird et al., 1969). The blood produc-
tion rate of an androgen (Pb) is the amount of androgen entering circu-
lation from all possible sources (endocrine glands and periphery). This
can be calculated according to the formula Pb = MCR x Pc and it repre-
sents an approximation of daily production rate of the steroid (Gurpide,
1990). The MCR of androgens, which represents the summation of indi-
vidual organ clearance rates, is highly influenced by the amounts of circu-
lating SHBG, which reduces the peripheral breakdown of androgens
(Vermeulen and Ando, 1979).

Soon afterimplantation, the production of maternal P4, E2 and andro-
gens by the corpus luteum increases significantly (Elbaum and Keyes,
1976; Stouffer et al., 1977; Richardson and Masson, [981; Laherty
et al.,, 1985; Webley and Hearn, 1987; Fisch et al., 1989; Brannian and
Stouffer, 1991; Stocco et al., 2007). Corpus luteum-derived E2 stimu-
lates liver SHBG synthesis leading to an increase in SHBG levels (Wilke
and Utley, 1987; Joseph, 1994). The increase in SHBG should decrease
the availability of fT and therefore lower the clearance of T and DHT.
Indeed, it has been reported that the MCR of T and DHT is lower
during the first three months of pregnancy compared with the non-
pregnant state; however, DHT and T blood production rates are un-
changed (Saez et al.,, 1972). These finding are in agreement with a
study in guinea-pigs, where pregnancy induced a 2-fold decrease in
MCR of T (Despres et al., 1982).

In contrast to T and DHT, the MCR of DHEA and DHEAS increases
2- and 5-fold, respectively, starting at mid-pregnancy (Gant et dl.,
[971; Belisle et al., 1977; Belisle et al., 1980b). This phenomenon may
reflect the metabolism of these steroids in the feto-placental unit, as
both steroids are important as estrogen precursors (Goodyerand Bran-
chaud, 1981; Longcope, 1996). In addition to the increase in the MCR of
DHEAS, its production rate by maternal adrenals increases in pregnancy
(Milewich et al., 1978). The net result is lower DHEAS levels in the
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maternal serum at the end of first trimester in comparison with the non-
pregnant state (Tagawa et al., 2004). For A4, although pregnancy does
not induce changes in the MCR, the production rate is increased
2-fold, explaining the observed increase in A4 in the blood (Belisle
etal., 1980a, b; Castracane et al., 1998).

In conclusion from the above studies, it is understood that changes in
the production of androgens (predominantly in the ovary and to a lesser
extent in the adrenals and periphery) and the MCR occurring during
pregnancy may all have an impact on androgen concentrations in the cir-
culation. Of note, changes in concentrations of circulatingandrogens may
not reflect the bioavailability of these steroids in target tissues and there-
fore their potential to play a role in the physiology of tissues such as the
myometrium, cervix and placenta. The role of the increase in androgen
levels during pregnancy has been understudied, although a number of
adverse pregnancy outcomes have been correlated withimpaired mater-
nal androgen levels. These studies are discussed below.

Androgens and adverse pregnancy outcomes

Considering the adverse effects of increased circulating androgens in
non-pregnant women, such as in PCOS, one would assume that the
physiological pregnancy-induced increase in androgen levels could po-
tentially have similar detrimental effects. However, it is generally
accepted that pregnancy-specific mechanisms are activated to protect
both the mother and fetus from pregnancy-induced androgen excess
(Hensleighetal., [975). Inthe absence of these ‘protective’ mechanisms,
high levels of androgens would cause hirsutism and/or virilization of both
mother and female fetus.

Maternal ‘protective’ mechanisms include (i) the physiological in-
crease of maternal circulating SHBG, which binds and inactivates ele-
vated androgens (Hammond, 201 1) (ii) the pregnancy-induced rapid
elevation of P4, which competes for AR binding (Slayden et al., 2001;
Birrell etal., 2007) and (iii) P4 having an affinity for Sa-reductase resulting
inan inhibition of the conversion of T to the more potent DHT (Hodgins,
1982; Cabeza et al., 1999). Due to these mechanisms, pregnancy itself
may reduce the clinical manifestation of pre-existing or pathological
pregnancy-induced hyperandrogenic conditions (Phelan and Conway,
201 I; Crisosto etal., 2012). The most common hyperandrogenic condi-
tions are known as ‘non-tumour ovarian hyperandrogenism’ and include
PCOS, hyperreactio luteinalis (HL) and pregnancy luteoma (Kanova and
Bicikova, 201 I'). Numerous cases of HL, occurring predominantly during
the second or third trimester and caused by high 3-human chorionic go-
nadotrophin (B-hCG) levels, have been reported (Haimov-Kochman
et al., 2004; Van Holsbeke et al., 2009; Amoah et al., 201 ). These
studies highlight that, in spite of the protective mechanisms, a small frac-
tion of women with HL exhibit virilization and/or hirsutism, although
their female fetuses are hardly ever virilized (Hensleigh et al., 1975;
Foulk et al., 1997; Holt et al., 2005; Angioni et al., 2007; Van Holsbeke
et al., 2009; Veleminsky, 2010; Abe et al., 201 |; Amoah et al., 201 I;
Annamalai et al., 2011). Although most maternal hyperandrogenic
symptoms of HL resolve post-partum, HL is highly associated with
adverse pregnancy outcomes such as pre-eclampsia (PE) and PTB
(Gatongi et al., 2006; Grgic et al., 2008; Masuyama et al., 2009; Atis
et al., 2010; Hag, 2010; Simsek et al., 2012; Lynn et al., 2013). Other
hyperandrogenic disorders, which are generally very rare, include
fetal-induced hyperandrogenism, due to fetal aromatase deficiency
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(FAD), iatrogenic hyperandrogenism, caused by exogenous androgen
administration and adrenal tumour hyperandrogenism (Dahl et dl.,
2008).

