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ABSTRACT Successful sequencing experiments require judicious sample selection. However, this selection must often be performed on
the basis of limited preliminary data. Predicting the statistical properties of the final sample based on preliminary data can be
challenging, because numerous uncertain model assumptions may be involved. Here, we ask whether we can predict “omics” variation
across many samples by sequencing only a fraction of them. In the infinite-genome limit, we find that a pilot study sequencing 5% of
a population is sufficient to predict the number of genetic variants in the entire population within 6% of the correct value, using an
estimator agnostic to demography, selection, or population structure. To reach similar accuracy in a finite genome with millions of
polymorphisms, the pilot study would require �15% of the population. We present computationally efficient jackknife and linear
programming methods that exhibit substantially less bias than the state of the art when applied to simulated data and subsampled
1000 Genomes Project data. Extrapolating based on the National Heart, Lung, and Blood Institute Exome Sequencing Project data, we
predict that 7.2% of sites in the capture region would be variable in a sample of 50,000 African Americans and 8.8% in a European
sample of equal size. Finally, we show how the linear programming method can also predict discovery rates of various genomic
features, such as the number of transcription factor binding sites across different cell types.

PREDICTING the genetic makeup of a large population
sample based on a small subsample serves two distinct

purposes. First, it can facilitate study design by providing the
expected number of samples needed to achieve a given dis-
covery goal, be it enough markers for a custom array design
or enough rare variants to perform a well-powered burden
test. Second, such predictions serve as a useful test for our
statistical and evolutionary hypotheses about the population.
Because evolutionary experiments for long-lived organisms
are extremely difficult, predictions about evolution are hard
to falsify. By contrast, predictions about the outcome of se-
quencing experiments can be easily tested, due to the rapid
advances in sequencing technology. This opportunity to test
our models should be taken advantage of. Here, we show
that such predictions can be easily generated to high accu-

racy and in a way that is robust to many model assumptions
such as mating patterns, selection, and population structure.

We are interested in predicting the number of sites that
are variable for some “omic” feature across samples. Fea-
tures may be of different types (SNPs, indels, binding sites,
epigenetic markers, etc.), and samples may be cells, cell
types, whole organisms, or even entire populations or spe-
cies. For definiteness, we focus primarily on predicting the
discovery rate of genetic variants (SNPs or indels) in a pop-
ulation. Because variant discovery is central to many large-
scale sequencing efforts, many methods have been proposed
to predict the number of variants discovered as a function of
sample size in a given population. Some methods require
explicit modeling of complex evolutionary scenarios, fitting
parameters to existing data (Eberle and Kruglyak 2000;
Durrett and Limic 2001; Gutenkunst et al. 2009; Gravel
et al. 2011; Lukić et al. 2011). These approaches enable
model testing, but they are complex and computationally
intensive. The interpretation of model parameters can
also be challenging (Myers et al. 2008). Ionita-Laza et al.
(2009) pointed out a similarity between the variant discov-
ery problem and a well-studied species counting problem in
ecology (Pollock et al. 1990), and this led to the develop-
ment of tractable heuristic approaches that rely on simple
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assumptions about underlying distributions of allele fre-
quencies (Ionita-Laza et al. 2009; Ionita-Laza and Laird
2010; Gravel et al. 2011). These methods are easy to use
and often accurate, but the validity of the heuristic assump-
tions is uncertain, and departures from these models can
lead to uncontrolled errors (see Link 2003 and the debate
in Holzmann et al. 2006).

In this article, we build on results of previous studies and
propose improved estimators, quantifying their uncertainties
and biases (Ionita-Laza et al. 2009; Ionita-Laza and Laird
2010; Gravel et al. 2011). Even though fully nonparametric
estimators were deemed impossible in the ecology problem
(see Link 2003 and Discussion), we obtain a nonparametric
estimator based on linear programming (LP) that is asymp-
totically optimal in the infinite-genome limit, in the sense
that the estimated confidence intervals contain precisely the
values that are consistent with the data. These LP estimators
are similar to estimators developed in the slightly different
context of vocabulary size estimation (see Efron and Thisted
1976 and Discussion). Whereas parametric approaches were
needed to get meaningful predictions beyond 10-fold ex-
trapolation in the vocabulary problem, the nonparametric
LP approach provides estimates of the number of genetic
variants within 6% of the correct value under 20-fold sample
increases in a realistic genetic model in the infinite-genome
limit and within 35% when 107 polymorphisms are present
in the population. We also present a jackknife estimator and
provide strategies to estimate both the sampling uncertainty
(via bootstrap) and bounds to the bias of the estimator. By
applying the estimators to data generated by the 1000
Genomes Project (1000G) and the National Heart, Lung,
and Blood Institute Exome Sequencing Project (ESP), we
find that both estimators compare favorably with the state
of the art for computational efficiency, accuracy, and robust-
ness to biases.

