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Abstract

Angiopoietin-like 2 (ANGPTL2) has been reported to induce sprouting angiogenesis; however, its

role in vasculogenesis, the de novo lumenization of endothelial cells (EC), remains unexplored.

We sought to investigate the potential role of ANGPTL2 in regulating human cord blood derived

endothelial colony forming cell (ECFC) vasculogenesis through siRNA mediated inhibition of

ANGPTL2 gene expression. We found that ECFCs in which ANGPTL2 was diminished displayed

a 3-fold decrease in in vitro lumenal area whereas addition of exogenous ANGPTL2 protein

domains to ECFCs lead to increased lumen formation within a 3 dimensional collagen assay of

vasculogenesis. ECFC migration was attenuated by 36% via ANGPTL2 knockdown (KD)

although proliferation and apoptosis were not affected. We subsequently found that JNK, but not

ERK1/2, phosphorylation was decreased upon ANGPTL2 KD, and expression of MT1-MMP,

known to be regulated by JNK and a critical regulator of EC migration and 3D lumen formation,

was decreased in lumenized structures in vitro derived from ANGPTL2 silenced ECFCs.

Treatment of ECFCs in 3D collagen matrices with either a JNK inhibitor or exogenous rhTIMP-3

(an inhibitor of MT1-MMP activity) resulted in a similar phenotype of decreased vascular lumen

formation as observed with ANGPTL2 KD, whereas stimulation of JNK activity increased

vasculogenesis. Based on gene silencing, pharmacologic, cellular, and biochemical approaches,

we conclude that ANGPTL2 positively regulates ECFC vascular lumen formation likely through

its effects on migration and in part by activating JNK and increasing MT1-MMP expression.
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INTRODUCTION

The two major modes of blood vessel formation are angiogenesis, the formation of new

lumenal structures from preexisting vessels, and vasculogenesis, the de novo formation of
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vascular structures through angioblast vacuolization and lumenization [1]. Vasculogenesis

occurs during development as endothelial precursors establish the primitive vascular plexus

and also postnatally from differentiation of circulating endothelial colony forming cells

(ECFC) [2, 3]. Derived from circulating mononuclear cells, ECFCs possess clonal

proliferative potential and the ability to form vessels in vivo by inosculating to the host

vasculature [4–6]. To date many genes have been established as regulators of angiogenesis

and vasculogenesis including the critical vascular endothelial growth factor (VEGF) and

angiopoietin families [7, 8]. More recently, a new family of genes, structurally similar to the

angiopoietins, has been discovered and was later designated the angiopoietin-like

(ANGPTL) gene family [9].

There are seven members in the ANGPTL family, and like the angiopoietins they possess

the characteristic C-terminal fibrinogen-like domain (FLD) and N-terminal coiled-coil

domain (CCD); however, unlike the angiopoietins, they do not bind the Tie1 or Tie2

receptors [9]. They have pleiotropic effects in vascular and nonvascular cell types capable of

regulating angiogenesis and various aspects of metabolism possibly through separate

domains [10]. Angiopoietin-like 2 (ANGPTL2) was originally cloned in 1999 by Kim et al

[11] and until recently was considered an orphan ligand [12, 13]. Kim et al [11] found that

ANGPTL2 mRNA levels are highest in blood vessels and skeletal muscle in rat embryos but

highest in heart, small intestine, spleen, and stomach tissue in adult humans, suggesting a

special role may exist for ANGPTL2 in the developing vasculature. In addition, they found

[11] that exogenous addition of recombinant human ANGPTL2 induces sprouting of porcine

pulmonary arterial endothelial cells (PPAECs) in vitro. An increase in blood vessel

formation also has been reported in the skin of transgenic mice that express ANGPTL2

under the control of a keratinocyte-specific promoter K14 [9]. However, whether ANGPTL2

was operating through angiogenesis or vasculogenesis was not examined. That ANGPTL2

has been shown to suppress endothelial barrier leakiness [9], a hallmark of angiogenesis,

suggests the latter is a possibility.

