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Introduction

Arsenic is a common environmental contaminant. People are 
primarily exposed to arsenic from drinking water and industrial 
emissions and, to a lesser extent, from dietary sources.1 Data 
from exposure assessment studies demonstrate that arsenic read-
ily crosses the placenta and that fetal exposure is highly corre-
lated with maternal exposure.2-5 Evidence from epidemiological 
studies shows that early life exposure to arsenic is associated 
with increased risk of adverse health outcomes later in life. For 
instance, a large ecological study in Chile reported that people 
in Antofagasta who were exposed to high concentrations of 
arsenic either prenatally or in early childhood had significantly 
higher mortality from lung cancer and bronchiectasis compared 
with people from other parts of the country.6 A second study in 
Antofagasta reported diminished lung function in adults who 
were exposed to high levels of arsenic (> 800 μg/L) before age 10 

compared with adults who had much lower arsenic exposures in 
childhood (0–250 μg/L).7 In Japan, a cohort study in Okayama 
Prefecture of infants that were potentially exposed to high lev-
els of arsenic from contaminated milk powder had significantly 
higher cancer mortality rates compared with infants born in 
the same area 1 to 5 y after the contaminated infant formula 
was recalled.8 Finally, in Bangladesh, a prospective cohort study 
reported that infants who were exposed to higher levels of arsenic 
in utero had a greater risk of infectious diseases in the first year of 
life compared with infants with lower arsenic exposure.9

While it is not fully understood how early life exposure to 
arsenic would lead to increased susceptibility to disease later in 
life, experimental studies have shown that in utero exposure to 
arsenic alters DNA methylation in offspring.10-14 There is also evi-
dence from epidemiological studies that arsenic exposure from 
drinking water alters DNA methylation in whole blood collected 
in adults.15-17 Recently, our group showed that maternal exposure 
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Prenatal arsenic exposure is associated with increased risk of disease in adulthood. This has led to considerable inter-
est in arsenic’s ability to disrupt fetal programming. Many studies report that arsenic exposure alters DNa methylation in 
whole blood but these studies did not adjust for cell mixture. In this study, we examined the relationship between arsenic 
in maternal drinking water collected ≤16 weeks gestational age and DNa methylation in cord blood (n = 44) adjusting for 
leukocyte-tagged differentially methylated regions. DNa methylation was quantified using the Infinium humanMeth-
ylation 450 Beadchip array. Recursively partitioned mixture modeling examined the relationship between arsenic and 
methylation at 473 844 cpG sites. Median arsenic concentration in water was 12 μg/L (range < 1–510 μg/L). Log10 arsenic 
was associated with altered DNa methylation across the epigenome (P = 0.002); however, adjusting for leukocyte distri-
butions attenuated this association (P = 0.013). We also observed that arsenic had a strong effect on the distribution of 
leukocytes in cord blood. In adjusted models, every log10 increase in maternal drinking water arsenic exposure was esti-
mated to increase cD8+ T cells by 7.4% (P = 0.0004) and decrease in cD4+ T cells by 9.2% (P = 0.0002). These results show 
that prenatal exposure to arsenic had an exposure-dependent effect on specific T cell subpopulations in cord blood and 
altered DNa methylation in cord blood. Future research is needed to determine if these small changes in DNa methyla-
tion alter gene expression or are associated with adverse health effects.
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to arsenic from drinking water was significantly associated with 
increased LINE-1 methylation in cord blood.17

Whole blood, however, is a mixture of cells with specific 
methylomic signatures based on morphology. Methylation pro-
files in DNA extracted from whole blood are strongly influ-
enced by white blood cell composition, which is highly variable 
between subjects.18-22 Previous studies that examined the effect 
of arsenic on DNA methylation were unable to control for the 
heterogeneity of the cell population in the DNA extracted from 
whole blood making it difficult to interpret whether the observed 
effect were due to changes in specific blood cell populations. 
Fortunately, recently developed bioinformatics approaches can 
be employed that use leukocyte-tagging differentially methyl-
ated regions (DMRs) to identify cell types and adjust for white 
blood cell populations.19,23,24 This approach has been used suc-
cessfully in epidemiological studies of cancer and rheumatoid 
arthritis to compare the direct effects of DNA methylation 
to those mediated by immune profile.19,20,25 Alternatively, this 
method provides a novel approach for using DNA to examine 
the association between environmental exposures and immune 
response.