Fetal ‘protective’ mechanisms largely include the metabolism of
androgens in the placenta (Siiteri and MacDonald, 1966; Simpson
et al., 1994). Specifically, the aromatase complex within the placenta
plays acritical role in the protection of fetus from the mother’s androgens
as this enzyme rapidly converts T or A4 to El and E2, respectively
(Edman et al., 1981; Bardin et al., 1983; Hall et al., 1987; Pasanen and
Pelkonen, 1994; Simpson et al., 1994). The efficacy of this placental
barrier to androgens is evidenced by studies showing that women with
hyperandrogenic disorders during pregnancy, such as PCOS, do not ne-
cessarily deliver virilized female fetuses (Sir-Petermann et al.,, 2002;
Escobar-Morreale, 2010). On the other hand, women with rare FAD
can deliver virilized fetuses, again demonstrating the crucial importance
of placental aromatase (Shozu et al., 1991; Ludwig et al., 1998). Taken
together, these studies show that pregnancy is associated with protective
mechanisms, which ameliorate both maternal and fetal effects of the an-
drogen increase associated with normal pregnancy physiology.

Besides the physiological androgen increase, numerous studies have
explored the association of impaired androgen increases during preg-
nancy, and factors such as maternal age and sex of the baby, with preg-
nancy outcome. Women with PCOS, who have higher androgen levels
than healthy pregnant women, are reported to have an ~6% higher
risk of delivering preterm than women without PCOS (Sir-Petermann
et al., 2005; Yamamoto et al., 2012). However, androgen excess might
not be the only reason for early birth in these women, as PCOS is also
associated with an increase in many inflammatory mediators, which
may contribute to PTL (Diamanti-Kandarakis et al., 2006). A study inves-
tigating the association of birth size of the offspring with maternal andro-
gens has shown that elevated T is positively associated with in utero
growth restriction (Carlsen et al., 2006). In addition, women pregnant
with male fetuses are at greater risk of delivering preterm (McGregor
et al., 1992; Zeitlin et al., 2002), a phenomenon sometimes attributed
to the fact that pregnancies with male fetuses have higher levels of andro-
gens in the fetal compartment compared with female fetuses. However,
thereis no evidence that the relationship between higher androgen levels
in the fetal compartment and PTB is causal. In contrast to the positive as-
sociation between androgen levels (at least in the fetal compartment)
and the presence of a male fetus and PTB, increasing maternal age
(which is negatively associated with maternal androgen levels in preg-
nancy) is known to be a risk factor for preterm deliveries (Astolfi and
Zonta, 1999; Carlsen et al., 2003). Recently, a specific change in the se-
quence of the fetal AR gene has been associated with predisposition to
PTB (Karjalainen et al., 2012). In particular, a linkage analysis study
revealed that the exon-| of AR of the offspring who was born preterm
had more repetitions of a sequence encoding for a site in the domain
involved in ligand activation (Karjalainen et al., 2012). Abnormal increase
in androgens during pregnancy has been additionally correlated with the
development of gestational diabetes, which is further associated with
PTB (Espinos et al., 1992; Abbott et al., 2010; Vejrazkova et al., 2014;
Ackerman et al., 2013; Morisset et al., 2013). This is probably due to
the role of androgens in modulation of insulin secretion from the pan-
creas and inhibition of glucose uptake in fat and muscle cells (Corbould,
2008; Rao etal., 2013). The mechanism linking the two hormonal axes is
poorly understood and, interestingly, has not been considered or
explored during pregnancy. Increased T levels in the maternal circulation

at third trimester have been associated with the incidence of PE, suggest-
ing T as a predictive marker (Ghorashi and Sheikhvatan, 2008; Lorzadeh
and Kazemirad, 2012; Sharifzadeh et al., 2012; Simsek et al., 2012). In this
context, placentae from preeclamptic pregnancies have higher expres-
sion levels of AR in both male and female fetuses (Sathishkumar et al.,
2012). Therefore, it is possible that AR signalling in the placenta contri-
butes to the pathology of PE.

The association of androgen levels with preterm delivery has been
studied in afew primate studies. For example, continuous administration
of A4 to pregnant rhesus monkeys from early gestation or for a period of
48 h during third trimester resulted in preterm initiation of myometrial
contractions and cervical dilatation leading to preterm delivery (Figueroa
etal., 1989; Mecenas etal., 1996). In these studies, preterm delivery was
associated with an increase in E2 in maternal circulation, suggesting con-
version of A4 to E2 in the placenta. Nathanielsz et al. (1998) later sup-
ported that notion by showing that the preterm phenotype could be
rescued by administration of an aromatase inhibitor. However, in
other studies, direct administration of E2 or El to pregnant primates
failed to induce preterm delivery (Novy and Walsh, 1983; Albrecht
etal., 1989). Therefore, it is likely that a physiological increase in andro-
gen levelsin maternal circulation from the start to end of pregnancy holds
the key to term pregnancy. In support of this notion, abnormal changes in
androgens levels at the start of pregnancy have been associated with
spontaneous abortions or recurrent miscarriages. For example, spon-
taneous abortion was shown to occur in women whose androgen
levels failed to increase at the beginning of pregnancy (Bammann et al.,
1980). On the other hand, women with recurrent miscarriages had sig-
nificantly higher levels of T, A4 and T/SHBG ratio compared with women
without recurrent miscarriages (Okon et al., 1998).

