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Article Addendum

The maintenance of blood pressure 
homeostasis is a complex process 

which is carefully regulated by a vari-
ety of inputs. We recently identified 
two sensory receptors (Olfactory recep-
tor 78 and G protein couple receptor 41) 
as novel regulators of blood pressure. 
Both Olfr78 and Gpr41 are receptors for 
short chain fatty acids (SCFAs), and we 
showed that propionate (a SCFA) modi-
fies blood pressure in a manner which is 
differentially modulated by the absence 
of either Olfr78 or Gpr41. In addition, 
propionate modifies renin release in an 
Olfr78-dependent manner. Our study 
also demonstrated that antibiotic treat-
ment modulates blood pressure in Olfr78 
null mice, indicating that SCFAs pro-
duced by the gut microbiota likely influ-
ence blood pressure regulation. In this 
addendum, we summarize the findings 
of our recent study and provide a per-
spective on the implications of the inter-
actions between the gut microbiota and 
blood pressure control.

Introduction

A recent paradigm in sensory physi-
ology suggests that “sensory” receptors 
(taste receptors, olfactory receptors, and 
many other G-protein coupled recep-
tors) play important roles in non-sensory 
tissues, where they serve as selective and 
sensitive chemoreceptors. For example, 
sour taste receptors function in the tongue 
to sense changes in pH as an indicator of 
sour taste1,2—in addition, these receptors 
are also found in neurons which contact 
the central canal of the spinal column, 
where they function to detect changes in 
pH in cerebrospinal fluid.1 In addition, 
olfactory receptors (ORs) participate in 

muscle cell migration3 and sperm che-
motaxis,4 sweet taste receptors are found 
in the bladder,5 and bitter taste receptors 
mediate both bronchodilation and ciliary 
beat frequency in airways.6,7 G-protein 
coupled receptors of the GPR gene fam-
ily are also known to act as sensors of 
metabolites.8-12 Intriguingly, ligands for 
these sensory receptors are often generated 
by physiological processes or metabolic 
pathways,1,8,12,13 suggesting that known 
metabolites or chemicals may have sig-
naling functions beyond their traditional 
roles.8,12,13 Furthermore, sensory receptors 
such as ORs are expressed in a variety of 
tissues in mice, humans, and other pri-
mates, where their functional role has not 
yet been defined.14-16

Localization  
of Renal Olfactory  

Receptor Olfr78

We previously identified Olfactory 
Receptor 78 (Olfr78) as a “renal” olfac-
tory receptor (OR),17 and in a recent 
study18 we set out to localize and to iden-
tify the ligand for this OR. We took 
advantage of a β-galactosidase reporter 
mouse model in order to localize Olfr78, 
and determined that Olfr78 is found in 
vascular resistance beds in a variety of 
tissues, as well in the renal afferent arte-
riole. The renal afferent arteriole is an 
incredibly specialized vessel: blood enters 
the renal glomerulus for filtration via the 
afferent arteriole, and this arteriole is the 
site where renin (the initial, rate-limiting 
step in the renin-angiotensin-aldosterone 
pathway) is stored for eventual release into 
the bloodstream. The renin-angiotensin-
aldosterone pathway is a critical determi-
nant of blood pressure, and therefore by 
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storing and secreting renin, the afferent 
arteriole plays an important role in blood 
pressure control which involves a variety 
of feedback pathways. The localization 
of Olfr78 to vascular resistance beds and 
the afferent arteriole implied a potential 
role for Olfr78 in blood pressure control, 
autoregulation of tissue blood flow, and/
or extracellular fluid volume regulation.