Therefore, we examined the relationship between prenatal 
arsenic exposure and DNA methylation in cord blood of new-
borns that were born into a prospective birth cohort recruited in 
Bangladesh. We hypothesized that in utero exposure to arsenic 
would be associated with altered epigenome-wide methylation 
after controlling for cell mixture. Based on experimental evi-
dence that arsenic alters the development, activation and pro-
liferation of T-cells,26-37 we further hypothesized that prenatal 
arsenic exposure would independently influence the immune 
response, which would be associated with altered leukocyte sub-
populations in cord blood.

Results

Forty-four newborns were included in this analysis. The 
median concentration of arsenic in their mother’s drinking water 
at ≤ 16 wk gestational age was 12 μg/L. The gestational age at 
recruitment ranged from 6 to 16 wk, with an average of 12.2 
wk (Standard Deviation, [SD], 2.5 wk) and the gestational age 
at delivery ranged from 33 to 41 wk with an average of 37.6 wk 
(SD, 2.1). The average weight at birth was 2923 g (SD, 372 g).

Since DNA extracted from cord blood represents a mixture 
of cell types, we first reconstructed the distribution of white 
blood cells in the cord blood using leukocyte-tagged DMRs 
for B cells, granulocytes, monocytes, natural killer (NK) cells, 
CD4+ T cells, and CD8+ T cells. These linear regression mod-
els evaluated the association between arsenic exposure and the 
relative percentage of leukocytes in cord blood, adjusting for 
infant sex. We observed a significant association between arse-
nic and leukocyte distribution (P = 0.0118, 6 d.f. chi-sq test). 
By examining the linear relationship with individual leukocyte 
subpopulations, we observed that arsenic exposure was only 
associated with changes in the distribution of CD4+ and CD8+  
T cells (Table 1). Specifically, for each increase in log

10
 arsenic 

the percentage of CD8+ increased by 7.4% (P = 0.0004) and 
the percentage of CD4+ cells decreased by 9.2% (P = 0.0002). 
A more modest association was also observed with B cells where 
each increase in log

10
 arsenic was estimated to decrease B cells by 

1.4% (P = 0.056). These results suggested that in utero exposure 
to arsenic altered the distribution of white blood cell populations 
in cord blood.

After adjusting for white cell mixture, we identified the top 
ten CpG sites whose methylation levels had the strongest asso-
ciation with arsenic exposure (Table 2). The magnitude and the 
direction of the effect of arsenic on measured DNA methylation 
in cord blood depended on each CpG site. After adjusting for 
the false discovery rate, log

10
 arsenic was associated with a sig-

nificant increase in methylation at only one CpG site (q-value 
< 0.05), cg00498691. The other nine CpG sites were suggestive 
of an exposure-response relationship with log

10
 arsenic but did 

not reach statistical significance (q-value < 0.07). Specifically, 
log

10
 arsenic was modestly associated with increased methyla-

tion at cg04597393, cg16321474 (Ref Gene, VDR), cg01783894, 
cg03783410 (Ref Gene, SOX2OT ), cg06448705 (Ref Gene, 
TRPC7), cg15346830 (Ref Gene, COL11A2), cg15641060, and 
a decrease in methylation at cg00122779 (Ref Gene, TNXB) and 
cg02095504 (Ref Gene, CIB4).