We provide examples of how these estimators can be
used after preliminary data have been obtained to decide
on the sample size required to achieve a given discovery
goal, to estimate the impact of sample composition on
projected study outcomes, and to predict the proportion of
synonymous to nonsynonymous sites as a function of
sample size. Experimental design decisions require weigh-
ing many different factors, some of which must be
estimated from incomplete information. Simple and robust
estimates of the composition of the final sample should
provide a useful tool for scientists seeking to obtain
a clearer picture of the expected outcomes of different
experimental strategies.

Finally, because nonparametric approaches do not de-
pend on a specific evolutionary or biochemical model, they
can be applied to a variety of genomic features. As an
illustration, we apply the LP approach to predict the number
of DNaseI footprints to be identified as a function of the
number of cell types studied. Thus, the number of occupied
transcription factor binding sites across all cell types in an
organism can be estimated directly (and accurately) from

a randomly selected sample of cell types. In addition to
being a tool for study design, the discovery rate can answer
fundamental biological questions, such as the total pro-
portion of DNA that is bound by any or all transcription
factors in any cell type.

Software is available through the author’s webpage.

Methods

Capture–recapture experiments use statistical inference to
estimate population sizes without observing every individ-
ual. They use the overlap among random subsamples to
estimate redundancy and therefore how much new informa-
tion is to be found in unobserved samples. For example, the
size of a rabbit population may be estimated by tagging R1
randomly selected rabbits and counting the proportion p of
tagged rabbits in a subsequent random sample from the
population. If rabbits and samplings are uniform and inde-
pendent, the total population can be estimated as R1/p. In
practice, a number of complications may arise: sampling
conditions may vary across field trips, rabbits can join or
leave the population, and they can become afraid or fond
of the capture device. As a result, an extensive literature on
statistical methods accounts for these complications (Pollock
et al. 1990). A particularly challenging situation occurs
when rabbits vary in their probability of capture. In this case,
no amount of data can rule out the existence of a large
number of very uncatchable rabbits. Based on this intuition,
it has been argued that an unbiased estimator for this prob-
lem required prior knowledge of the distribution of capture
probability (Holzmann et al. 2006).

Ionita-Laza et al. (2009) pointed out that predicting the
number of genetic variants that are present in a population
is closely related to this rabbit-counting problem. In the
analogy between the genetic and ecological cases, displayed
in Table 1, rabbits to be counted are replaced by genetic
variants; the capture of a rabbit is replaced by the variant
identification in a sequenced (haploid) genome; and the
probability of capturing a given rabbit on a given field trip
is replaced by the population frequency of the variant.

Whereas the ecological problem requires us to take into
account the distribution of catchabilities among rabbits, the
genetics problem requires us to consider the distribution of
allele frequencies among genomic loci. This distribution,
F(f), depends on past mutation rates, demographic history,
and selection and thus provides a natural testing ground for
evolutionary models (see, e.g., Gutenkunst et al. 2009 and
Lukić et al. 2011 and references therein). The variant dis-
covery rate therefore depends on many evolutionary param-
eters, but it is also limited by basic sampling statistics: in all
models, the discovery rate per sample is expected to de-
crease as the sample size is increased. The goal of this article
is to formalize this intuition and develop quantitative pre-
diction methods.

We consider a general model of “omic” diversity that we
describe in terms of genotype diversity. A haploid genome
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has L independent loci. Each locus i has a genotype gi that is
a “reference” with probability 1 2 fi and a “nonreference”
with probability fi. This nonreference allele frequency fi is
drawn from an underlying frequency distribution F( f). To
generate n samples in this model, we first draw each
{fi}i=1,. . . ,L from F(f). Then, for each locus i, we generate
n independent genotypes. We consider a variant “discov-
ered” if the nonreference allele has been discovered. An
alternate definition, where a variant is discovered if both
alleles have been observed in the sample, requires
only minor modifications to what follows.

We do not know F(f) and wish to learn about it from the
data. What we do observe is the sample site-frequency spec-
trum (SFS), the histogram {fn(j)}j=1,. . .,n counting loci
where exactly j of n chromosomes have the nonreference
allele in our sample. In the limit of infinite L,

fnð jÞ ¼
Z 1

0

�
n
j

�
f jð12 f Þn2j Fð f Þdf : (1)

The SFS is a sufficient statistic for the unknown distribution
F(f). We are now interested in predicting V(N), the total
number of variants discovered in a large sample of finite size
N. Consider the number of undiscovered variants:

VðNÞ2VðnÞ ¼
Z 1

0

�
ð12 fÞn2 ð12 f ÞN

�
Fð fÞdf : (2)

This is bounded below by 0, since the number of discovered
variants must be positive. Because the rate of variant
discovery per sample is expected to decrease with sample
size, this quantity can also be bounded above. In Supporting
Information, File S1 we provide simple bounds that are
based on generalizations of this argument and expressed
as linear combinations of the fn(j); we refer to those as
naive linear bounds. Even though they are mathematically
interesting, we see in Figure 1 that naive linear bounds do
not provide the best practical bounds.