Olfr78 as  
a Novel SCFA Receptor

In order to better understand the physi-
ological role of Olfr78 in the kidney, we 
set out to determine the ligand for this 
receptor. To do so, we employed a lucif-
erase assay19 in which activation of the 
OR causes an increase in [cAMP]

i
, which 

can then be detected by a cAMP-depen-
dent luciferase reporter. By employing an 
unbiased screen for potential ligands, we 
found18 that Olfr78 is a receptor for short 
chain fatty acids (SCFAs)—in particu-
lar, acetate and propionate. In addition, 
we confirmed a report by another group 
that the human homolog of Olfr78 also 
responds to SCFAs,20 implying that the 
function of this receptor may be conserved 
among multiple species. We found that 
the EC

50
 for Olfr78 was 920 µM for pro-

pionate, and 2.35mM for acetate (Fig. 1). 
In contrast, Gpr41 and Gpr43, well-stud-
ied SCFA receptors,9, 10,12,13, 21,23-26 have 
lower EC

50
 values both for propionate in 

a [35S]GTPγS binding assay (Gpr41 = 274 
µM, Gpr43 = 259 µM22), and for acetate 
(Gpr41 = 1.3 mM, Gpr43 = 537 µM).22 
Thus, Gpr41 and Gpr43 are significantly 
more sensitive to propionate and acetate, 
as compared with Olfr78. Interestingly, 
whereas both Gpr41 and Gpr43 can be 
activated by SCFAs in addition to acetate 
and propionate, Olfr78 responds solely to 
acetate and propionate.

SCFAs: The Gut Microbiota

SCFAs are present in the bloodstream 
primarily as the result of metabolic pro-
duction by the gut microbiota27; there-
fore, we wondered whether Olfr78 may 
be activated in response to changes in gut 
microbe metabolism. A recent and grow-
ing body of literature demonstrates that 
gut microbiota-derived metabolites play 

important roles in regulating the physiol-
ogy of the host, and have been implicated 
in pathophysiological processes as var-
ied as immune disorders,10,28-30 metabo-
lism,31-33 atherosclerosis,34 irritable bowel 
syndrome,35,36 and chronic kidney dis-
ease.37,38 Gut microbes produce SCFAs 
(chiefly acetate, propionate and butyr-
ate) such that the concentration in the 
colon is approximately 100mM.27 In the 
plasma, SCFAs have been found at 0.1–
10mM.10,22,39 The identification of Olfr78 
as a SCFA receptor,18 together with the 
localization of Olfr78,18 led to the novel 
hypothesis that Olfr78 may be responding 
to gut microbiota-derived SCFAs in order 
to regulate blood pressure.

Olfr78 and Renin Release

Because Olfr78 was found in tissues 
known to be important in blood pressure 
regulation, we hypothesized that SCFAs 
may signal via Olfr78 to modulate blood 
pressure. In particular, due to the localiza-
tion of Olfr78 to the afferent arteriole, we 
investigated a potential role of Olfr78 in 
SCFA-mediated renin release. We labeled 
renin-containing granules with quina-
crine, and then assessed the disappear-
ance of quinacrine over time as an index 
of renin release. We found that when 
renin-containing JG cells were exposed to 
propionate, there was a decrease in quina-
crine fluorescence (indicative of renin 
release), and that this effect was absent in 
Olfr78−/−. In line with these observations, 
we also found that Olfr78−/− had lower 
plasma renin levels (presumably due to the 
chronic absence of SCFA-mediated renin 
release), and lower baseline blood pres-
sure (consistent with the lowered plasma 
renin). These data indicate that SCFA 
induce renin release, and that this effect is 
mediated via Olfr78.

Multiple SCFA Receptors  
and Blood Pressure Control

Because Olfr78 was also found in vas-
cular resistance beds in a variety of tissues 
(skeletal muscle, diaphragm, etc.), we 
tested whether propionate may also have 
an acute, systemic effect on blood pressure. 
We found that an intravenous infusion of 
propionate resulted in dose-dependent 

drop in blood pressure which occurred in 
seconds and recovered over minutes. Due 
to the rapidity of the response, we rea-
soned that the response was likely medi-
ated by either vasodilation or a change in 
heart rate. Based on the lack of evidence 
for changes in heart rate, and evidence in 
the literature that SCFAs cause vasodila-
tion,40-42 we concluded that this is likely a 
vasodilatory effect.