Table 3 displays the omnibus P values for the overall epig-
enome-wide association with prenatal arsenic exposure. Note 
that the P values based on the average nominal F-statistic were 
attenuated after adjustment for leukocyte distribution, but P 
values based on the maximum F-statistic remained significant 
even after adjusting for leukocyte composition. This was consis-
tent for the epigenome-wide analysis using all autosomal CpGs 

Table 1. Results of linear regression models examining the relationship between maternal log10 water arsenic concentration and the percent composition 
of whole blood using methods described in houseman et al.,20 adjusted models included infant sex

Effect Estimate (Raw)a [% composition] Effect Estimate (Bias-Adj)b [% composition] SEc P valued

B cell -1.4 -1.4 0.71 0.056

Granulocyte 1.4 1.6 1.84 0.430

Monocyte 0.5 0.5 0.50 0.310

Natural Killer -0.7 -0.9 0.73 0.317

T cell (cD4+) -7.4 -9.2 1.97 0.0002

T cell (cD8+) 5.5 7.4 1.54 0.0004

aRaw estimates without bias-correction. bEstimate corrected for measurement-error bias. cstandard error based on double-bootstrap. dP values based on 
raw effect estimates.
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including SNPs and the epigenome-wide analysis excluding 
SNPs. This observation suggested the existence of a small num-
ber of CpGs with substantial stable alterations associated with 
arsenic exposure. Additionally, we analyzed the data with and 
without adjusting for cell mixture (Fig. 1). This depiction illus-
trates the epigenome-wide association results before adjusting for 
cell mixture effects (Fig. 1A) and after methylation values were 
adjusted for leukocyte composition (Fig. 1B). When adjusting 
for cell mixture, there is a reduction in the number and magni-
tude of observed associations, which is consistent with the results 
from Table 3.

A list of genes that included CpG sites that demonstrated an 
exposure-response relationship with arsenic exposure are pro-
vided in Table S1. At a gene level, arsenic exposure was associated 
with increased methylation at one or more CpG sites within 71 
genes. Given that increased methylation is related to gene silenc-
ing we ranked genes based on the number of CpG sites within 
each gene that were significantly associated with exposure. We 
chose to describe our findings this way to account for the unequal 
coverage of measured CpG sites within genes in the Infinium 
HumanMethylation 450 BeadChip array. For instance, the array 
measured 6 CpG sites within patched domain-containing protein 
4 (PTCHD4). In this gene, 2 of the 6 measured CpG sites had 
increased methylation that was associated with arsenic exposure 
(e.g., the first and third CpG sites increased methylation which 
is noted by “+”; the other 4 CpG sites had no association as noted 
by “.”). Of note, the gene that had the most CpG sites that were 
differentially methylated in proportion to arsenic exposure (e.g., 

three of the five measured CpG sites) was zinc finger protein 710 
(ZNF710). Other genes with increased methylation relative to 
arsenic exposure at 2 of the 3 measured CpG sites were tumor 
necrosis factor receptor superfamily member 10b (TNFRSF10B), 
sulfotransferase Family 4A, Member 1 (SULT4A1), CD151 
molecule (CD151), Acetoacetyl-CoA synthetase pseudogene 1 
(AACSP1) and LIM Homeobox (LHX8).

Finally, we conducted a gene-set analysis to identify KEGG 
biological pathways that contained CpG sites whose methyla-
tion was influenced by arsenic exposure. Twenty-four biological 
pathways were differentially methylated in relationship to arsenic 
after adjusting for leukocyte distributions (Table 4). The path-
ways with the strongest association with arsenic exposure were 
maturity onset diabetes of the young (KEGG hsa04950), hema-
topoietic cell lineage (KEGG hsa04640), and renin-angiotensin 
system (KEGG hsa04614). Results using all autosomal CpGs for 
analysis including SNPs were similar (data not shown).

