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ArtIcLe AddenduM

Host defense is an orchestrated 
response involving changes in 

the expression of receptors and release 
of mediators from both immune and 
structural cells. There is a growing 
recognition of the important role of 
proteolytic pathways for the protective 
immune response to enteric pathogens. 
Enteric nematode infection induces a type 
2 immune response with polarization of 
macrophages toward the alternatively 
activated phenotype (M2). The Th2 
cytokines, IL-4, and IL-13, induce a 
STAT6-dependent upregulation of the 
expression of the protease inhibitor, 
serpinB2, which protects macrophages 
from apoptosis. M2 are critical to worm 
clearance and a novel role for serpinB2 is 
its regulation of the chemokine, CCL2, 
which is necessary for monocyte and/or 
macrophage influx into small intestine 
during infection. There is a growing list 
of factors including immune (LPS, Th2 
cytokines) as well as hormonal (gastrin, 
5-HT) that are linked to increased 
expression of serpinB2. Thus, serpinB2 
represents an immune regulated factor 
that has multiple roles in the intestinal 
mucosa.

Proteolytic Pathways  
and Immunity

Approximately 4.5% of the human 
genome encodes proteases (~1200 genes),1 
which perform a variety of functions 
throughout the body and regulate a wide 
range of developmental, physiological and 

disease associated processes. Proteases are 
important for the conversion of inactive 
forms of many proteins into their active 
counterparts, for the breakdown of 
proteins and for host defense against 
intruding pathogens. Many proteases 
are components of proteolytic cascades, 
where the product from one reaction acts 
as the substrate for the next, effectively 
amplifying the initial signal to enhance 
the response. Regulatory proteolysis is a 
highly conserved process from microbes 
to humans and is emerging as a focal 
point for therapeutic intervention.2 
Most pathogens, including bacteria, 
mites, viruses, and nematodes, elaborate 
proteases that play a key role in their 
survival in the host.2-6

Proteases are classified into six broad 
groups, serine proteases, threonine 
proteases, aspartate proteases, glutamic 
proteases, cysteine proteases, and 
metalloproteases, depending on the 
nature of their catalytic mechanism. 
The proteolytic activity in the cellular 
microenvironment modulates a number of 
critical processes including proliferation, 
migration, differentiation, and apoptosis. 
Recent studies also implicate a role 
for proteolytic pathways in immune 
responses.7-9 The class of serine proteases is 
one of the most intensely studied groups of 
enzymes and includes secreted, receptor-
bound and transmembrane proteases. 
The plasminogen activation system (uPA 
system, Fig. 1) is a prototypic receptor 
bound protease system important for 
controlling fibrinolysis.13 In this system, 
plasminogen is cleaved to plasmin by two 
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proteases, tissue-type or urokinase-type 
plasminogen activators (tPA or uPA). uPA 
localizes to the cell surface by binding 
its receptor, uPAR, where a well-known 
function of uPA activation is turnover 
of the extracellular matrix through 
direct proteolysis. Cells in the innate 
immune system use the uPA system for 
inflammatory migration by upregulating 
the production of uPA and uPAR. In vivo 
investigation of the role that uPA plays in 
host defenses was hampered initially by 
the inability to completely and irreversibly 
eliminate uPA. The development of 
transgenic mice lacking the uPA gene,10 
however, demonstrated the importance 
of this gene as uPA-/- mice are more 
susceptible to infection by pathogens that 
induce either a type 1 or type 2 response.11,12 
In these studies, uPA-/- mice showed 
impaired T lymphocyte proliferative 
responses resulting in significant decrease 
in cytokine expression.

In recognition of the importance of 
regulating protease activities, protease 
inhibitors have evolved in parallel with 
the proteases they regulate. Members 
of the serine protease inhibitor (serpin) 
superfamily have a unique mechanism 
for blocking protease activity. Inhibitory 
serpins function as “decoy molecules” or 
“suicide substrates” because they resemble 
the substrate targets of specific proteases. 
Once the protease cleaves the serpin, it 
becomes irreversibly trapped in a serpin-
protease complex and this interaction 
leads to distortion of the active site on the 
enzyme. Thus, serpins act as “protease 
sinks,” removing active enzyme to limit or 
prevent damage to local cells or to tissue.