Although the dose-response curve for 
this acute change in blood pressure was 
altered in Olfr78−/−, it was not absent. 
In fact, Olfr78−/− were hypersensitive to 
lower doses of propionate, demonstrating 
that Olfr78 does not promote a hypoten-
sive response to propionate - but rather, 
opposes it! This indicates, then, that both 
in promoting renin secretion and in oppos-
ing the hypotensive response to propio-
nate, Olfr78 is consistently acting to favor 
an increase in blood pressure. Because 
Olfr78 did not mediate the hypotensive 
response to propionate, we hypothesized 
that another receptor or pathway must be 
involved in mediating this response.

We focused on Gpr41 and/or Gpr43 
as likely candidates for these other recep-
tors, as Gpr41 and Gpr43 are previously 
characterized SCFA receptors known to 
respond to propionate.9,10,22 Gpr41 and 
Gpr43 are expressed in a variety of tis-
sues,13,24-26 and respond to SCFAs pro-
duced by the gut microbiota to mediate 
physiological responses of the host, such 
as adiposity (Gpr419) and inflammatory 
responses (Gpr4310,22). To determine 
whether Gpr41 or Gpr43 might mediate 
the blood pressure response to SCFAs, 
we first used RT-PCR to establish that 
both Gpr41 and Gpr43 are expressed 
in blood vessels, along with Olfr78. To 
examine a potential functional role for 
Gpr41 in resistance vessels, we made use 
of Gpr41 KO mice. In wild-type mice, 
10mM propionate produces a decrease in 
BP (13.9 mmHg18). This effect is absent 
in Gpr41−/−—in fact, the same propio-
nate dose produced a modest hyperten-
sive response in Gpr41−/− animals. These 
data indicate that Gpr41 contributes to 
the hypotensive effects of propionate, 
whereas, in opposition, Olfr78 antago-
nizes the hypotensive effects of propio-
nate (please see ref. 43 for a more detailed 
review of this aspect of our work). 
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Although there is much still to under-
stand, it is clear that the BP response to 
propionate is quite complex, and involves 
(at a minimum) both Olfr78 and Gpr41 
which act in opposition to one another 
(Fig. 2).

Although our data supports the idea 
that propionate activation of Gpr41 leads 
to a hypotensive response and that propio-
nate activation of Olfr78 favors a hyperten-
sive response, it is natural to wonder “why” 
one ligand would activate two receptors, 
which then signal in opposition to each 
other. We believe a potential explanation 
for this lies in the EC

50
 values of Gpr41 

and Olfr78. At basal levels of plasma pro-
pionate (reported to be between 0.1–10 
mM10,22,39), we would expect Gpr41 (EC

50
 

274 µM) but not Olfr78 (EC
50

 920 µM) to 
be somewhat active. As propionate in the 

circulating plasma increases, this would 
further activate Gpr41 and promote vaso-
dilation—thereby explaining the pre-
dominant wild-type response of a drop in 
blood pressure upon propionate infusion. 
However, as plasma propionate levels con-
tinue to rise, Olfr78 would be activated 
as well, effectively serving as a “brake” 
on the pathway to prevent an inappropri-
ate drop in blood pressure. Without the 
brake on the pathway, increases in plasma 
propionate could cause inappropriate (and 
potentially dangerous) drops in blood 
pressure, as evidenced by the increased 
sensitivity of the hypotensive response to 
propionate in Olfr78−/−.