Linear programming

Rather than think of our sample of size n as drawn from an
infinite population, imagine that it is drawn from a larger
sample of size N . n, with allele frequency distribution
FN(i). In the limit of an infinite genome, the problem of
finding values of VðNÞ ¼ P

i 6¼0FNðiÞ that are consistent with
the observed fn(j) can be formulated as the linear program
displayed in Table 2. This infinite-genome linear program

always has a solution if the subsample was indeed generated
by hypergeometric sampling from a distribution FN(i). Since
we have shown that V(N) is bounded, the solution to
the linear program is precisely the finite interval of values
that are consistent with the data. The existence of such
an interval settles the question of whether estimates can
be obtained without assumptions about the underlying
frequency distribution (Holzmann et al. 2006): point estima-
tors require assumptions about FN(i), but interval estima-
tors can be obtained using LP. If N = N, the intervals are
semi-infinite. In practice, we can efficiently calculate tight
bounds on V(N) for N in the thousands through the revised
simplex method (see, e.g., Kasana and Kumar 2004; here we
use a version implemented in Mathematica).

An LP formulation of the capture–recapture problem was
also used in a related problem of vocabulary estimation,
where the sampling process is Poisson rather than hyper-
geometric (Efron and Thisted 1976). By contrast to the Pois-
son case, where the unknown distribution of frequencies F
is arbitrary, the underlying function FN(i) in the genetics
problem is usually drawn from a larger population of size
M, and this imposes additional constraints on FN(i) that can
be incorporated into the linear program to improve accuracy.
We now have

fn ¼ AM;n �FM: (3)

We wish to find an upper and a lower bound to the total
number of variants. We must therefore solve two linear
programs with the same constraints but opposite objective
functions: 6cN.AM,NFM, where cN = {0, 1, 1, . . . , 1}. The
resulting interval is the best possible estimator in the infin-
ite-sites model for extrapolating from n to N in a population
of size M, without using assumptions on the underlying

Figure 1 Bounds on the number of polymorphic sites to be discovered,
based on discoveries in samples of size n = 10 and n = 50 from model (4),
using second-order naive linear and linear programming (LP) bounds. The
shaded areas correspond to strict upper and lower bounds in the infinite-
sites model and do not rely on any assumption about distribution (4).
Note that LP provides dramatically tighter confidence intervals for both
sample sizes and that order-of-magnitude extrapolations can be per-
formed for LP and n = 50 with high accuracy.

Table 1 Some analogies between rabbit and genetic variant
counting

Polymorphic loci Rabbits

Sequenced chromosome Sampling expedition
Nonreference genotype Capture
Allele frequency Rabbit catchability
Rare variant Rascally rabbit
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model. In cases where we require a point estimator, we
simply use the average of the upper and the lower bound.
This is not entirely arbitrary—given the current constraints,
the solutions at the constraint boundary have a frequency
spectrum that reaches zero for some frequency (Figure S6).
We expect the correct value to lie in the interior of the
interval.

Linear estimators

The LP bounds are the best we can do without assumptions
about FN. However, these may be computationally intensive
for very large N. Given the general success of the Burnham–

Overton (BO) jackknife estimators (Burnham and Overton
1979), it is worth asking whether similar estimators could
be successful here. However, the BO assumptions that
VðnÞ ¼ Pp

i¼0ai=n
i fail even for a panmictic, neutrally evolv-

ing constant-size population [i.e., the standard neutral model,
where V(n) ’ log(n)].

InGravel et al. (2011),weproposedanexpansionof the form
VðNÞ2VðnÞ ¼ P

iaiðHðNÞ2HðnÞÞi; with HðnÞ ¼ Pn21
i¼1 1=i;

the (n2 1)st harmonic number. A simpler and more principled
expansion isVðnÞ ¼ Pp

i¼0biH
iðnÞ:We show in File S1 that both

expansions yield the same jackknife estimates, but the latter is
more tractable. Even though more general expansions could be
considered, this particular expansion is practical because (a) it
provides exact results at linear order in the standard neutral
model, (b) it allows themodeling of a diversity of functions that
increase slowly but do not converge, and (c) it performs well in
simulations (FigureS3).We refer to the resulting estimate as the
harmonic jackknife.

Finite genome

Two complications can arise as a consequence of the
finiteness of the genome. First, the infinite-genome approx-
imation underlying the standard neutral model expression
V(n) � log(n) that serves as a starting point for the jackknife
expansion may not hold: for a large enough sample size, we
will run out of sites. The BO estimator might eventually
become a better choice. The LP approach would not be sen-
sitive to this problem, as it does not rely on the standard
neutral model.