Immune Functions  
of Protease Inhibitors

The pericellular proteolytic activity 
of uPA is regulated by plasminogen 
activator inhibitors (PAI), PAI-1 and 
PAI-2 (formally named serpinE1 and 
serpinB2, respectively). Expression of 
serpinB2 is limited to a few cell types and 
may be subject to cell-specific molecular 
mechanisms that regulate its expression. 
Upregulation of serpinB2 is observed in 
a number of inflammatory pathologies 
including enteric pathogen infection.13-15 

SerpinB2-mediated inhibition of 
uPA is important in the regulation of 
extracellular plasminogen-dependent 
proteolysis and the increased expression 
of serpinB2 in carcinoma is consistent 
with its ability to inhibit uPA-mediated 
metastatic activity.16 The extracellular 
concentration of the glycosylated 
60kDA form of serpinB2 increases 
during inflammation, yet the majority 
of the serpinB2 synthesized is not found 
glycosylated.17 Recent evidence indicates 
that the nonglycosolyated 47kDa 
intracellular form can be released from 
endothelial cells in response to LPS by 
a mechanism involving the formation of 
secretory vesicles.18 In many cells, however, 
serpinB2 accumulates intracellularly and 
is not secreted.17 The function of this 
intracellular form may be unrelated to 
its role as a protease inhibitor, thereby 
expanding the classical extracellular 
molecular role for serpinB2. Indeed, 
the intracellular form has an emerging 
role in modulating both innate and 
adaptive immunity. An early pertinent 
observation was that TNFα upregulated 
the expression of serpinB2 indicating a 
protective role for intracellular serpinB2 
against TNFα-induced apoptosis in 
fibrosarcoma cells.19 These findings were 

confirmed subsequently in other cell 
lines20,21 including immune cells.22

SerpinB2 and Macrophage 
Function

Immune cells possessing serpins 
include granulocytes, monocytes, 
and cytotoxic lymphocytes. Intestinal 
macrophages play a prominent role in 
mucosal homeostasis, and along with 
dendritic cells, are considered to be key 
effector cells in the innate immune system 
first line of defense. An important feature 
of macrophages is the ability to respond to 
a variety of stimuli produced in response 
to pathogen infection. Macrophages 
can undergo classical activation (M1) in 
the presence of a strong Th1 cytokine 
environment such as that in microbial 
infection. In the context of a strong 
Th2 cytokine environments, including 
enteric nematode infection, macrophages 
undergo alternative activation (M2).23 
Macrophages are critical for the full 
development of a Th2 response and 
the elimination of M2 impairs worm 
clearance and the associated changes in 
gut smooth muscle function that facilitate 
expulsion.24,25 Although GM-CSF and 

Figure 1. Macrophages express the components of the urokinase plasminogen activation system. 
Serine proteases activate pre-upA (the upA zymogen) to upA, which then binds to upAr, and 
efficiently activates plasminogen to the enzyme plasmin, localizing it to the plasma membrane. 
plasmin is important to a number of functions including immune cell migration. By inhibiting upA, 
serpinB2 can block plasminogen activation.
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M-CSF both contribute to macrophage 
development, GM-CSF drives the 
polarization to M1 while M-CSF promotes 
polarization to M2. SerpinB2 is one of the 
most inducible macrophage gene products 
induced by the Th1 promoting factor 
LPS, with induction reported over 105-
fold16,26 and has innate immune functions 
that are critical to macrophage survival.22 
SerpinB2 deficient mice do not have an 
obvious phenotype but exhibit impaired 
responses to infections.13,15,27

Macrophage expression of serpinB2 
is upregulated by LPS through a 
mechanism involving CREB and NFκB 
and is important for the maintenance 
of TLR4 activation, thereby preventing 
rapid macrophage death and premature 
cessation of the innate immune response.22 
Indeed, LPS-induced upregulation 
of serpinB2 was dependent upon the 
formation of CCAAT enhancer binding 
(C/EBP)-β complexes with the serpinB2 
promoter.28 C/EBP is one of a number of 
ERK1/2 regulated transcription factors 
that is instrumental in macrophage 
activation and polarization. There is also 
evidence that serpinB2 plays a role in 
adaptive immune responses. Macrophage 
serpinB2 production is upregulated highly 
during microbial, viral and nematode 
infections.13,27,29 Recent studies have 

implicated an anti-inflammatory role for 
serpinB2 and it is considered to be part of 
the M2-associated genes.15,30