Although these studies emphasize how the normal increase in andro-
gen levels might be pivotal for maintenance of pregnancy and develop-
ment of the fetus, they fail to show a consistent relationship between
eitherandrogen excess or androgen deficiency and pregnancy problems.
What is more, the mechanism by which androgens impact pregnancy
outcomes has not been fully understood. Below we discuss the effect
of androgens on cervical remodelling and myometrial function, the key
processes in determining the timing of delivery. Particular focus is paid
to myometrial smooth muscle cell (MSMC) physiology and the ability
of androgens to interact with the contractile machinery of the cell.

The role of androgens in CR

Structure of cervix during pregnancy

The cervical stroma is composed of fibroblasts, smooth muscle cells
(SMCs), epithelial cells and immune cells (Leppert, 1995). These cells
secrete an extracellular matrix (ECM), which consists primarily of colla-
gen, glycosaminoglycans and proteoglycans. Hormones including pro-
gestogens and E2, relaxin and prostaglandin can alter ECM
composition and affect the mechanical strength of the cervix
(Ekman-Ordeberg et al., 2003; Simon and Einspanier, 2009; i et al.,
2011; Ghuleetal., 2012). The consequence of this process is remodelling
of the cervix, which can be divided into four stages: softening (first trimes-
ter), ripening (second trimester), dilatation (third trimester) and recon-
stitution of the non-pregnant cervix post-partum (Read et al., 2007).
Each stage has a characteristic collagen and proteoglycan composition
as the tissue re-organizes and prepares for the next steps in the partur-
ition process (Word et al., 2007). CR is characterized by a 60% decrease
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in collagen and proteoglycan levels and occurs in parallel with an increase
in collagenase activity, which itself is involved in collagen catabolism and
disturbance of collagen bundles (Ekman et al., 1986; Norman et dl.,
1993). However, collagen synthesis increases in the cervix at term due
to collagen turnover being balanced between production and degrad-
ation (Ekman et al., 1986). Structural abnormalities of the cervix have
been associated with an increased risk of PTB, thus a better understand-
ing of the physiology of cervical remodelling is crucial (reviewed by
Norman, 2007).

The role of androgens in CR

Numerous human and animal studies have explored the role of andro-
gens in the cervix, particularly during pregnancy (Mochizuki et al.,
1978a, b; Sasaki et al., 1982; Mochizuki and Maruo, 1985; Takahashi
et al, 1984; Sakyo et al., 1986, 1987; Yamashita et al., 1991; El
Maradny et al., 1996; Kanayama et al., 1998; Ji et al., 2008). These
studies formed the basis of a hypothesis, whereby androgens regulate
cervical remodelling, particularly CR at term. Table Il summarizes key
findings from these studies. Collectively, these reports provide enough
evidence that the fetal androgen, DHEAS, promotes CR by enhancing
collagenase activity and thus decreasing fibril collagen organization.

Mechanism of androgen effect on CR

The physiology or pharmacology of androgen effects on CR is not fully
understood. In support of a physiological effect of DHEAS on CR, one
study has reported that DHEAS levels are significantly correlated with fa-
vourable outcome according to the Bishop score, i.e. higher levels of
DHEAS in women with successful (spontaneous) CR compared with
women in need of induction of labour (Koyuncu etal., 1995). DHEAS ad-
ministration has been additionally positively correlated with increases in
E2 levels in maternal serum (Takahashi et al., 1984). Therefore, it has
been argued that DHEAS is metabolized to estrogens in term cervix,
which in turn initiates CR. However, studies examining such effects
showed that administration of estrogens alone fails to ripen the cervix
(Thiery et al., 1979; Larmon et al., 2002; Dasgupta and Singh, 2012).
Notably DHT, which cannot be metabolized to estrogens, also pro-
motes CR, implying an androgen-specific effect (Ji et al., 2008). Interest-
ingly, mice with knockout (KO) of 5a-reductase type | develop an
abnormal cervix that fails to ripen at labour (Mahendroo et al., 1999).
Sa-reductase type | converts T to DHT and is the predominant
enzyme expressed in cervix at term (Mahendroo and Russell, 1999).
Administration of a 5a-reduced androgen, a metabolite of DHT,
Salpha-androstane-3alpha, |7(-diol, rescues the impaired phenotype
of Sa-reductase type | KO animals, allowing normal CR (Mahendroo
et al., 1996). The latter finding suggests local conversion of androgens
to other (more potent) androgen metabolites as the underlying mechan-
ism in the initiation of CR.