Discussion

In this study, we observed that prenatal exposure to arsenic 
was associated with altered DNA methylation patterns in cord 
blood after adjusting for white blood cell mixtures. Additionally, 
these results suggested that prenatal arsenic exposure had an 
exposure-dependent effect on specific T cell subpopulations and, 
to a lesser extent, B cell subpopulations in cord blood. While 
these observations have not been confirmed in an experimental 

Table 3. Overall association between maternal log10 water arsenic concentration and omnibus EWas P-values with and without adjusting for 6 imputed 
leukocyte cell mixture coefficients

Unadjusted for Leukocytea Adjusted for Leukocyteb

# cpGs Mean F Max F Mean F Max F

all autosomal cpGs (II.a, II.b) 473929 0.002 0.002 0.065 0.015

autosomal cpGs without polymorphisms (II.c, II.d) 384474 0.002 < 0.001 0.059 0.013

aEstimated following statistical method described in IIa and IIc. bEstimated following statistical method described in IIb and IId.

Table 2. Top 10 list of the most significant cpG sites based on ordinary-least squares regression analysis modeling the association between M-value and 
log10 arsenic, adjusted for infant sex and 6 imputed leukocytes cell mixture coefficients

CpG Site

Effect 
estimate
(M-val / 
log10 As)

Unadjusted 
P value

q-value Location
Infinium

Type
Nearby 
SNPs*

RefGene
Name

RefGene
Group

Chromosome
RefGene

Accession

cg00498691 0.26 5.89 x 10–8 0.021 Island II 19

cg04597393 0.34 4.54 x 10–7 0.056 I Yes 8

cg16321474 0.23 6.99 x 10–7 0.058 Island I Yes VDR Tss1500 12 NM_001017535

cg00122779 –0.66 4.25 x 10–7 0.056 II TNXB Body 6 NM_019105

cg01783894 0.28 7.87 x 10–7 0.058 s_shore I 1

cg03783410 0.21 9.49 x 10–7 0.058 N_shore II sOX2OT Body 3 NR_004053

cg02095504 –0.24 1.16 x 10–6 0.061 II cIB4 3′UTR 2 NM_001029881

cg06448705 0.25 1.34 x 10–6 0.062 II TRPc7 5′UTR 5 NM_001167576

cg15346830 0.22 1.79 x 10–6 0.065 II cOL11a2 Body 6 NM_080679

cg15641060 0.21 1.96 x 10–6 0.065 N_shore I 11

*cpGs with polymorphism in Infinium probe or target cpG.
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model and the biological effects of these epigenetic changes are 
unknown, these findings complement in vitro and in vivo studies 
that show that arsenic reduces lymphocyte proliferation, CD4+ 
cell counts, CD4+:CD8+ cell ratios, and reduced T-regulatory 
cells in exposed adults and children38,34 and that arsenic alters 
DNA methylation.10-14 Conceptually, white blood cell popula-
tions could be acting as a confounder or a mediator for arsenic-
related toxicity (Fig. 2). Since each leukocyte subtype contributes 
to the DNA extracted from whole blood, the measured DNA 
methylation could be the product of changes in upstream cellular 
activities that produce subtle shifts in cell type, i.e., leukocyte 
subtypes. The fluctuation in leukocyte distributions would be 
captured as changes in DNA methylation because cell differen-
tiation is governed by DNA methylation. Thus, the upstream 
epigenetic alteration could only be revealed upon more detailed 
examination of the blood.39-42

Our agnostic approach identified several genes and biological 
pathways containing CpG sites that were differentially methyl-
ated in relationship to increasing prenatal arsenic exposure. While 
our study did not examine gene expression, it is noteworthy that 
many toxicological studies report arsenic interacting with many 
of these same genes and biological pathways. For instance, meth-
ylation at 3 out of 5 measured CpG sites in the promoter region 
of ZNF710 and the one measured CpG site in the 1st exon of 
ZNF679 were significantly associated with increasing arsenic 
exposure. Both of these genes encode for zinc finger proteins that 
have been identified as potential targets for toxic metals includ-
ing arsenic.43,44