To investigate the potential role of ANGPTL2 in ECFC vasculogenesis, we used siRNA to

knockdown (KD) expression of ANGPTL2 in human cord blood derived ECFCs and

evaluated the treated cells ability to form vacuoles and lumens in a three-dimensional (3D)

matrix of pig skin oligomeric collagen (PSC) over 48 hours. This system allows

visualization of the initial steps of vessel formation, which occurs as ECs form vacuoles that

coalesce to form multicellular lumenized vascular structures [14]. We also evaluated the

effects of ANGPTL2 KD on other classic angiogenic and vasculogenic cell behaviors

including sprouting, migration, proliferation, and apoptosis. Since JNK activity and MT1-

MMP expression are known to regulate EC migration and vasculogenesis in 3D collagen

gels [15–26], JNK phosphorylation and MT1-MMP mRNA expression were investigated to

gain further insight into the mechanism of ANGPTL2 function in the human ECFCs.

METHODS

Cell culture and transfection

ECFCs were isolated from human umbilical cord blood as previously described [4]. Briefly,

cord blood (20–100 mL) was collected in heparin-coated syringes from healthy newborn

Richardson et al. Page 2

Angiogenesis. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



infants (38–40 weeks gestation). Blood was diluted 1:1 with Dulbecco’s Phosphate Buffered

Saline (DPBS) (Invitrogen) and overlaid onto Ficoll-Paque PLUS (GE). Cells were

centrifuged at room temperature at 740×g for 30 minutes. Buffy coat mononuclear cells

(MNCs) were collected and washed 3 times in complete Endothelial Growth Medium-2

(EGM-2), which is Endothelial Basal Medium-2 (EBM-2) (Lonza) with additives (Bullet

Kit) provided by the manufacturer supplemented with 10% fetal-bovine serum (FBS;

Hyclone), 2% penicillin/streptomycin (Invitrogen), and 0.25 μg/mL amphotericin B

(Invitrogen). Cells were seeded onto tissue culture plates pre-coated with type-1 rat-tail

collagen (BD Biosciences) at 37°C, 5% CO2, in a humidified incubator. Medium was

changed daily for 7 days and then every other day until first passaging. ECFC colonies

appeared between 5 and 22 days of culture and were identified as monolayers of

cobblestone-appearing cells and confirmed as previously described [4]. ECFC were released

from the primary culture dish by TrypLE™ Express (Gibco) and replated onto tissue culture

flasks pre-coated with Type I rat-tail collagen. Cells were expanded, and all experiments

were carried out between passages 3 and 6.

Transfection of ECFCs with ANGPTL2 and negative control small interfering RNA

(siRNA) was carried out with Lipofectamine RNAiMAX (Invitrogen) according to the

manufacturer’s recommendations with minimal modification. Briefly, ECFCs were plated at

104 cells/cm2 on collagen coated flasks the day before transfection in antibiotic free media

(EGM-2, bullet kit, and 10% FBS). Flasks were visually inspected the next day to verify

ECFCs were between 30 and 50% confluency before the addition of the Lipofectamine/

siRNA complex. Three unique ANGPTL2 siRNA oligonucleotides (Invitrogen) were

evaluated for maximum suppression of ANGPTL2 mRNA expression using qRT-PCR. All

three were equally effective in comparison to universal medium GC content negative control

siRNA (Invitrogen). The following siRNA sequence was used for all experiments: sense, 5-

GGCAAUGCGGGUGACUCCUUUACAU-3; antisense, 5-

AUGUAAAGGAGUCACCCGCAUUGCC-3. All experiments were carried out after

overnight transfection with a final siRNA concentration of 10 nM.

Vasculogenesis Assay

Type I pig skin oligomeric collagen (PSC) and necessary reagents (HCl, PBS, NaOH, and

CaCl2) were generated and prepared as previously described [14]. PBS was supplemented

with rhSDF1-α, rhIL3, and rhSCF (R&D Systems) such that the final concentration in each

matrix was 200 ng/mL as previously described [27]. Collagen-cell suspensions (2E3

cells/μL at 100 Pa) were kept at 4°C during mixing, pipetted into wells of a 96-well plate (58

μL/well), and allowed to polymerize for 30 min at 37°C, 5% CO2, in a humidified incubator.