Although poorly explored, there is some evidence to suggest that the
mechanism of DHEAS action on the collagenase increaseis indirectand is
mediated via DHEAS-stimulated neutrophil secretion of the proteolytic
enzyme (El Maradny et al., 1996; Maymon et al., 2000). Indeed, DHEAS
action on CR has been correlated with increased levels of IL-8 cytokine
involved in chemotaxis of neutrophils recruited in cervix towards term
(Kanayama et al., 1998; Maymon et al., 2000).

The involvement of AR in mediation of CR by androgens has been re-
cently examined (Ji et al., 2008). In that study, antagonism of AR by

flutamide inhibited events associated with CR, such as a decrease in col-
lagen fibril organization, a decrease in cervical resistance and a decrease
in proteoglycan synthesis in pregnant rats pre-treated with DHT on Day
| 6, suggesting genomic signalling (Ji et al., 2008). Although this study did
not examine AR expression in the cervix, other immunohistochemical
studies in non-pregnant and pregnant humans and canine cervix have
demonstrated cervical expression of AR (Wilson and McPhaul, 1996;
Vermeirsch et al., 2002; Ji et al., 2008; Vladic-Stjernholm et al., 2009).
In addition, it has been reported that androgens up-regulate AR expres-
sion in the human cervix (van der Kwast et al., 1994).

Allthe above reports suggest that DHEA and DHT might promote CR
via a pathway impacting collagenase synthesis and/or activity. Although
the mechanism of this action is not well established, there is some evi-
dence that it is possibly mediated via metabolism of androgens to
reduced androgens and/or genomic signalling through AR. This notion
needs more investigation. In addition, the role of androgens and andro-
gen signallingin the cervical endothelial/epithelial cells and cervical SMCs
in terms of cervical remodelling throughout pregnancy is surprisingly
unexplored.

The role of androgens in myometrial function
MSMCs changes during pregnancy

MSMCs are specialized contractile cells that, in contrast to skeletal and
SMCs, exhibit cellular plasticity, which enables reversible differentiation
into different phenotypes (Gabbiani et al., 1981; Tomiyasu et al., 1988).
Studies of myometrium during rat pregnancy have demonstrated that
MSMCs undergo four phenotypic changes throughout gestation (Shyn-
lova et al., 2009). Briefly, these are a proliferative stage, a synthetic
stage, a contractile stage and, finally, a labour stage. In early pregnancy,
following implantation of the conceptus, MSMCs proliferate rapidly
and become hyperplastic. Hyperplasia is believed to be mediated by
hormone signalling and growth factors, such as IGF-1 and EGF, have
been shown to be involved in induction of the so-called proliferative
phenotype (Shynlova et al., 2007). Following the proliferative phase,
MSMCs undergo an intermediate synthetic phase starting on Day 14 of
rodent pregnancy (Lye et al., 2001). The synthetic phenotype is charac-
terized by increased synthesis of ECM and cellular hypertrophy of
MSMCs (Shynlova et al., 2009). On Day 21| of rodent gestation, uterine
myocytes switch to a contractile phenotype (Nishinaka and Fukuda,
[991; Fata et al., 2000; Shynlova et al., 2004). Differentiation into a con-
tractile phenotype is largely attributed to mechanical stretch (Manabe
et al., 1981; Loudon et al., 2004; Sooranna et al., 2004; Terzidou et al.,
2005). MSMCs undergo afinal phase of differentiation following initiation
of labour, the so-called labour phenotype (Shynlova et al., 2009). At this
point, the myometrium develops synchronous contractions and
expresses a number of contraction-associated proteins (CAPs), such
as connexin 43 (Con43), oxytocin receptor (OXTR) and prostaglandin
Freceptor (Fuchsetal., |984; Slateretal., 1999; Spareyetal., 1999; Erkin-
heimo et al., 2000; Rehman et al., 2003). Returning MSMCs to a non-
pregnant state involves rapid apoptosis (Roh et al., 2000; O’Brien
et al., 2007; Shynlova et al., 2009).

Arecentstudy, conducted in rats, reported that AR is highly expressed
in MSCMs during the proliferative stage and progressively declines
towards the end of pregnancy, suggesting a role (at least in this
species) in establishment of myometrial growth at early stages of preg-
nancy (Liu et al, 2013). Liu et al. additionally showed that the AR
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Table Il Studies on the effect of androgen administration on CR.

Key findings

Reference

Androgen  Dose Species/tissue
DHEAS 0.0 mg/ml Human
0.1 mg/ml In vitro: HCF derived from term pregnancy
DHEAS 200 mg Human
In vivo: term pregnant women (=38 weeks)
DHEAS 200 mg Human
Invivo: term pregnant women (38—42 weeks)
DHEAS 50—100 mg Human
In vivo: term pregnant women (38—42 weeks)
DHEAS 100 mg Human
In vivo: term pregnant multiparous and
nulliparous women (>38 weeks)
DHEAS 50-200 mg Human
In vivo: term pregnant singleton and twin
pregnancies (>39 weeks)
DHEAS | pM Rabbit
In vitro: CCs derived from term pregnancy
DHEAS | uM Rabbit
In vitro: CCs derived from term pregnancy
DHEAS 10 mg Rabbit
In vivo: term pregnancy
DHEAS 100 mg Rat
In vivo: term pregnancy (day |6)
DHEA 0.0 mg/ml Human
0.1 mg/ml In vitro: HCF derived from term pregnancy
DHT 2 mg Rat

1 IL-8 in conditioned medium
1 IL receptor in HCF

1 Bishop score
1 Collagenase activity

1 Bishop score
1 Collagenase activity
1 E2 in maternal serum

1 Bishop score
| Time to delivery
No side effects

1 Bishop score

| Duration of labour in nulliparous women
J Time to delivery in nulliparous

No side effects

1 Bishop score

(higher correlation of Bishop score with twin
pregnancies)

1 E2 levels in maternal serum

(higher correlation of E2 levels with twin
pregnancies)

No change in El, E3 levels in maternal serum.