The second complication introduced by a finite genome is
that the observed site-frequency spectrum is now a random

variable, as there are a finite number of observations per
frequency bin. For the jackknife estimator, this may result in
large, uncontrolled inaccuracies, especially if high-order
estimators are used. The infinite-sites LP problem, by
contrast, is likely to be infeasible in the presence of noise.
Under the random Poisson field approximation, one may
attempt to maximize the likelihood

L½F� ¼
Yn
i¼1

P
�ðAFÞi;fðiÞ

�
;

under the constraint F $ 0, where P(m, x) is the Poisson
distribution with mean m. The maximizing F may or may
not be unique (so that we may have either a point or an
interval estimator). Unfortunately, because the optimizing
problem is now nonlinear, the general optimization problem
is intractable in its exact form.

To take advantage of the LP formalism, we may wish to
relax some of the constraints imposed as equalities in the
infinite-L limit, in such a way that realizable vectors exist
and the LP problem can be solved. One approach is to turn
equality constraints into range constraints (Efron and
Thisted 1976), with width informed by the expected fluctu-
ation sizes in each bin. However, a more efficient option is to
coarsen the least informative bins. Since most of the unob-
served variants are rare, we do not care for the precise
frequency of the common variants. We use a bin-merging
strategy, collapsing bins containing common variants into
a smaller set of coarser bins. This has the added benefit of
reducing the number of constraints, making the problem
numerically more tractable. We use a simple scheme in
which we keep the p lowest-frequency bins intact and then
merge the next two bins, then the following four bins, and
so on, increasing the bin size exponentially until all bins
have been taken into account. We then choose p as high
as possible without making the LP problem infeasible. For-
tunately, Figure S2 shows that it is not necessary to use
a large number of bins to obtain tight bounds.

This procedure will result in a predicted range for the
number of discovered polymorphisms. This range accounts
for uncertainties about the underlying distribution, but not
for sampling uncertainty. To account for sampling uncer-
tainty, we can bootstrap the data, each bootstrap iteration
providing a confidence interval. We can then define confi-
dence intervals by using 95% confidence intervals on both
the upper and lower bounds. Such confidence intervals on
bounds are expected to be more conservative than confi-
dence intervals on point estimates.

Multiple populations

The strategies described above do not require random
mating assumptions. They can therefore predict the number
of variants in samples drawn from multiple populations if
subsamples from the subpopulations are available. The LP
approach can be generalized to bound any linear function of
the joint SFS, including the number of variants private or

Table 2 The linear program formulation

Variables FN(i), i 2 {0 . . . , N}

Objective function VðNÞ ¼
X
i 6¼0

FNðiÞ[ cN �FN

Observational constraints
fnð jÞ ¼

XN

i¼1

�
i
j

��
N2 i
n2 j

�
�

N
n

� FNðiÞ;

[AN;n �FN :

Nonnegativity constraints FN(i) $ 0.
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shared across samples. However, the number of variables
grows rapidly with the number of populations, and such
a linear program would require careful optimization. We use
a simpler strategy and form a subsample with the appropri-
ate ancestry proportions and extrapolate using the single-
population strategies outlined above. In Figure S5, we show
extrapolations based on 100 African and 100 European hap-
lotypes, using 1000 Genomes Yoruba (YRI) and European-
American (CEU) populations, as well as results based on
equal-sized samples using a known simulated demographic
history. As expected, we find that discovery rates are higher
in mixed populations, and the mixing proportion that max-
imizes discovery depends on the total sample size.

Alternate approaches

We compare the results of the methods presented above to
three different strategies: (a) the parametric model of Ionita-
Laza et al. (2009), which supposes that the allele frequency
distribution can be modeled as a beta-distribution with param-
eters fitted to the observed distribution of allele frequencies;
(b) the standard Burnham–Overton estimator of order 3,
which supposes that the proportion of missed variants at sam-
ple size N can be expanded as a third-order polynomial in 1=N;
and (c) a fully model-based approach, using @a@i (Gutenkunst
et al. 2009) to fit a three-parameter, one-population demo-
graphic model to the observed SFS. The model involved two
periods of constant population size, N1 and N2, and instanta-
neous change between the two values at time t.

Results

Simulations

To study the predictive power of different methods in the
infinite-sites limit, we generated expected frequency spectra
in a population of M = 1000 individuals, with

F1000ðiÞ } 1
iþ 0:1

; (4)

and for subsamples of size n 2 {10, 20, 50}. Extrapolations
were attempted to N 2 {20, 50, 100, 200, 500, 1000}. Fig-
ure 1 presents extrapolations based on samples of size 10 and
50, using naive linear and LP bounds, and Table 3 shows con-

fidence intervals for extrapolations to N = 200, using two dif-
ferent naive linear bounds: LP and LP using theM. N strategy.
To facilitate comparison, the predicted number of polymor-
phisms is expressed as a percentage of the variants in the pop-
ulation of 1000 individuals. Because these simulations closely
follow the harmonic jackknife assumptions, harmonic jackknife
estimates are essentially perfect, but this is not representative.
Harmonic and Burnham–Overton jackknife estimates with dif-
ferent underlying distributions are presented in Figure S3 and
in the 1000 Genomes example below.