Matrix-cell constructs were incubated for 2 days with media changed after 24 hrs. Media

consisted of EBM-2 supplemented with human fibroblast growth factor-basic (rhFGFb,

Gibco) at 40 ng/mL and reduced-serum II supplement (RSII) prepared as previously

described [28]. Constructs were fixed in 4% formaldehyde and stained with 0.1% toluidine

blue in 30% methanol. Quantification was performed on brightfield images representing the

central 9 fields of similar z-planes using a z-stack acquisition mode in each well of three

wells per group. MetaMorph imaging software (Molecular Devices) was used to trace

vacuoles and lumens and measure area. For experiments with JNK inhibition, ECFCs were
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pretreated in 2D for 4 hours prior to the vasculogenesis assay with JNK inhibitor SP600125

at 20 μM and the same concentration was used in the media for the 2 day assay. For

exogenous supplementation with tissue inhibitor of matrix metalloproteinase-3 (TIMP-3)

and ANGPTL2 protein, rhTIMP-3 (R&D Systems) and rhANGPTL2-FLD (fibrinogen like

domain) or rhANGPTL2-CCD (coiled-coil domain) (Adipogen) was added to the media (5

μg/ml). Anisomycin (Sigma) was added directly to the collagen matrices at 50 ng/mL in

EBM-2 plus FGFb and RSII. Brightfield images are shown unless otherwise specified.

Confocal Microscopy

Tissue constructs were fixed and stained with fluorescein isothiocyanate (FITC) conjugated

Ulex Europaeus Agglutinin 1 (UEA-1) lectin (L9006, Sigma-Aldrich, St. Louis, MO).

Constructs were imaged using confocal microscopy performed on an Olympus Fluoview

FV1000 confocal system adapted to an Olympus IX81 inverted microscope with a 60X

UPlanSApo water immersion objective (Olympus, Tokyo, Japan). Images (105.978 μm ×

105.978 μm) were collected in combined fluorescence and reflection modes for visualization

of ECFCs and collagen fibrils, respectively, to collect 3D images (2 μm thickness/slice).

Migration Assay

Confluent monolayers of ECFCs transfected with ANGPTL2 or negative control siRNA

were scratched with a 1000 μL pipette tip (Corning). Images were collected at 100X at 0 and

16 hours. The scratched area was quantified using ImageJ (NIH), and the area covered by

migration was calculated by subtracting the area at t = 16hrs from the area at t = 0.

Sprouting Assay

Qualitative assessment of endothelial sprouting was carried out as previously described [28].

Briefly, collagen matrices were made as described above without cells. After

polymerization, ECFCs in EGM-2 were seeded as a monolayer on top. After 24–48 hours,

matrices were fixed in 4% formaldehyde and stained with 0.1% toluidine blue in 30%

methanol.

Western blots

ECFCs transfected with either ANGPTL2 or negative control siRNA were serum starved for

5 hours in EBM-2 prior to stimulation with 50 nM phorbol-12-myristate-13-acetate (PMA)

for 30 min at 37°C. Cell lysates were prepared by resuspending cells in lysis buffer (20 mM

Tris-HCl pH 7.5, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 2 mM EDTA, 1 mM

Na3VO4, 1μg/ml each of aprotinin and leupeptin) followed by incubation on ice for 20 min,

insoluble components were removed by centrifugation at 12,000 ×g for 15 min. Protein

concentration was determined by a Lowry protein assay kit (Bio-Rad). Proteins were

separated by electrophoresis on 4–20% Tris-glycine minigels and then transferred onto

immobilon-FL PVDF membrane (Millipore). Nonspecific binding was blocked with

Odyssey blocking buffer for 1 hr at room temperature and incubated overnight at 4°C with

primary antibodies against phospho-JNK and phospho-ERK1/2 (1:1,000; Cell Signaling) in

blocking buffer. Blots were washed with PBS containing 0.1% Tween20, followed by

incubation for 1 hour at room temperature with anti-rabbit antibody (1:10,000; Li-cor).
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Immunoreactive bands were detected using the Odyssey Infrared Imager (Li-cor).