1 Collagenase levels
No effect of E2 or DHEA treatment

1 Collagenase levels
No effect on collagen levels

1 Collagenase activity

| Collagen content

Combined DHEAS + IL-8 (100 ng)
treatment-induced neutrophil infiltration
Combined treatment produced maximal decrease
in collagen content

| Collagen content
1 Collagenase activity

Increase of IL-8 in conditioned medium
Increase of IL receptor in HCF

J Cervical resistance

Kanayama et al.
(1998)

Mochizuki et al.
1978a, b
Mochizuki and Maruo

(1985)

Mochizuki et al.
19783, b

Sasaki et al. (1982)

Takahashietal. (1984)

Sakyo et al. (1986)

Sakyo et al. (1987)

Maradny et al. (1996)

Yamashita et al.
(1991)

Kanayama et al.
(1998)

Ji et al. (2008)

In vivo: term pregnancy (|5 day)

| Proteoglycan

mRNA

Flutamide treatment (10 mg)
1 Cervical resistance

1 Proteoglycan mRNA

DHEAS, dehydroepiandrosterone sulphate; DHT, dihydrotestosterone; HCF, human cervical fibroblast; CCs, cervical cells.

decrease itself affects IGF-1 receptor (IGF-1R) stability and thus down-
regulates downstream cascades that IGF-1 is involved in (including
P13K/Akt, which is highly important in proliferative pathways) (Liu
et al., 2013). Besides rats, a significant decrease in AR expression
occurs in porcine myometrium 3 weeks prior to labour (Slomczynska
et al., 2008). A human microarray study also showed AR gene down-
regulation in the myometrium during preterm (0.4-fold) and term
labour (0.3-fold) compared with non-labouring myometrium, but the
protein expression was notdetermined (Bethin etal., 2003). Thus, andro-
gen signalling in MSMC:s is likely to be involved in proliferative pathways
pivotal for ‘building” of the myometrium in the early stages of pregnancy.

The role of androgens in myometrial contractility

Androgens have been demonstrated to relax SMCs, such as rabbit and
pig trachea, rat mesenteric arterial bed, rat thoracic aorta and human
coronary artery (Perusquia etal., 1991a, b; Chouetal., 1996; Costarella
etal., 1996;Rosanoetal., | 999; Tep-areenanetal., 2002; Perusquiaetal.,
2005; Kouloumenta et al., 2006; Bordallo et al., 2008; Montano et al.,
2008; Chevalier et al., 2012). Robson (1937) was the first to suggest
that androgens may have an inhibitory action on uterine muscle contrac-
tion. Following a 4-day administration of |2 mg of testosterone propion-
ate (a small fast-acting ester of testosterone) to ovariectomized
non-pregnant rabbits, he examined the contractile response of their
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uterus to | unit of injected oxytocin both in vivo and in vitro. The uterus of
T-treated rabbits did not respond to oxytocin administration in contrast
to the uterus of control rabbits. However, the spontaneous contractile
activity of the uterus was only slightly affected (Robson, 1937). Following
Robson, some other studies have demonstrated similar relaxing effects
of various androgens including T, DHT, A4 and DHEAS on the myome-
trium of non-pregnant rats and non-pregnant and pregnant humans
(Kubli-Garfias et al., 1980; Perusquia et al., 1991a, b; Perusquia et al.,
2005). The findings from these studies are summarized in Table |lI.
The relaxing effect occurs only in pharmacological concentrations
(micromolar) and is rapid, suggesting non-genomic mechanism of
action (Perusquia et al., 1990; Anderson et al., 2009; Tica et al., 201 ).
A logical assumption would be that the observed effect of androgens
might not occur physiologically because physiological androgen concen-
trations are in a nanomolar range. However, understanding the molecu-
lar pathways employed by androgens in modulation of myometrial
relaxation could help in the development of new tocolytic agents to
manage preterm spontaneous contractions. We discuss below the
current evidence for possible molecular mechanisms by which andro-
gens might elicit relaxing effects in myometrium.