LP approaches provide significantly tighter bounds than
second-order naive linear bounds and, surprisingly, allow for
accurate extrapolations over more than an order of magni-
tude in sample size. However, these simulations assume
a nearly infinite genome, and the convergence to this limit
may be slow. Figure S7 shows the slow increase in prediction
accuracy with sample size. In a sample with 10 million poly-
morphisms, the 20-fold extrapolations are not very precise,
but 8-fold extrapolations provide conservative lower bounds
4% below the correct value and upper bounds 16% above it.

Subsampling 1000 Genomes data

The 1000 Genomes Project (2012) has released exome-capture
data for 1092 individuals from 14 populations: some from
predominantly European [European-American (CEU), Tuscan
(TSI), British (GBR), Finnish (FIN), and Iberian (IBS)], African
[Yoruba (YRI) and Luhya (LWK)], and East Asian [Han Chinese
(CHB, CHS) and Japanese (JPT)] ancestry and others of mixed
continental ancestry [African-American (ASW), Mexican (MXL),
Colombian (CLM), and Puerto Rican (PUR)]. Figure 2 shows
the number of nonreference variants discovered as a function of
sample size in each population.

To estimate the accuracy of the capture–recapture strat-
egies, we randomly drew subsamples of 10, 20, and 50

Table 3 Confidence intervals for extrapolating the number of
polymorphic sites discovered in 200 chromosomes, based on
samples of size n = 10, 20, and 50 and four different approaches,
in the infinite-sites limit

N = 200 Sample size (n)

Method 10 20 50
Naive linear, d = 2 69–375 79–215 93–128
Naive linear, d = 2, 3 69–203 79–139 93–106
LP, M = N 76–173 92–109 99.98–100.01
LP, M = 1000 78–167 96–106 99.9999–100.0001

The intervals represent 100% confidence intervals expressed as percentages of the
correct value from the model given in Equation 4.

Figure 2 Number of nonreference variants discovered for each of the 1000
Genomes Project populations (solid lines). Linear programming (LP) predic-
tions (shown as vertical intervals) are based on random subsamples of diploid
individuals corresponding to 20, 40, and 100 haploid genomes. The triangle
tips indicate the 95% confidence maxima for the LP upper bounds and 95%
confidence minima for the LP lower bounds from 50 bootstrap runs. The
short horizontal lines between triangles represent the width of the confidence
interval for a single LP run; it is thinner than the line width in most instances.
Each displayed interval uses the maximum subsample size available.
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diploid individuals and extrapolated the number of discov-
eries from each subsample size to the next larger subsample
size or to the full population size. We find that the LP ap-
proach and the harmonic jackknife provide accurate esti-
mates to within a few percent of the true values (Figure 2
and Figure 3), whereas the BO and beta-distribution estima-
tors underestimate the number of variants for most popula-
tions (Figure 3). The demographic model approach is only
slightly more biased than LP and harmonic jackknife, but it
is also more intensive computationally and technically.

Even though the harmonic jackknife and LP approaches
appear unbiased for all populations, the variance of the
estimate depends on the population, with recently admixed
populations (ASW, CLM, MXL, and PUR) showing the most
variance, followed by populations with known cryptic re-
latedness (LWK and CHS). This variance indicates that the
relatively small subsamples have “personality” in these pop-
ulations—if a sample contains an individual with a particu-
larly high European ancestry proportion or a pair of closely
related individuals, it may sway the estimate in a way that
would not occur in a more uniform sample. If we consider
confidence intervals based on Poisson random field (PRF)
parametric bootstrap, which assumes a perfectly homoge-
neous sample, 95% confidence intervals contain the observed
data in 76% of cases, whereas the harmonic jackknife confi-
dence intervals contain the true value 68% of the time (see
also Figure S1). If we exclude populations with admixture
and relatedness, the proportion of confidence intervals con-
taining the correct value increases to 92% for LP and 86% for
the jackknife. Inhomogeneity effects are expected to decrease
with sample size.

Importantly, both the harmonic jackknife and LP estimators
appear to remain unbiased and accurate even for small
inhomogeneous samples. This is in stark contrast to the BO
jackknife and the parametric beta-distribution approach of Ion-

ita-Laza et al. (2009) and Ionita-Laza and Laird (2010), which
exhibit substantial bias for most populations (Figure 3).