In response to enteric pathogens, 
cytokine-induced upregulation of specific 
chemokines are involved in the recruitment 
of additional circulating monocytes to 
the intestine and differentiation of these 
infiltrating macrophages including 
monocyte chemoattractant protein-1 
(MCP-1) also known as chemokine 
(C-C motif) ligand 2 (CCL2). CCL2 is 
a member of the C-C chemokine family 
and is produced by many types of cells 
including epithelium, endothelium, 
smooth muscle, and fibroblasts. The major 
source of CCL2, however, is macrophages 
and this chemokine has emerged as a 
potential therapeutic target in a number 
of autoimmune diseases. Notably, loss 
of CCL2 alone may impact monocyte 
recruitment in some inflammatory 
pathologies.31 A recent study demonstrated 
that serpinB2 deficient mice fail to 
upregulate expression of CCL2 and the 
M2 marker, arginase-1, at day 12 post a 
memory response to Heligmosoimoides 
bakeri (H. bakeri) infection, leading to 
impaired macrophage infiltration and 
alternative activation of macrophages, 
resulting in impaired worm expulsion.15 
There is evidence that CCL2 deficient 

mice also have an impaired ability 
to mount a type 2 immune response 
consistent with a delayed worm expulsion 
in H. bakeri infection.15 Mice deficient in 
CCL2 do not have reduced numbers of 
resident macrophages but fail to recruit 
macrophages in response to stimulation. 
Importantly, CCL2 deficient mice 
retained their resistance to Mycobacterium 
tuberculosis infection showing that the 
type 1 response was intact.32 While it was 
proposed that this effect could be mediated 
by a direct effect of CCL2 on T cells, 
it is also possible that the macrophages 
recruited early in the post infection period 
release IL-13 that acts to promote an early 
type 2 response. Indeed, we and others 
demonstrated that macrophages have 
the ability to generate IL-13 in response 
to IL-25,33 an epithelial-derived cytokine 
that promotes the M2 phenotype, as 
well in response to respiratory syncytial 
virus.34,35 These data link serpinB2 
expression and macrophage activation 
during the development of Th2-mediated 
protective immunity (Fig. 2).

Immune Regulation  
of SerpinB2 Expression

The mechanisms that regulate serpinB2 
expression during infection have not been 
elucidated fully. There are seven signal 
transducer and activator of transcription 
(STAT) family members and each STAT 
responds to specific cytokines leading to 
induction of gene expression.36 Studies 
in H. bakeri-infected mice show that the 
upregulation of serpinB2 expression is 
dependent on STAT6, the transcription 
factor used exclusively by IL-4 and IL-13. 
Activation is tightly regulated and there is 
evidence also that proteases can regulate 
STAT6.37,38 Indeed, a “STAT6 protease” 
in the nucleus of murine mast cells is 
required for cleavage of an inactive form of 
STAT6, STAT6β, to the active form.39,40 
The infiltration and development of 
the M2 phenotype during nematode 
infection is STAT6-dependent.25 
Zhao et al. reported recently that the 
upregulation of serpinB2 expression 
in response to nematode infection is 
STAT6-dependent, adding serpinB2 
to the growing list of genes controlled 

Figure  2. Macrophages express a number of receptors including tLr, cytokine, and hormones 
that have been linked to the upregulation of serpinB2 expression, which is linked to macrophage 
survival. during enteric nematode infection resident macrophages respond to IL-4/IL-13 to develop 
into the alternatively activated phenotype (M2). these resident macrophages elaborate ccL2, a key 
chemokine in monocyte recruitment to the small intestine. SerpinB2 expression is necessary for 
the effective generation of macrophage ccL2.
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by STAT6 including arginase-1 and 
CD206 (mannose receptor) that regulate 
macrophage function.24,25 In addition, 
there is a STAT6-mediated upregulation 
of the expression of two protease-activated 
receptors (PAR), PAR

1
 and PAR

2
, during 

nematode infection.8,41 How serpinB2 
activity may regulate these pathways is 
unknown, but an intriguing interaction 
among these factors is illustrated by 
the observation that activation of PAR

2
 

increases serpinB2 expression.42 Together, 
these observations serve to emphasize 
the extensive contribution of proteolytic 
factors to immune cell function.