Mechanism of MSMC contraction

MSMCs are myogenic, which means that they can contract spontaneously
(Tomiyasu et al., 1988). The membrane potential in MSMCs is not stable.
Spontaneous depolarization of membrane potential, fired by alterations in
membrane currents and ion channels, occurs during pregnancy. A de-
crease in membrane potential triggers myocyte contractile activity and
leads to spontaneous contractions; conversely, amplification of membrane
potential to a resting —50 mV maintains the uterus in a quiescent state
(Nakajima, 1971; Pressman et al., 1988). The upstroke of MSMCs mem-
brane action potential (i.e. the initial decrease in membrane potential) is
predominantly due to calcium (Ca*") entry, whereas repolarization
occurs as a result of blockage of Ca”" channels (Nakajima, 1971). The
key biochemical event in spontaneous MSMC contraction is an increase
in intracellular Ca** ([Ca*™]) from 10”7 to 107® M (Horowitz et dl.,
1996). This increase is the outcome of extracellular influx of Ca** and/
or release of Ca®* from the sarcoplasmic reticulum (SR). The entry of
Ca”" is mediated via a variety of Ca®" channels classified into voltage-
operated Ca*" channels (VOCCs) and voltage-independent Ca** chan-
nels (including receptor-operated Ca** channels, ROCCs) (Wray et al.,
2003, 2005; Floyd and Wray,2007; Noble etal., 2009). ROCCs are regu-
lated by an agonist-receptorinteraction (Guibert et al., 2008). Receptors
that interact with ROCCs upon ligand binding are G protein coupled
receptors (GPCRs), such as the OXTR. GPCRs can activate the inositol
triphosphate (IP3) pathway leading to release of Ca*" from SR via activa-
tion of phosphoinositide phospholipase C and hydrolysis of PIP2
(Meldrum et al., 1991). The resulting increase in [Ca®*] leads to forma-
tion of a complex between calmodulin and myosin light chain kinase,
which then phosphorylates light chains on myocin (MLC) (Ito and Hart-
shorne, 1990). The latter event allows binding of actin to myocin leading
to cross-bridge cycling, which then causes contraction (Dillon et al.,
[981). Extrusion of [Ca®*] in MSMCs can occur by reverse processes
and is mediated by two major transporters: plasma membrane Ca®"
ATPase (PMCA) and the Na*/Ca”" exchange pump (NCX) (Shmigol
et al., 1998). Studies examining mechanisms by which Ca*" ions are
removed from the cytoplasm in isolated rat MSMCs show that PMCA
accounts for 85% of the Ca*" efflux (Shmigol et al., 1998).

Besides VOCCs, ROCCs, PMCA and NCX, Ca* flux is highly influ-
enced by MSMC membrane fluidity. A proton nuclear magnetic resonance
(NMR) spectroscopy study investigating various parameters of myometrial
membrane fluidity at pregnancy, including phospholipid double bonds,
fatty acid chain length and the Ch/phospholipid ratio, reported that
MSMC membrane fluidity is increased with labour (Pulkkinen et dl.,
[998). Cell membrane fluidity is modulated by changes in the concentra-
tion of membrane Ch (Shmygol et al., 2007). Chis a component of the lipid
bilayer, which integrates into the membrane by placingits steroid ring next
to the hydrocarbon chains and locatingits hydroxyl group close to the head
of phospholipid (van Meer, 1989; Simons and Vaz, 2004; lkonen, 2008).
High Ch results in a stiff membrane and thus reduces membrane fluidity,
whereas low Ch promotes membrane fluidity. Decreased membrane flu-
idity is characterized by inhibition of Ca*™ channels such as VOCCs and
ROCCs (Jennings et al., 1999; Shmygol et al., 2007). Administration of
Ch in vitro decreases [Ca®"] and inhibits the phasic contractions in
MSMC:s of rats and humans (Smith et al., 2005; Zhang et al., 2007). On
the other hand, depletion of Ch from the rat MSMC membrane with
methyl-beta-cyclodextrin treatment causes an increase in cell excitability
and contraction (Jennings et al., 1999; Shmygol et al., 2007). High Ch has
been correlated withincreased activities of NCX and PMCA, which is con-
sistent with their roles in promoting Ca*" efflux (Ortega and Mas-Oliva,
1984; Kutryk and Pierce, 1988; Verbist et al., 1991).

Non-genomic interactions of androgens with the contractile machinery
Possible interactions of androgens with the MSMC contractile machin-
ery, including interactions with VOCCs, ROCCs, the lipid bilayer, gap
junctions and membrane receptors, which may result in the inhibition
of contraction, are discussed below.

Androgens and VOCGs. High K™ in the extracellular space induces cell
membrane depolarization, which in turn results in opening of Ca*" chan-
nels (VOCCs) and an increase in [Ca®']. In addition to the relaxing effect
of androgens on spontaneous myometrial contractions, 53-DHT rapidly
relaxes tonic contractions (induced by high K*) and decreases single
MSMC [Ca**], while removal of the androgen reverses the effect (Per-
usquiaetal., 2005). Alogical explanation of the mechanism of the relaxing
effect of the androgen in that case would be via inhibition of VOCCs.
However, itis not clear whether the effect of androgens involves a phys-
ical interaction with VOCC:s or is indirect.

Androgens and ROCGCs. Besides VOCCs, there is some evidence that
androgens may be able to block ROCCs. For example, androgens can
relax rat uterine contractions induced by serotonin, oxytocin and acetyl-
choline in vitro (Perusquia, 1991; Perusquia et al., 1991a, b). Oxytocin,
acetylcholine and serotonin receptors are GPCRs. Their activation
leads to subsequent activation of extracellular Ca** influx via ROCCs
and/or Ca** influx from SR via the IP3 pathway (Large, 2002; Thorneloe
and Nelson, 2005). It is possible that androgens exert their effects on
oxytocin-induced contraction via blockage of IP3 pathway and release
of SR Ca®*. However, inhibition of the SR Ca”" release is not sufficient
for complete blockage of the overall Ca** influx (Kupittayanant et al.,
2002). Therefore, a logical assumption would be that androgens block
the ROCC-associated Ca®t influx rather than components of IP3
pathway. This notion is supported by the inability of T in another study
to inhibit both caffeine- and carbachol- induced Ca*" release (activators
of IP3-pathway) in coronary SMC (Murphy and Khalil, 1999). Identical
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Table Il Studies on the effect of androgen on myometrial contractions.