It should be noted that although Gpr41 
and Gpr43 were localized to blood vessels 
by PCR, they have not yet been local-
ized to specific cell types within these 

blood vessels. Intriguingly, staining for 
Olfr78 (using b-galactosidase as a surro-
gate) revealed that in a given blood ves-
sel profile, Olfr78 was expressed in only 
a subset of vascular smooth muscle cells 
(vSMC).18 Could it be that some vSMC 
express Olfr78, and others express Gpr41 
or Gpr43? Or is there a subset of vSMC 
which express SCFA receptors, and a sub-
set which do not? Although it is often 
assumed that all vSMCs in the same ves-
sel have identical gene expression patterns, 
finding cell-specific patterns of expres-
sion within a single vessel leads to excit-
ing questions of both gene expression 
regulation and downstream cell signaling 
pathways. For example, if Olfr78, Gpr41, 
and Gpr43 co-localize, this has important 
implications for future studies of down-
stream signaling pathways. Gpr41 and 

Figure 1. Olfr78 was found to respond to acetate and propionate, but not any other ligands tested, including other mono- or di-carboxylic acids (A). 
Dose-response curves for Olfr78 (B) and it’s human ortholog, OR51E2 (C) indicate that both receptors are slightly more responsive to propionate than 
to acetate, with EC50 values in the high µM-low mM range (Olfr78: EC50 = 2.35 mM for acetate and 0.92 mM for propionate; OR51E2: EC50 = 2.93 mM for 
acetate and 2.16 mM for propionate). Figure modified from reference 18.
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Gpr43 typically signal through an inhibi-
tory G protein,44 whereas ORs typically 
signal through a stimulatory G protein.45 
One possibility is that Gpr41 inhibits ade-
nylate cyclase through G

i
 to promote vaso-

relaxation, and that Olfr78 activation in 
the same cell stimulates adenylate cyclase 
via G

s
 to oppose this effect (in support of 

this idea, an association has been reported 
between SCFA-induced vasorelaxation 
and cAMP levels46). However, the possi-
bilities for how the downstream signaling 
of these receptors interact are completely 
altered if their expression is segregated to 
separate cells—in fact, we localized Gpr41 
and Gpr43 to blood vessels by performing 
PCR on isolated vessels which had intact 
endothelium. Therefore, it is also pos-
sible that Gpr41 and/or Gpr43 localize 
to endothelial cells (and therefore, that 
the dilatory response could involve nitric 
oxide). Future studies will be required 
to understand the localization of each of 
these receptors in relation to each other, 
as this has important implications for the 
signaling pathway.

The Gut Microbiota  
and Blood Pressure Control

We recently published the results of gut 
microbiota reduction (using oral antibiot-
ics) on the BP of Olfr78 mice.47 Analysis 
of fecal 16S rRNA sequences showed that 
oral antibiotics (vancomycin, ampicillin, 
and neomycin) reduced fecal micribioal 
biomass similarly in Olfr78 wild-type and 
Olfr78−/−. However, the addition of anti-
biotics to the drinking water increased 
BP in Olfr78−/−, but not Olfr78+/+, mice. 
According to our model (Fig. 2; reviewed 

in detail in ref. 43), when the ligand for 
both Olfr78 and Gpr41 is removed (via 
antibiotics), this has little effect in a 
wild-type animal because the mutually 
antagonistic actions of Olf78 and Gpr41 
essentially cancel each other out. However, 
in an Olfr78−/− animal, propionate is act-
ing solely via Gpr41 to affect BP; there-
fore removing the source of this ligand 
would be expected to reverse the unop-
posed hypotensive effect of propionate 
and thus produce a substantial increase in 
BP. Together with our data on the acute 
effects of SCFAs on both Olfr78 and 
Gpr41 KO, these data suggest that SCFAs 
generated by the gut microbiota modulate 
BP through effects on multiple receptors 
and pathways. According to our model, 
SCFA-mediated stimulation of Gpr41 
decreases BP, while these same com-
pounds act through Olfr78 to increase BP. 
These opposing responses may produce 
a “buffering” effect to prevent dramatic 
changes in BP in response to physiological 
variations in SCFA concentration.

Two Pathways  
to Regulate Blood Pressure

Our work implies that SCFAs have at 
least two separate effects on blood pres-
sure: SCFAs act via Olfr78 in the afferent 
arteriole to modulate renin release (times-
cale of hours to days48), and can influence 
blood pressure by modulating peripheral 
resistance (vascular tone) through both 
Olfr78 and Gpr41 (timescale of seconds).