Densitometric analyses were performed using the infrared imager software (Odyssey; LI-

COR).

Quantitative (Real-Time) RT-PCR

ECFC-derived ECs were released from the primary culture dish (2D) by TrypLE Express

(Gibco) and centrifuged at 400×g for 5 min before homogenization in RLT buffer (Qiagen),

and ECs from collagen matrix plugs (3D) were homogenized directly in RLT buffer

(Qiagen) using a 0.5mL RNase-Free Pellet Pestle and Pellet Pestle Motor (Kimble-Chase).

Collagen matrices were pelleted by microcentrifugation at max speed (14,000 RPM) for 30

sec, and the supernatant transferred to a new microcentrifuge tube (Costar). RNA was

isolated using the RNeasy Micro Kit (Qiagen) according to the manufacturer’s instructions

using DNAseI on column genomic DNA digestion. RNA was quantified using a Nanodrop

1000 (Thermo Scientific) and quality was assessed by the A260/A280 and A260/A230

ratios. Reverse transcription was carried out using the Omniscript RT Kit (Qiagen)

incorporating Oligo (dT) 15 primer (Promega). Quantitative Real-Time PCR (qRT-PCR)

was performed using the FastStart Universal SYBR Green Master (ROX) (Roche) using 25

ng cDNA from three different patients’ ECFCs per reaction. Sequences for primers

(Invitrogen) can be found in Table 1. Amplification was performed in an ABI7500 Real-

Time PCR system (Applied Biosystems). Cycling conditions were as follows: 95°C for 10

minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. 7500

Software (Applied Biosystems) was used to determine the cycle threshold (Ct) values. Data

were analyzed using the 2−ΔCt method using the housekeeping gene ATP5B for

normalization. This method reports expression levels of transcripts relative to ATP5B. Each

sample was measured in triplicate in three separate experiments, and a maximum standard

deviation between Ct values of 0.3 was considered acceptable.

Statistical Analysis

Biological and technical replicates are illustrated in scatter graphs. Non-parametric tests

were performed using GraphPad InStat (GraphPad Software, San Diego California USA,

www.graphpad.com) as indicated in the figure legends.

RESULTS

ANGPTL family gene expression

To determine the relative gene expression levels of the ANGPTL gene family members in

ECFCs, we used quantitative real time RT-PCR (qRT-PCR). For reference purposes,

expression levels are shown relative to angiopoietin-2, a key regulator of angiogenesis. Of

the seven members in the ANGPTL gene family, ANGPTL2 and ANGPTL6 mRNA

expression levels were statistically higher than ANGPTL3 and ANGPTL7 in ECFCs (Figure

1A). Furthermore, ANGPTL1, 3, 5, and 7 all had relatively high Ct values (31, 35, 32, and

33, respectively) at reasonable cDNA loads (25 ng per reaction), which suggests they are

expressed at low levels.
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Due to previous reports of a stimulatory effect of ANGPTL2 on angiogenic sprouting, we

sought to determine whether or not modulation of ANGPTL2 affected vasculogenesis in

ECFCs, and to test this we used siRNA to silence expression of ANGPTL2. We first used

qRT-PCR to validate knockdown (KD) of ANGPTL2 expression and also examine the

effects of ANGPTL2 silencing on the expression levels of the other ANGPTL family

members. ANGPTL2 expression was decreased by 93%. ANGPTL4 appeared to have a

small but significant compensatory increase in expression in response to ANGPTL2 KD

without significantly altering expression levels of any other ANGPTL genes (Figure 1B).