References

Kubli-Garfias
et al. (1980)

Perusquia et al.
(1990)

Perusquia et al.
(199143, b)

Perusquia et al.
(1991a, b)

Perusquia
(1991)

Androgen Dose Species/tissue Key findings
T, DHEA, 10—100 pM Rat Spontaneous contractions inhibited rapidly (<30 min) by all androgens
androstanediol, (non-pregnant) Potency:
androsterone, A4, Exvivo: myometrial  androstanediol, androsterone
S5a-DHT, 5B-DHT strips >5B-DHT > T = A4 = DHEA = 5a-DHT
T, DHEA, 3-100 uM Rat Tonic contractions (KCl induced) inhibited rapidly (<30 min) by all
androstanediol, (non-pregnant) androgens
androsterone, Exvivo: myometrial  Potency:
5B-DHT strips androsterone = androstanediol >5B-DHT > T
androstanediol, 3-100 pM Rat Serotonin-induced contractions inhibited rapidly (<30 min) by all
androsterone, (non-pregnant) androgens
S5a-DHT, 53-DHT Ex vivo: myometrial
strips
androstanediol, 3-100 pM Rat Acetylcholine-induced contractions inhibited rapidly (<30 min) by all
androsterone, (non-pregnant) androgens
S5a-DHT, 58-DHT Ex vivo: myometrial
Strips
androstanediol, 3-100 uM Rat Oxytocin-induced contractions inhibited rapidly (<30 min) by all
androsterone, (non-pregnant) androgens
5a-DHT, 58-DHT Ex vivo: myometrial
strips
T, DHEA, DHT, 3-100 uM Human (term Spontaneous contractions and tonic contractions (KCl induced)

5a-DHT, 58-DHT,
androstanediol,

pregnant,
non-pregnant)

inhibited rapidly (<30 min) by all androgens
Potency:

Perusquia et al.
(2005)

androsterone Exvivo: myometrial

strips

5B-DHT > androsterone = DHEA = T > 5a-DHT = androstanediol

DHEA, dehydroepiandrosterone; T, testosterone; DHT, dihydrotestosterone; DHEAS, dehydroepiandrosterone sulphate; A4, androstenedione.

findings were reported in isolated rat thoracic aortic strips and porcine
coronary arteries, where T could inhibit K*-induced but not
caffeine-induced contractions (Crews and Khalil, 19993, b). There are
no data on relaxing effect of androgens on a GPCR agonist-stimulated
contractions (such as oxytocin and prostaglandin FP) induced contrac-
tion in human myometrium.

Androgens and the lipid bilayer. In a similar manner to Ch, itis plausible that
Ch metabolites (including androgens) mediate non-genomic responses
via direct penetration into the cell membrane and reduction in MSMC
membrane fluidity. For example, hydrophobic androgens, such as
DHT and T, have been shown to interact with the phospholipid bilayer
of the negatively charged membrane (Duval et al., 1983; Van Bommel
et al., 1987). Such interactions may impair Ca*™ homeostasis due to an
increase in the activity of PMCA. Regulation of PMCA by androgens is
documented in different tissues. For example, in synaptosomal plasma
membranes, PMCA activity increases 95% following 10 wM of T treat-
ment (Deliconstantinos, 1988). In addition, PMCA activity in kidney is
increased following administration of 10 wM of T, as measured by in
vitro assays where the ATP-dependent Ca" flux was determined by
comparison of Ca’" transport (implying PMCA activity) with and
without exogenous addition of ATP (Dick et al., 2003). In line with the
latter study, androgen deprivation induced by castration alters the immu-
nochistochemical localization of PMCA in prostate epithelial cells with no
changes in mRNA or protein levels (Coviello et al., 2006). Additionally,
the regulation of Ca*"-ATPase in SR activity by T has been explored in
ventricular muscle of orchidectomized (ORX) rats (Witayavanitkul

et al, 2013). In that study, T treatment managed to prevent an
ORX-induced decrease in Ca**-ATPase activity. Collectively, an alter-
native mechanism for the non-genomic action of androgens in MSMC re-
laxation is proposed, whereby androgens penetrate the lipid bilayer and
decrease membrane fluidity, resultingin an increase in PMCA activity and
Ca®" efflux. However, the effect of androgens on PMCA activity in the
myometrium has not yet been explored and, thus, this hypothesis
remains to be confirmed in this tissue.