We also noticed that methylation of CpG sites within the 
maturity onset diabetes of the young biological pathway were 

significantly associated with arsenic exposure. This pathway con-
tains five genes (HNF4alpha, HNF1alpha, PDX1, HNF1beta, and 
NEUROD1). There is some evidence from experimental models 
that arsenic alters expression of genes in this pathway. For instance, 
an in vitro study in a hepatoblastoma cell line demonstrated that 
high levels of arsenite trioxide reduced the expression of HNF4.45 
Additionally, data from a transplacental in vivo study in apolipo-
protein E-knockout mice showed increased gene expression from 
a cluster of 51 genes (including HNF4alpha) in the liver of off-
spring exposed to high levels of arsenic compared with controls.46 
In regards to the renin-angiotensin system (RAS) pathway, it 
contains genes that are associated with regulating blood pressure. 
Overexpression of the RAS pathway in physiological conditions 
like hypertension has been shown to increase the production of 
reactive oxygen species (ROS).47 The overproduction of ROS is 
thought to be the first step of endothelial cell proliferation and 
apoptosis—two mechanisms that have been proposed as initia-
tors for arsenic-related atherosclerosis.48 There is also data from 
an in vivo study in rats showing that chronic exposure (200 days) 
to inorganic arsenic significantly decreased the angiotensin-con-
verting-enzyme (ACE) activity in hepatic tissue, regulated by the 
ACE gene in the renin-angiotensin pathway compared with con-
trols.49 The hematopoietic cell lineage is a complex pathway in 
humans that gives rise to many different mature blood cell types. 
Arsenic trioxide has been used as an anti-leukemia agent and for 
other hematological malignancies.50 An in vivo study demon-
strated that induced hepatic collagenesis by chronic exposure to 
arsenic was strongly correlated with expression of interleukin 6 
(IL-6) and the tumor necrosis factor α (TNF-α), both important 
genes in the hematopoietic cell lineage pathway.51

Figure 1. Volcano plots illustrating the relationship between log10 arsenic and methylation at all 384 474 cpGs sites analyzed in approach III, without 
adjusting for cell mixture (A) and after adjusting for cell mixture (B). Dashed lines represent q-value thresholds of q < 0.05 for genome-wide associations 
(P = 0.01 for a, and P = 4.54 x 10−7 for (B) and a dotted line for the Bonferroni correction of P = 1.30 x 10−7. Yellow, cpG Island; black, cpG shore; blue, 
everything else. circle, Infinium Type II; square, Infinium Type I.
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One of the major strengths of this study is that we adjusted 
for cell mixture when examining the association between arsenic 
exposure and DNA methylation in blood. This was also a pro-
spective study where drinking water arsenic exposure was mea-
sured early in pregnancy. This analysis does rely on one personal 
drinking water measurement to assign exposure and subsequently 
we cannot rule out misclassification of exposure. Although other 
studies in rural Bangladesh populations have shown that current 
drinking water exposures are relatively constant and highly cor-
related with other biomarkers of internal dose such as urine and 
toenails.52,53 There are also several limitations to this study. We 
did not measure gene expression in the cord blood and cannot 
assess whether the observed changes in DNA methylation were 
associated with any biological responses. This was also a rela-
tively small study. We were not able to validate the observed shift 

in white blood cells proportions with a complementary technol-
ogy due to limited sample availability and lack of flow cytom-
etry facilities in Bangladesh. Also, we cannot rule out potential 
confounding because many host and environmental factors are 
known to influence DNA methylation including exposure to air 
pollutants resulting from cooking with biomass which is com-
mon in this population.

In conclusion, this study showed that prenatal arsenic expo-
sure was associated with altered DNA methylation in cord blood 
of newborns after adjusting for leukocyte distributions. It also 
showed that arsenic was significantly associated with leuko-
cyte subpopulations, specifically CD+4 and CD+8 popula-
tions. Additional studies are needed to determine whether these 
changes persist over time or are associated with any negative 
health effects.