The rapid drop in blood pressure seen 
upon an iv infusion of propionate is likely 
due to an acute change in vascular tone. 
However, we also found that Olfr78−/− have 

lowered plasma renin levels. Is the basal 
hypotension see in Olfr78−/− due to altered 
vascular tone, or the absence of Olfr78-
mediated renin release—or a combina-
tion of both? At this time, our data do not 
allow us to rule out either hypothesis. On 
the other hand, because SCFA effects on 
renin release appear to be mediated solely 
by Olfr78, the interpretation of any basal 
blood pressure differences in Gpr41−/− 
may be a bit clearer (since we would not 
expect the renin pathway to be altered 
in Gpr41−/−). In future studies, we will 
work to carefully localize Gpr41 as well as 
Gpr43 within the vasculature, as well as to 
further unravel the blood pressure pheno-
types in these animals.

Implications

In recent years, it has become widely 
appreciated that SCFAs are naturally pres-
ent in the plasma as a consequence of gut 
microbe metabolism, and that they play 
important roles in many aspects of host 
physiology.9,10,22,28,29,34-38 Our recent study 
highlights a novel area of influence for 
gut microbes and SCFAs—blood pressure 
control.

Although the idea of gut microbe 
metabolites regulating blood pressure is 
intriguing, it does beg several questions. 
For example: Why would gut microbe 
metabolites alter vascular resistance? One 
possibility is that this may function as a 
mechanism to facilitate absorption after a 
meal. Although most absorption occurs in 
the small intestine, a significant quantity 
of nutrients (including lactose, lactulose, 
and starches) are fermented into SCFA 
in the large intestine (in animals,27,49-57 as 
well as in humans58-66). We hypothesize 
that SCFA concentrations would peak in 
vessels serving the gut after a meal, and 
that this increase in SCFAs results in local 
vasodilation (as shown previously in ref. 
67). This vasodilation may help to facili-
tate efficient absorption from the gut into 
the circulation, and thus ensure that nutri-
ents are not lost in the stool. Although 
there is a paucity of data regarding to 
what extent plasma SCFA concentrations 
are modified by diet or by altering the 
gut flora, it is known that Gpr41−/− lose 
more SCFAs in the feces than their wild-
type counterparts9). Although more work 

Figure 2. This diagram shows the roles of SCFAs, Olfr78, and Gpr41 in blood pressure (BP) regula-
tion. Figure modified from reference 43.
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must be done to fully explain whether (or 
how) there may be a benefit to having a 
systemic change in BP after a meal, there 
is evidence that systemic BP does drop 
after a meal in humans—in fact, post-
prandial hypotension is quite common in 
the elderly.68

We also have wondered if some strains 
of gut microbes produce more SCFAs 
than others. Might it be that blood pres-
sure is influenced not only by our own 
genetics, but also by the genetics of our 
gut microbiome? We do not yet have an 
answer to this, but look forward to future 
studies which we hope will illuminate the 
implications of this signaling pathway 
in human physiology. Indeed, although 

there are many potential clinical applica-
tions of this work, there is much we still 
do not yet understand. For example, is it 
possible to modulate blood pressure by 
altering the diet? Might one’s particular 
“blend” of microbiota help determine 
their resting blood pressure? Can pur-
poseful altering one’s microbiota (i.e., 
antibiotics followed by probiotics) effect 
a change in blood pressure? Similarly, if 
a physician treats a patient with a high 
dose of antibiotics to treat an infection, 
is blood pressure control altered? Clearly, 
much remains to be understood about 
these pathways. We hope that by explor-
ing the pathways by which SCFA recep-
tors, SCFAs and gut microbes interact, we 

will better understood both blood pres-
sure regulation and the unexpected ways 
in which gut microbes interact with our 
bodies.
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