Extrapolations using 1000 Genomes data

Extrapolations from the 1000G data are shown in Figure 4.
The harmonic jackknife and LP estimates are in good agree-
ment. As in Nelson et al. (2012), we find that the African-
American population (ASW), with predominantly West African
and European continental ancestries, has the highest predicted
discovery rate. This is a joint effect of the high diversity of the
African source population and of the contribution of two con-
tinental populations. By contrast, the FIN population shows the
least amount of diversity, consistent with a smaller recent ef-
fective population size. Whereas the populations tend to cluster
by continental ancestry at low sample sizes, reflecting shared
histories, continental ancestry becomes less informative as
sample sizes are increased, revealing consequences of the more
recent histories of the sampled populations.

The Exome Sequencing Project example

To test whether the approach is applicable to cross-cohort
prediction, we applied the method to data from the first 2500
sequenced individuals of the Exome Sequencing Project
(Tennessen et al. 2012), which combined data across different
cohorts and sequencing centers. Figure 5 shows the total number
of variants based on variants observed by four different sequenc-
ing groups (focusing on 1-LDL, 2-EOMI, 3-BMI and EOS, 4-Lung
diseases; see Tennessen et al. 2012 for cohort and project
descriptions). We find excellent agreement for predictions
based on these subsets. The largest departure is from the
European-American sample for group 3, which is also the
smallest subset.

Finally, to obtain the prediction for the largest possible
sample, we considered the most recent data released by the ESP
project, including .6500 individuals of European-American

Figure 3 Predicted number of new variants discovered in N = 100 haplotypes
based on multiple subsamples of 20 diploid individuals from 1000 Genomes
populations, expressed as a proportion of the correct value. We display the
existing Burnham–Overton (Burnham and Overton 1979) and beta-distribution
(Ionita-Laza et al. 2009; Ionita-Laza and Laird 2010) predictors, a prediction
based on a three-parameter demographic model fitted using @a@i, and the
harmonic jackknife and linear programming (LP) approaches presented here.

Figure 4 Predictions of nonreference exomic SNPs to be discovered in a se-
lection of the 1000G populations as a function of the number of chromo-
somes sequenced, using the harmonic jackknife (dashed lines) and linear
programming (LP) (vertical intervals, shown for a subset of populations) on
the full data set. The triangle tips indicate the 95% confidence maxima for the
LP upper bounds and the 95% confidence minima for the LP lower bounds
from 50 bootstrap runs. The short horizontal lines between triangle tips rep-
resent the width of the confidence interval for the nonbootstrapped sample.
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and African-American descent, and generated predictions
based on samples of 2000 African Americans and 4000 Euro-
peans, for sites with mean coverage.40. Even though African-
American populations have the most variable sites in
present-day samples, we predict that this will no longer be
the case in samples of 50,000 diploid individuals, with 8.7%
of target sites predicted to be variable in European Ameri-
cans, compared to 7.2% in African Americans. The crossover
is predicted to occur between 7500 and 10,000 individuals.
The predicted number of variants is higher in European
Americans for both synonymous and nonsynonymous variants
(Figure 6A), but the proportion of nonsynonymous variants is
likely to remain higher in Europeans than in African Americans
(Figure 6B). The nonsynonymous:synonymous ratio will re-
main considerably lower than the neutral expectation under
a Hwang–Green mutational model (Hwang and Green 2004)
until samples in the millions are considered.

DNaseI footprinting

Because the LP approach is nonparametric, it can be applied
to any genomic feature that is present genome-wide and
across samples. To illustrate this, we consider DNaseI
footprints, which indicate sites where transcription factors
bind to DNA and protect against cleavage by DNaseI. Encode
produced a genome-wide map of such features across 41
different cell types (Thurman et al. 2012). Using the same
software as above, we are able to predict the number of
transcription factor binding sites that will be identified as
the number of cell types is increased. We define “sites” as
contiguous genomic regions where at least one cell type
has a footprint. The LP bounds are particularly tight in
this example (Figure 7), and the main source of uncer-
tainty in this problem is the degree to which the choice of
cell types in the Encode study is representative of the
remaining cell types with respect to transcription factor
binding.

Discussion

Theoretical and statistical considerations

Jackknife and LP approaches for finite and infinite
extrapolation for the species-counting problem have been
discussed before (Efron and Thisted 1976). The sampling
processes, binomial for the rabbit-counting problem, Pois-
son for the species-counting problem, and hypergeometric
in the genetics context, lead to fundamental differences.
For example, in the Poisson case, an infinite number of
data points are available because each species can be ob-
served an arbitrary number of times. This allows for
a (possibly divergent) formal expansion of the number
of unobserved variants in terms of the {f(i)}i=0,. . .,N

(Efron and Thisted 1976). In the binomial and hypergeo-
metric cases, we have only a finite number of observations
{f(i)}i=0,. . .,n, making it clear that the series expansion
cannot provide an exact result. In addition, the size M
of the population from which our sample was drawn
determines how accurately we can perform extrapolations
to sizes N , M, a situation that does not have a direct
analog in the Poisson case.