Androgens and gap junctions. Increases in single SMC [Ca* " ]initiates a syn-
chronized increase in [Ca** ] in adjacent cells, a process mediated by gap
junctions (Loch-Caruso etal., 2003; Brading and Brain, 201 | ; Boittin et al.,
2013). Gap junction proteins increase the ability of MSMCs to generate
synchronous contractions and mount a synchronous response to hor-
mones or agents in the microenvironment of uterus at labour (Garfield
and Hayashi, 1981; Ikeda et al., 1987). Connexins are gap junction trans-
membrane proteins that assemble to form a gap junction; Con43 is the
predominant connexin involved in the initiation of MSMC contractions
at term (Chow and Lye, 1994). A study in pregnant rats on a high Ch
diet showed that high Ch is associated with a decrease in Con43
protein in the myometrium, suggesting possible implications for uterine
contractility (Elmes et al., 201 I'). A study in isolated rat cardiac myocytes
demonstrated that gap junctional intracellular communication (GJIC) dis-
turbance, by either silencing the gene for Con43 or by addition of specific
drugs, such as heptanol, induced a significant reductionin Ca’t transients,
suggesting that Con43 may be involved in the regulation of basal Ca** sig-
nallinginthese cells (Lietal., 20 12). Interestingly, an estrogenic compound
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4-OH-TCB has been shown to act in a similar manner to heptanol and
significantly block GJIC in rat myometrium (Tsai et al., 1998). What is
more, the same study showed that 4-OH-TCB could reduce contractions
of rat myometrial strips, suggesting that the relaxing effect of 4-OH-TCBis
mediated through blockage of GJIC. There is evidence that androgens can
influence GJICinisolated rat cardiac myocytes and Sertoli cells (Pluciennik
et al, 1996). One study demonstrated a dose-dependent (1 —-25 wM)
inhibitory effect of T propionate on GJIC, which was reversed by T with-
drawal and was unaffected by pre-incubation with AR antagonist, again
implying a non-genomic effect of T (Pluciennik et al., 1996). Based on
these studies, it is tempting to hypothesize that androgens may induce
relaxation of myometrium via direct interaction with the membrane
proteolipidic structure, which might alter directly orindirectly the function
of gap junction channels; however, more evidence in needed.

Androgens and ARs. A role for ARs in inhibition of myometrial contraction
has been investigated (Perusquia et al., 2005). Flutamide-induced AR an-
tagonism failed to inhibit the relaxing effect of 53-DHT (Perusquia et al.,
2005). Notably, in that study, flutamide was administered at a significantly
lower concentration (10 wM) than the concentration of 53-DHT
(100 wM), thusitis not clear whether nuclear AR is involved in the relaxing
effect. However, the rapid action of androgens on myometrial relaxation
makes a genomic mechanism unlikely. On the other hand, a few reports
have now demonstrated that AR can be recruited in non-genomic
actions of androgens (reviewed in Hammes and Levin, 201 ). This mech-
anism involves the largely unexplored membrane AR (mAR). The mAR is
hypothesized to be either a GPCR ora classic AR lacking a DNA-binding
site; the latter is thought to have greater affinity for androgens compared
with nAR (Konoplya and Popoff, 1992; Foradori et al., 2008; Yang et al.,
2011). A study on airway SMCs showed that in addition to T, treatments

CoH
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Androgen
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Figure 4 Hypothetical targets of androgens in modulation of MSMC
relaxation. Androgens are hypothesized to interact with contractile
machinery of MSMCs via penetration into the lipid bilayer. This might
promote PMCA to induce rapid Ca®" efflux, block VOCCs and ROCCs
and impair IGJC via effects on the gap junctions. PMCA, Ca*" ATPase;
VOCC, voltage-operated Ca*" channels; ROCC, receptor-operated
Ca®" channels; IGJC, intercellular gap junctional communication.

with membrane impermable T conjugated to BSA (TBSA) could inhibit
contraction, suggesting that T exerts its effects on the outer aspect of
the membrane rather than in the cytoplasm (Kouloumenta et al., 2006).
However, the downstream mechanism of mAR activation in that study
was unclear. The structure of mAR is yet to be characterized in
mammals and it is unknown whether it is utilized by androgens to inhibit
MSMC contraction (Thomas et al., 2006).

Collectively, the above studies allow us to hypothesize that androgen-
induced MSMC relaxation is mediated via penetration of the androgen into
the lipid bilayer where it affects molecules critical for generation of Ca*™
transients, including VOCCs, ROCCs, gap junctions and PMCA (Fig. 4).

Conclusions

There is growing evidence that androgens, which increase throughout
gestation, might play a functional role in the physiology of pregnancy in
parallel with the well-established roles of progestins and estrogens.
Herein we reviewed what is currently known about roles played by
androgens in two critical systems in biology of pregnancy and parturition,
cervical remodelling and myometrial function.

There is evidence from in vivo and in vitro studies that androgens
promote CR and, thus, assist initiation of labour. On the other hand,
androgens appear to be effective in in vitro tocolysis of myometrial con-
tractions. Although the action of androgens on cervical remodelling is
possibly mediated via classical activation of genomic signalling via AR, it
is unlikely that the same mechanism mediates androgen effects in myo-
metrial contractility. In contrast, there is more evidence that AR acting
within the nucleus is involved in the proliferation of MSMCs and, thus,
may be important for the growth of myometrium at the beginning of
pregnancy. Further investigations are required to fully understand the
molecular events regulated by androgens in cervix and myometrium
and their interplay with other signalling pathways. These investigations
should potentially utilize animal models of adverse pregnancy outcomes,
where targeted administration of androgens to either cervix or myome-
trium could be highly informative. In conclusion, research into the roles of
androgens in cervical and myometrial function during pregnancy and par-
turition has the potential to inform new therapeutic strategies for man-
agement of pregnancy complications, such as PTL and PTB.
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