ANGPTL2 in ECFC vasculogenesis

Next we observed the effect of ANGPTL2 gene silencing on ECFC vacuole and lumen

formation during a 2 days in vitro culture in 3D collagen gels. There was a significant 3 fold

decrease in the average lumenal area of the 3D ECFC derived vascular structures (Figure

2A). The total lumenal area was 2.2 fold lower in ANGPTL2 siRNA treated ECFCs (Figure

2B), and there was no significant difference in the total number of vascular structures,

although the average was approximately 40% higher in the ANGPTL2 KD ECFCs (Figure

2C). To account for the potential effect of the compensatory increase in ANGPTL4 levels,

we investigated the effect of ANGPTL4 KD and combined ANGPTL2 and 4 KD on

vasculogenesis in ECFCs. We found that both conditions had a similar phenotype to, but not

greater than, ANGPTL2 KD (data not shown). To demonstrate that the vascular structures

observed are actually lumenized, we used confocal microscopy to visualize collagen fibril

density and ECFCs by lectin staining. It was apparent that the space within the vascular

structures was devoid of collagen fibrils indicating a lumen was present (Supplementary

Figure 1).

To determine if ANGPTL2 has a positive effect on vasculogenesis, recombinant human

ANGPTL2 (rhANGPTL2) was added back to the media in normal ECFCs. It is still unclear

which domain of ANGPTL2, the coiled-coil domain (CCD) or fibrinogen-like domain

(FLD), is critical for its function in blood vessel formation, so we added each domain

separately to the vasculogenesis assay media at day 0. We found that the CCD but not the

FLD led to a statistically significant increase in lumen formation in normal ECFCs (Figure

3).

We also wanted to look at the effect of ANGPTL2 gene silencing on other common cell

behaviors known to be important in vessel formation such as sprouting, migration,

proliferation, and apoptosis. Kim et al originally observed a stimulatory effect of ANGPTL2

(200 ng/mL) on porcine pulmonary arterial endothelial cells (PPAEC) sprouting [11]. We

did not observe a decrease in sprouting behavior in ANGPTL2 silenced ECFCs compared to

control (Supplementary Figure 2). However, consistent with the prior publication [11], we

found no effect on cell proliferation as determined by cell counting using a hemocytometer

24 hours after siRNA transfection. To test this more rigorously, we replated ECFCs 24 hours

after transfection and counted nuclei 48 hrs later and again found no difference in cell

number (Supplementary Figure 3A). Importantly, there was no effect on apoptosis as

determined by flow cytometric Annexin V translocation (Supplementary Figure 3B).

However, we did find that ANGPTL2 KD significantly affected endothelial cell (EC)
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migration, which was consistent with previous observations [13]. Time-lapse images

collected following scratching a monolayer of ECFCs with a pipette tip revealed there was a

significant 36% decrease in the capacity of these cells to migrate and cover the scratched

area (Figure 4).

Cell signaling mechanisms

ANGPTL2 is a secreted glycoprotein thought to act in an autocrine or paracrine manner

through various putative receptors [12, 13], so we hypothesized that suppressing expression

of ANGPTL2 in ECFCs would result in alterations in the pathways typically known to be

involved in EC migration and lumen formation.

Previous studies have demonstrated that activation of c-Jun NH2-terminal kinase (JNK)

using anisomycin induced membrane type 1 matrix metalloproteinase (MT1-MMP) mRNA

expression in ECs and inhibition of JNK reduced MT1-MMP mRNA expression in ECs

[19]. We hypothesized that activation of JNK would be attenuated in ANGPTL2 siRNA

treated ECFCs. Indeed, we found that JNK, but not ERK1/2, phosphorylation was

significantly decreased in ANGPTL2 KD ECFCs (Figure 5). In addition, given the

previously established importance of MT1-MMP in EC migration and lumen formation [18,

22, 23, 25], we used qRT-PCR to determine the relative expression levels of MT1-MMP in

3D ECFC derived vascular structures and also to validate any effect of suppressing

ANGPTL2 expression on MT1-MMP transcript levels. We found that in ANGPTL2 siRNA

treated ECFCs, ANGPTL2 and MT1-MMP expression were significantly decreased in 3D

matrices at 48 hours (Figure 6).