Figure 5 Extrapolations based on different African-American (aa) and
European-American (ea) subcohorts of the ESP metacohort on the full
sample size. The different subcohorts correspond to data obtained from
different projects and sequencing centers, as explained in the text.

Figure 6 (A) Projections for the number of synonymous and nonsynon-
ymous sites in African Americans and European Americans based on the
ESP sample. (B) Observed and projected ratio of nonsynonymous to syn-
onymous variants in the two populations.
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A difference between the genetics problem and both the
species- and rabbit-counting problems is the target extrap-
olation size: in many ecological problems, the number of
field trips itself is not a variable of interest, and the ultimate
goal is to extrapolate to infinite sample sizes. In such a case,
the resulting confidence interval would be semi-infinite.
Intuitively, we can never exclude the possibility that a very
large number of very uncatchable rabbits have eluded
detection. As a result, all point estimates require implicit
or explicit assumptions about the existence of such sneaky
rabbits. This led to the correct statement (Link 2003) that
nonparametric point estimates are impossible in the rabbit-
counting problem. Nonparametric point estimates are still
impossible in the finite extrapolation context studied here:
there is a finite interval of values equally consistent with the
data, and any choice implies parametric assumptions. How-
ever, if this finite interval is narrow enough, we may not
need point estimates: in many cases, the predicted consis-
tency interval is narrower than other uncertainty sources.
Nonparametric point estimates do not exist, but this may
not be important: LP provides a practical, nonparametric
interval estimator.

Some of the strategies that we have proposed may
translate back to the ecology problems. One example is
the coarsening strategy used in the finite-genome problem,
in which we merge bins of less-informative common variants
to improve computational performance and accuracy. We
have found that extrapolations can be accurate beyond 20-
fold increases in sample size, a finding surprising in the light
of previous work. The accuracy of projections as a function
of sampling scheme, sample size, and model assumptions
remains a largely open question of considerable theoretical
interest.

We have discussed five different extrapolation strategies
in this article and found that two of these (the harmonic
jackknife and LP) outperformed the others (beta-distribu-
tion, demographic modeling, and BO jackknife). The beta-

distribution and demographic modeling suffer from their
attempt to model the entire allele frequency distribution via
a few-parameter family of models. With larger data sets,
departures from these model families become more signif-
icant and lead to the observed biases. By contrast, the
jackknife approaches fit a similar number of parameters but
model only the rare end of the frequency spectrum, which
contains most of the information about future discovery
rates. In that sense, they make better use of fitting
parameters, but the assumptions of the BO jackknife differ
too much from realistic genetic scenarios. The assumptions
of the harmonic jackknife, by contrast, include realistic
genetic scenarios, and as a result the extrapolations are
quite accurate. Finally, linear programming does not require
any assumptions about allele frequency distribution and as
a result is much more broadly applicable than the other
methods. Furthermore, in the infinite-genome limit, it uses
all the information available in the data, and we have found
it to be surprisingly accurate. Thus, the nonparametric and
less parametric methods fare very well in this comparison.
This is because the large data set is very informative about
the underlying distribution, making parametric assumptions
both less useful and more risky.

Practical aspects

Where computationally tractable, the linear programming
approach has important advantages, the main one being the
easy transferability to different types of problems. However,
from a practical standpoint, jackknife estimators are not to
be discounted. They are extremely fast and, even though the
underlying assumptions may be difficult to interpret in
terms of the fundamental processes involved, they tend to
produce accurate estimators in a wide range of scenarios.
Comparison of the exact and jackknife weights (Figure S4
and File S1) provides good intuition for this relative robust-
ness. Finally, even though the LP bounds are asymptotically
optimal among nonparametric estimators, a visual inspec-
tion of the underlying distributions (Figure S6) suggests that
even fairly conservative biological assumptions can produce
narrower bounds. For example, requiring that the large pop-
ulation be drawn from an even larger population resulted in
improved intervals (Table 3). Some other assumptions, such
as smoothness or monotonicity over a range of frequencies,
can easily be accommodated in a linear program and would
be worth exploring. In cases where LP and jackknife are
applicable, we suggest using both methods; if the jackknife
falls outside the LP bounds, we know that its assumptions
were not met, and the LP estimator should be used. Other-
wise, the jackknife estimator is probably the most principled
guess among the values allowed by LP.