Emerging Mechanisms  
in the Control  

of SerpinB2 Expression

The gastrointestinal tract is the largest 
endocrine organ in the body. Hormones 
are elaborated and released from specialized 
cells that line the gut called enteroendocrine 
cells. This endocrine control is highly 
integrated with that exerted by the 
enteric nervous system fueling the long-
standing interest in the neuroendocrine 
contribution to host defense against 
pathogens. Hormones such as gastrin and 
the amine serotonin (5-HT) exert multiple 
actions on the gut and are implicated in 
host defense against pathogens including 
Helicobacter pylori43 and Salmonella 
typhmurium.44 Helicobacter pylori infection 
increased the release of gastrin, which 
has trophic effects that are important for 
mucosal defense and regeneration of the 
gastric mucosa. Of interest is that previous 
studies demonstrated an NFκB-mediated 
increase in serpinB2 expression in gastric 

mucus producing cells during Helicobacter 
pylori infection.14 Gastrin is linked to 
inflammation via the CCK-2 receptor 
expressed on specific cell types such as 
cancer cells, enterochromaffin cells, parietal 
cells, macrophages, and neutrophils.45 
Binding of gastrin to the CCK2 receptors 
on AGS cells (a human stomach cancer cell 
line) overexpressing CCK-2 upregulates 
the expression of serpinB2 through a 
proteosome β subunit, PSMB1.43 These 
data suggest a link between CCK-2 and 
increased serpinB2 expression to the effects 
of gastrin on maintenance of epithelial 
integrity, but this observation remains to 
be investigated in vivo.

The largest concentration of 5-HT is in 
enteroendocrine cells. There are numerous 
5HT receptors (5-HT1-7) that mediate 
the effects of 5-HT on gastrointestinal 
functions as well as cardiovascular cells. 
Several of these receptors are located also 
on immune cells, including macrophages, 
and are involved in inflammation and 
tissue regeneration. Of interest is that 
5-HT binding to primarily 5-HT7, but 
also to 5HT2b receptors, on macrophages 
upregulates serpinB2 expression and 
promotes the maintenance of the M2 
phenotype.30 There is also data showing 
the immune regulation of 5-HT receptors 
on macrophages during nematode 
infection.46 These data further emphasize 
the importance of serpinB2 as a modulator 
of macrophage function in response to 
variety of stimuli.

Conclusions

Enteric nematode infection induces 
stereotypic alterations in gut function 

that are orchestrated by the interactions 
of immune and structural cells (e.g., 
epithelial cells) that are linked to IL-4/
IL-13 activation of STAT6 signaling 
pathways. Macrophages express a number 
of protease receptors including PAR

1
, 

PAR
2
, and uPAR. The balance among 

proteases and inhibitors, including uPA 
and serpinB2, is critical for infiltration 
and migration of macrophages into 
tissue and for protection of macrophages 
from apoptosis. As macrophages are 
part of the first line of defense against 
enteric pathogens, factors that control 
their longevity and influx are critical 
to a protective host response. The 
polarization of M2 during nematode 
infection induces a STAT6-dependent 
upregulation of serpinB2 expression. 
SerpinB2 is emerging as a novel regulator 
of macrophage survival and deficiency in 
serpinB2 is linked to impaired CCL2-
mediated macrophage inf lux into small 
intestine. There is a growing list of 
factors including immune (LPS, Th2 
cytokines) as well as hormonal (gastrin, 
5-HT) that are linked to increased 
expression of serpinB2. Thus, serpinB2 
represents an immune regulated factor 
that has multiple roles in the intestinal 
mucosa.
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