We next wanted to determine if inhibiting JNK or MT1-MMP activation would result in a

similar phenotype to the ANGPTL2 KD in ECFCs and if activation of JNK would result in

increased lumenization. Using a JNK inhibitor we observed a statistically significant

decrease in ECFC lumen formation, and likewise, using a JNK activator, we observed a

statistically significant increase in lumen formation. Finally, we also added exogenous

recombinant human TIMP-3 (tissue inhibitor of metalloproteinases-3), which is known to

inhibit MT1-MMP translocation [29], to the media in cellularized matrices and observed a

statistically significant decrease in lumen formation similar to that found upon ANGPTL2

silencing (Figure 7).

DISCUSSION

ANGPTL gene expression and function in ECFCs has not been previously explored.

Interestingly, to date there are no known tissues where ANGPTL2, ANGPTL4, and

ANGPTL6 are all simultaneously expressed; nevertheless, they have been detected in the

circulation and each has a purported role in regulating angiogenesis [10] consistent with the

function of ECFCs. That ANGPTL3 is expressed in HUVECs but not ECFCs is interesting

since ANGPTL3 is known to be a positive regulator of angiogenesis [30], further supporting

a unique role for ANGPTL2 in ECFC vasculogenesis. In human subjects, ANGPTL1 and

ANGPTL2 are frequently co-expressed; thus, ECFCs may represent a rare cell type where

only ANGPTL2 is expressed. Kubota et al found that ANGPTL2 KD in zebrafish had no

effect on the vasculature but when ANGPTL1 and ANGPTL2 were both silenced, there
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were severe defects in the vasculature [31]. These results extended upon previous studies

suggested that ANGPTL2 has context dependent effects [32] and is consistent with our

observations of strong effects of ANGPTL2 KD without concomitant expression of

ANGPTL1. This also may help explain why ANGPTL2 knockout transgenic mice display

no gross effects in the vascular system.

3D in vitro models of EC vacuole and lumen formation have been instrumental in

discovering the key cellular processes and underlying molecular events necessary for

vasculogenesis [24]. We describe here for the first time a role for ANGPTL2 in ECFC

vasculogenesis using a 3D PSC based assay. This system differs from conventional

monomeric collagen matrices in that it incorporates oligomeric collagen, which has been

shown to facilitate stabilized, mature vessel network formation [14, 33]. Although vacuole

formation did not appear to be affected, lumen formation, the process by which multiple

vacuoles coalesce to form multicellular hollow vascular structures, was dramatically reduced

as reflected in the average lumenal area. Consistent with previous observations we found

that ANGPTL2 affects EC migration [13] and does not affect proliferation [11]. Tabata et al

found that treating HUVECs and HAECs with ANGPTL2 activated Rac1 and promoted

their migration of through a chemotaxis membrane, and Kim et al found that treating

HUVECs with ANGPTL2 protein had no effect on proliferation as determined by

[3H]thymidine incorporation. Kim et al also found that exogenous ANGPTL2 induces

sprouting in PPAECs, but in this study we did not find the reverse to be true as ANGPTL2

KD did not affect ECFC sprouting. Although there was no effect of ANGPTL2 on

proliferation in 2D, there were apparently fewer cells in ANGPTL2 KD ECFCs in 3D as

determined by DAPI staining (data not shown). However, we would propose this was likely

due to a decrease in the ability of ANGPTL2 KD ECFCs to migrate and interconnect

vacuoles or partially lumenized structures.

Importantly, ANGPTL2 protein was found to have a positive effect as exogenous addition of

ANGPTL2 coiled-coil domain (CCD) but not the C-terminal fibrinogen-like domain (FLD)

led to an increase in lumenization. It is known that ANGPTL2 acts through its CCD to

regulate survival and replating capacity of human cord blood hematopoietic progenitors

[34], but its angiogenic activity is thought to occur through the FLD based on similarities to

angiopoietin-1 [10]. However, it is still unknown which structural domain is responsible for

its function in ECs. Our results suggest that the CCD is critical for the positive effect

ANGPTL2 on vasculogenesis in ECFCs.