Table 4. Gene set analysis of the association of arsenic exposure and DNa methylation changes on biological pathways from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG)

Blood (unadjusted) Blood (WBC-Adjusted)

mean F max F mean F max F

EWAS Entire 450K Array 0.004 <0.001 0.06 <0.001

any Kegg any cpG mapped to any gene in a KEGG pathway 0.001 <0.001 0.066 0.075

any Gene any cpG mapped to any gene 0.001 <0.001 0.065 0.082

hsa04950 Maturity onset diabetes of the young 0.001 <0.001 0.014 0.054

hsa04640 hematopoietic cell lineage <0.001 <0.001 0.023 0.023

hsa04614 Renin-angiotensin system <0.001 <0.001 0.024 0.002

hsa04514 cell adhesion molecules (caMs) <0.001 <0.001 0.028 0.036

hsa05412 arrhythmogenic right ventricular cardiomyopathy (aRVc) <0.001 <0.001 0.027 0.029

hsa04612 antigen processing and presentation <0.001 0.01 0.053 0.036

hsa04350 TGF-β signaling pathway <0.001 <0.001 0.039 0.005

hsa05410 hypertrophic cardiomyopathy (hcM) <0.001 <0.001 0.04 0.023

hsa04020 calcium signaling pathway <0.001 <0.001 0.042 0.012

hsa05414 Dilated cardiomyopathy <0.001 <0.001 0.05 0.024

hsa05218 Melanoma <0.001 0.002 0.053 0.283

hsa04320 Dorso-ventral axis formation <0.001 <0.001 0.036 0.02

hsa04920 adipocytokine signaling pathway <0.001 <0.001 0.05 0.026

hsa05200 Pathways in cancer <0.001 <0.001 0.054 0.097

hsa04512 EcM-receptor interaction <0.001 <0.001 0.077 0.007

hsa04670 Leukocyte transendothelial migration <0.001 <0.001 0.054 0.013

hsa04810 Regulation of actin cytoskeleton <0.001 <0.001 0.063 0.038

hsa04914 Progesterone-mediated oocyte maturation 0.001 0.001 0.054 0.039

hsa04650 Natural killer cell mediated cytotoxicity <0.001 <0.001 0.060 0.005

hsa03320 PPaR signaling pathway <0.001 <0.001 0.057 0.026

hsa04150 mTOR signaling pathway 0.001 0.003 0.062 0.004

hsa04510 Focal adhesion <0.001 <0.001 0.083 0.016

hsa04520 adherens junction 0.001 <0.001 0.051 0.135

hsa04330 Notch signaling pathway <0.001 0.002 0.07 0.048
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Methods

Participant selection and sample collection
Pregnant women ≤ 16 wk gestational age were enrolled in 

a prospective birth cohort recruited in Bangladesh by Dhaka 
Community Hospital (DCH) to evaluate the effects of low level 
arsenic exposure on reproductive health outcomes. Health care 
workers at Sirajdikhan and Birahimpur Community Health 
Clinics identified pregnant women who were 18 y of age or older, 
used a tubewell that supplied groundwater as their primary drink-
ing water source, planned to live at their current residence for the 
duration of the pregnancy and continue prenatal health care with 
DCH, and agreed to deliver at DCH or at home with a DCH-
trained midwife. Informed consent was obtained from all par-
ticipants prior to enrollment or partaking in any study activity. 
An ultrasound at the time of enrollment confirmed gestational 
age and a singleton pregnancy. As an incentive, all participants 
were provided with free prenatal care from DCH and prenatal 
vitamins that were replenished during monthly checkups in the 
participant’s home.

This analysis uses information from 44 infants who were 
selected for inclusion based on the concentration of arsenic in 
their mother’s drinking water (Range, < 1–510 μg/L) and avail-
ability of cord blood DNA. This selection approach was used to 
insure that there was representation across a wide range of arsenic 
exposures.

This study was approved by the Human Research Committees 
at the Harvard School of Public Health, Dhaka Community 
Hospital Trust and Oregon State University.

Arsenic exposure
At the time of enrollment, a water sample was collected from 

the well that each participant identified as her primary source 
of drinking water. Briefly, water samples were collected in  
50 mL polypropylene tubes (BD Falcon, BD Bioscience) and 
preserved with Reagent Grade HNO

3
 (Merck, Germany) to a  

pH < 2 . Samples were kept at room temperature prior to analysis 
by inductively coupled plasma-mass spectrometry following US 
EPA method 200.8 (Environmental Laboratory Services). The 
average percent recovery of As from PlasmaCAL multi-element 
QC standard #1 solution (SCP Science) was 102% ± 7%.