Tabata et al showed that a neutralizing antibody for integrin αvβ1 inhibited EC adhesion to

ANGPTL2-coated plates implicating αvβ1 as a receptor for ANGPTL2 in ECs [13]. Hu et al

found that angiopoietin-2, possessing the same characteristic coiled-coil and fibrinogen-like

domains as ANGPTL2, will bind αvβ1 when it cannot bind Tie2 and activates JNK to induce

expression of MMPs [35]. Interestingly, JNK has been shown to be a positive regulator of

EC behavior including migration and proteolysis via MT1-MMP [26]. In 2002, Koike et al

demonstrated that MT1-MMP but not other MMPs were required for migration of ECs in

3D collagen matrices [21], and in 2009 Stratman et al demonstrated that MT1-MMP is

actually required for lumen formation in 3D collagen matrices [25]. Indeed, the role of

MT1-MMP in EC migration and lumenization in 3D matrices has been well established such
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that it seems modulating JNK activation and MT1-MMP expression is a requirement for EC

lumenization [15–25]. Our data are consistent with these findings and corroborates our

central hypothesis that ANGPTL2 regulates ECFC vasculogenesis. Nevertheless, JNK

signaling is known to affect transcription of many genes, and thus we expect that ANGPTL2

receptor activation would therefore result in alteration of many genes in addition to MT1-

MMP. We conclude then that ANGPTL2 positively regulates ECFC lumen formation in

vitro probably through its effects on migration and in part by activating JNK and increasing

MT1-MMP expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Angiopoietin-like mRNA expression in ECFCs
qRT-PCR was performed for the ANGPTL family members in ECFCs (A). ANGPTL2 and

6 were found to be expressed significantly in ECFCs compared to ANGPTL3 and 7.

Expression of Angiopoietin-2 (ANGPT2) is included for comparison purposes. All data are

normalized to the housekeeping gene ATP5B. Next qRT-PCR was performed for the

ANGPTL family members in ECFCs treated with ANGPTL2 or negative control siRNA

(B). ANGPTL2 silencing is demonstrated. ANGPTL4 expression was elevated in response

to ANGPTL2 KD with no significant alterations in expression levels of the other ANGPTL

genes (Figure 1B). Technical replicates are represented by the same symbol with each

biological replicate represented by a unique symbol. NC = Negative Control; A2 =

ANGPTL2 KD. RQ = relative quantity. (n = 3). Statistical analyses: Kruskal-Wallis test

with Dunn post-test (Figure 1A) and Wilcoxon matched pairs test (Figure 1B).
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Figure 2. Quantitation of ECFC lumen formation in response to ANGPTL2 silencing in a 3D
assay of vasculogenesis
ANGPTL2 silencing significantly decreased the average vascular lumen area at 2 days

compared to negative control siRNA treated ECFCs (A). Representative vascular structures

for each group are shown. ANGPTL2 silencing significantly decreased the total lumenal

area of 3D vascular structures compared to negative control siRNA treated ECFCs (B) but

did not alter the average number of vascular structures (C). RQ = relative quantity; Bar = 10

μm. Technical replicates are represented by the same symbol with each biological replicate

represented by a unique symbol (n = 3). Statistical analysis: Mann-Whitney test.
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Figure 3. Quantitation of ECFC lumenal area in response to exogenous addition of rhANGPTL2
domains
The average lumenal area of ECFC derived 3D vascular structures treated with recombinant

human angiopoietin-like protein 2 fibrinogen-like domain (FLD), coiled-coil domain (CCD),

or vehicle (control) was calculated. CCD treatment but not FLD significantly improved

lumen formation in ECFCs. RQ = relative quantity; n = 3. Since there were no technical

replicates in this experiment, the standard error of the mean was included with the average

of each biological replicate to illustrate the size range of the vascular structures measured;

there were 324 structures measured on average per well. Statistical analysis: Kruskal-Wallis

test with Dunn post-test.
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Figure 4. Quantitative migration assay of ECFCs in response to ANGPTL2 silencing
Confluent monolayers of ECFCs were scratched with a 1000 μL pipette tip with the

boundaries indicated by the red lines. Images were collected until the negative control

siRNA treated ECFCs filled in the scratched area, which occurred no later than 16 hours

after the initial scratch. There was a significant delay in migration in ANGPTL2 silenced