DNA Methylation Assay and quality control
Cord blood was collected at the time of delivery into an 

EDTA-coated vacutainer tube (B.D. Scientific). DNA was 
extracted from whole cord blood using Purgene DNA isolation 
solutions (Qiagen/Gentra Systems) following manufacturer’s 
instructions. DNA was shipped to the University of Minnesota’s 
Biomedical Genomic Center where DNA methylation was quan-
tified using the Infinium HumanMethylation 450 BeadChip 
array (Illumina) following manufacturer’s instructions.

Samples were randomly distributed across 16 chips. Image 
files for DNA methylation data were processed using the methy-
lumi package in R. The DNA methylation data were normalized 
and a background and dye bias correction was conducted using 
the methylumi package in R. For each array, the methylumi pack-
age provides an “average beta” quantity for each of the 485 577 
CpG sites interrogated by the Infinium 450K platform and for 

834 additional controls. The average β was calculated as M/(M 
+ U + ε), where M is the signal from the probe corresponding 
to the methylated target CpG, U is the signal from the probe 
corresponding to the unmethylated target, and ε = 100, a small 
number used to protect against division-by-zero. Thus, average 
β is an interval-scaled quantity between zero and one that is 
interpreted as the fraction of DNA molecules whose target CpG 
is methylated. We excluded 11 648 CpG sites that were located 
on sex chromosomes to circumvent confounding by subject sex. 
Multivariate characteristics of control probes were investigated 
graphically through the use of clustering heatmaps to examine 
the overall characteristics of the array data (total signal, distribu-
tion of detection P values, and fraction of missing values). We 
also identified 89 455 of the autosomal CpGs that had SNPs 
at the target CpG site or within the probe based on attributes 
provided in the Illumina annotation files as well as additional 
SNP information (data available upon request). For quality con-
trol purposes, we analyzed DNA from one participant in dupli-
cate. The overall correlation between all CpG sites for this one 
duplicate sample was 99.5%. Models were evaluated with either 
473 929 CpG sites (with SNPs) or 384 474 CpG sites (without 
SNPs) as described below.

Statistical analysis
The final data set consisted of 45 cord blood specimens (from 

44 unique subjects). Technical replicates were accounted for as 
described below. Average β quantities were logit-transformed to 
“M-values” prior to analysis.54 Beta values were used only for the 
cell mixture analysis and the direct adjustment of leukocyte com-
position on DNA methylation described below. M-values were 
used for all other analyses presented. In a manner similar to the 
ComBat,55 M-values were adjusted for chip effects using a linear 
mixed effects (LME) model via the R function lme in the pack-
age nlme, with a fixed regression coefficient modeling the effect 
of exposure on methylation for each CpG, and random intercept 
term to account for chip effect. All chip effects were subtracted 
from M-values on a CpG-by-CpG basis. The LME procedure 
was used in place of ComBat in order to keep the size of the 
fixed-effects model parsimoniously small.

Figure  2. conceptual effect of arsenic exposure on immune response 
and epigenetic processes that would contribute to measured DNa meth-
ylation changes.

©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.



780 Epigenetics Volume 9 Issue 5

To evaluate the hypothesis that exposure (log
10

 arsenic con-
centration in maternal drinking water ≤ 16 wk gestational age) 
was significantly associated with changes in DNA methylation 
across the epigenome and that exposure influenced cell mix-
ture in blood, we employed several complementary analytical 
approaches.

Cell mixture analysis: approach I
To estimate leukocyte composition, β values were used in 

placed of M-values to adequately account for linearity of cell mix-
ture coefficients. We employed the indirect, two-stage method of 
Houseman et al. to estimate the effects of exposure on distribu-
tion of leukocytes.20 This method uses DNA methylation mea-
surements on the average β at 100 select DMRs as a surrogate for 
leukocyte distribution, or cell mixture. The coefficients of expo-
sure-methylation association are combined with reference mean 
methylation estimates measured from isolated leukocytes of spe-
cific cell type to obtain estimated associations between exposure 
and percent composition of individual cell types.

Epigenome-wide association analysis: approach IIa
We conducted a CpG-by-CpG analysis of adjusted M-values 

in relationship to exposure (log
10

 water arsenic). We used limma 
models to estimate the linear association between the M-values 
and exposure.56 We stratified CpGs by Infinium Type (I or II) so 
that the empirical Bayes estimates of standard deviation were not 
influenced by differences in the dynamic range between the two 
types of biochemistry. Omnibus tests for association, adjusting 
for multiple comparisons, were obtained by comparing a sum-
mary of association over all CpG sites with the corresponding 
permutation-distribution summary. The permutation-distribu-
tion was obtained by permuting the exposure with respect to sex 
and methylation data (1000 permutations). Note that exposure 
was permuted by subject (not specimen) in order to account for 
technical replication. A summary of genome-wide association 
was constructed using two different objective test statistics: (1) a 
maximum nominal F statistic over the array (akin to minimum 
P value) and (2) an average nominal F-statistic. The maximum 
nominal F statistic would be expected to be more powerful for 
detecting a small number of strong associations while the average 
nominal F-statistic would be expected to be more powerful for 
detecting a large number of weak or variable associations.

Epigenome-wide association analysis adjusted for cell mix-
ture: approach IIb

The epigenome-wide association analysis (Approach IIb) 
was conducted on a CpG-by-CpG basis of adjusted M-values in 
relationship to arsenic exposure similar to approach IIa, except 
that M-values were first adjusted for leukocyte composition in 
the following manner. Leukocyte composition was determined 
from DNA methylation values measured at the 100 DMRs used 
in the previous cell mixture analysis (Approach I), employing 
the constrained linear projection described in Houseman et al.20 

For each CpG, the effects of leukocyte composition on the chip-
adjusted average-β were determined by shrinking cell-specific 
means toward a common value. An optimum constraint (tun-
ing parameter) was determined using a LME.57 Adjusted average 
betas were obtained by antilogit-transforming adjusted M-values. 
Leukocyte effects were subtracted from the adjusted average 
betas with the resulting values truncated to fall between 0 and 
1 and subsequently logit-transformed back to leukocyte-adjusted 
M-values.

Epigenome-wide association analysis excluding SNPs: 
unadjusted(IIc) and adjusted(IId) for cell mixture

Approach IIc and IId were similar to IIa and IIb respectively, 
except that CpGs with known polymorphisms at the target CpG 
or within the Infinium probe were excluded from consideration 
in limma analyses and omnibus permutation tests.

KEGG biological pathway analysis: approach III
We conducted omnibus permutation tests over subsets of 

CpGs defined by their mapped association with genes in specific 
biological pathways. XML files from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) were used to compile gene sets 
characterizing specific biological pathways using the Entrez IDs 
matched to those documented on the KEEG XML files with 
the Bioconductor library org.Hs.eg.db. The four sub-analyses 
within this approach (IIIa-IIId) correspond to approaches IIa-IId 
described above, except that permutation tests were conducted 
individually over subsets of CpGs defined by pathways. Note 
that the “pathway analysis” P values represent neither the Fisher 
test approach to over-representation analysis, nor the permutation 
tests used in the classical gene-set enrichment analysis (GSEA).58 
We chose to analyze pathways in this relatively simple but tracta-
ble manner because of the difficulties in assumed sampling frame 
and null hypothesis documented in Goeman et al.59 and because 
of complications in biological interpretation arising from hetero-
geneity on the array in the number of CpGs per stratum defined 
by CpG Island status, Infinium type, and gene region.

All statistical analyses were performed using the R statistical 
package version 2.15.1 (http://www.R-project.org)
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