ECFCs as determined by area covered. For the purposes of this figure to highlight

differences in migration, images were collected from experiments conducted with transgenic

ECFCs constitutively expressing GFP. RQ = relative quantity; Technical replicates are

represented by the same symbol with each biological replicate represented by a unique

symbol (n = 4). Statistical analysis: Mann-Whitney test.
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Figure 5. MAP kinase phosphorylation analysis
Representative Western blots are shown (A) with quantification (B) of ECFCs pretreated

with negative control or ANGPTL2 siRNA then serum starved for 5 hours followed by

treatment with 50 nM PMA or vehicle prior to lysis. There was significantly less JNK but

not ERK1/2 phosphorylation in ECFCs treated with ANGPTL2 siRNA compared to

negative control siRNA. RQ = relative quantity; n = 4. Statistical analysis: Kruskal-Wallis

test with Dunn post-test.
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Figure 6. Quantitative RT-PCR analysis of ANGPTL2 and MT1-MMP gene expression from 3D
ECFC vascular structures
3D vascular structures formed from siRNA treated ECFCs were lysed with RNA lysis buffer

at 48 hours. Real time PCR was used to determine relative expression levels of ANGPTL2

and MT1-MMP in 3D in response to ANGPTL2 KD. Both transcripts were found to be

decreased in ANGPTL2 silenced ECFCs in 3D. Data are normalized to the housekeeping

gene ATP5B. RQ = relative quantity; n = 3. Statistical analysis: Mann-Whitney test.
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Figure 7. Quantitation of ECFC lumenal area in response to activation or inhibition of JNK and
inhibition MT1-MMP
The average lumenal area of ECFC derived 3D vascular structures treated with JNK

activator, JNK inhibitor, or MT1-MMP inhibitor (TIMP-3). ECFCs display statistically

significant diminished lumen formation through inhibition of JNK activity, whereas

activation of JNK via anisomycin resulted in increased lumen formation compared to control

ECFCs. Inhibition of MT1-MMP function using exogenous addition of rhTIMP-3 resulted

in a statistically significant decrease in lumen formation. RQ = relative quantity; n = 3.

Since there were no technical replicates in this experiment, the standard error of the mean

was included with the average of each biological replicate to illustrate the size range of the

vascular structures measured; there were 248 structures measured on average per well.

Statistical analysis: Kruskal-Wallis test with Dunn post-test.
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Table 1
Quantitative (Real-Time) RT-PCR primers

Sequences of forward and reverse primers used in qRT-PCR experiments are provided.

Forward (5′-3′) Reverse (5′-3′)

ATP5B CCACTACCAAGAAGGGATCTATCA GGGCAGGGTCAGTCAGTCAAGTC

ANGPT2 GGATGGAGACAACGACAAATG GGACCACATGCATCAAACC

ANGPTL1 ATGATGTGGCATAATGGTAAACA AAGTGGGCGCAGTTTCCT

ANGPTL2 CCACCCTGGACAGAGATCAT AGTGGGCACAGGCGTTATAC

ANGPTL3 TCCTGCTGAATGTACCACCA TCTTCTCTAGGCCCAACCAA

ANGPTL4 GACCCGGCTCACAATGTC GGAACAGCTCCTGGCAATC

ANGPTL5 CACTTAGGACGGTATTCAGGAAA GGCATTGCATTTTGATTATCTTC

ANGPTL6 AGACCCAGAGACAGCAGGAG CCCACTCGCAGTTCATACAC

ANGPTL7 GGAGTGTATAAGCTTCCTCCTGAT CCTGAAGTCTCCATGTCACAGA

MT1-MMP CTGTCAGGAATGAGGATCTGAA AGGGGTCACTGGAATGCTC
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