The most crucial assumption underlying the extrapola-
tion methods presented here is random sampling—we must
be able to consider the existing sample as a random subset
of the larger population. By contrast, we found that recent
admixture, population structure, and cryptic relatedness do
not seem to cause substantial biases, and the LP approach

Figure 7 Observed and projected number of DNaseI footprints, marking
putative transcription factor binding sites, as a function of the number of
cell types studied. Projections use the LP approach, and the confidence
interval represents the difference between the LP upper and lower bounds.
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should be applicable to data sets whose evolution is funda-
mentally different from that of SNPs. We found that some of
these factors change the variance of LP estimates: popula-
tions with more sample inhomogeneity and cryptic related-
ness lead to more variable estimates. We expect these effects
to decrease when the sample size is increased. We do not
expect linkage disequilibrium (LD) to bias our estimates,
because LD does not affect the expected frequency spectrum
that is the starting point of our estimates. Furthermore, we
are mostly concerned with rare variants, which typically are
not in high LD with each other. Thus, both the expectation
and variance of genome-wide estimates should be little af-
fected by LD. There may be applications where variances are
more affected by correlations: in the transcription factor
binding example, we may imagine that cell-type-specific
transcription factor binding sites cluster, in which case the
Poisson random field that we used to estimate confidence
intervals may become a poor approximation. In such cases,
leave-one-out experiments should be performed to assess
confidence intervals.

The random subsampling assumption remains a demand-
ing one—in practice, subtle differences in sampling make it
likely that results extrapolated from one sample will not apply
to another one. Witness the 1000 Genomes data (Figure 4),
which sampled largely distinct populations. In this case, very
different discovery rate estimates reflect the different recent
histories of the populations. On the other hand, we also find
that results in the large medical cohorts from the ESP are
exquisitely reproducible across cohorts, even though these
are definitely not subsamples of each other. By contrast with
the 1000 Genomes data, the ESP metacohort was assembled
using comparable (even sometimes overlapping) cohorts
(Tennessen et al. 2012). This emphasizes how the methods
presented here are applicable to make predictions across pan-
els that are similar but not identical.

Large sequencing efforts such as the 1000 Genomes
Project often start with a pilot project aimed at testing the
technology, identifying possible issues and providing fund-
ing bodies and stakeholders a preview of the full project.
The methods presented here provide a straightforward and
well-calibrated approach to estimating a key deliverable in
the final project. As the project is completed, the results can
be compared to the initial predictions, assessing the impact
of methodological and sampling changes between the pilot
and the main phase. Of course, the final results can be
extrapolated to serve as a baseline prediction for the next set
of experiments.

Predicting the number of variants to be discovered in
a new sample is one of the few areas where population
geneticists studying long-lived organisms can make experi-
mental predictions and as such is an important tool for
population genetics hypothesis validation. The success of the
nonparametric methods presented here shows that this can
be performed to high accuracy. However, the success of
nonparametric methods and their robustness to linkage,
demography, population structure, and selection suggest

that accurate model-based predictions of future discovery
rates do not necessarily provide additional evidence that
these effects are correctly taken into account. Overfitted
models that are consistent with the data should provide
predictions within the LP confidence intervals. Model-based
predictions should therefore improve upon the LP predic-
tions to validate the model. By contrast, the LP prediction
provides a strong test of whether the initial sample can
be considered a random subsample of the full population,
a commonly used assumption in population genetics models.
This work therefore demonstrates that nontrivial falsifiable
predictions can easily be generated and tested against future
genomics experiments. I hope that it will encourage more
genomicists to put their heads on the prediction block.
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Jackknifes and naive linear bounds

We can obtain both upper and lower bounds for the number of undiscovered variants by
linear combinations of the φ(d). To do this, we note that the equations for the number of
missed variants

V (N)− V (n) =

∫ 1

0

(
(1− f)n − (1− f)N

)
Φ(f)df

and for the number of variants at a given allele frequency

φn(j) =

∫ 1

0

(
n

j

)
f j(1− f)n−jΦ(f)df

have a very similar form. The only difference is a ‘weight factor’ before Φ. If the weight
function wn,N(f) = (1 − f)n − (1 − f)N can be approximated by functions of the form
b(f, ~α) =

∑d
i=1 αif

i(1−f)d−i then we can approximate V (N)−V (n) in terms of the ob-
served φn(i). In fact, this is exactly what the jackknife estimates do–A jackknife estimator
would correspond to a function

J(f) =
d∑
i=1

βiφ(i),
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with the ~β chosen such that V (N)−V (n) =
∫
0+
wn,N(f)Φ̃(f), for a particular d-parameter

family of models Φ̃(f), thought a priori to be a reasonable proxy for Φ(f). This interpre-
tation of the jackknife provides intuition about the behavior of jackknife estimators when
the underlying model is not within Φ̃(f); comparison of the jackknife weight J(f) and the
correct weight w(f) (Figure S4) provides an idea of the general accuracy of the jackknife
estimate, and an idea of the frequencies that are more (or less) sensitive to errors.

However, we can also use the similarity between the expressions to obtain strict bounds
on V (N) − V (n), by choosing functions b(f, ~α) =

∑d
i=1 αif

i(1 − f)n−i that are strict
bounds to wn,N(f). The best such bounds will be attained when the approximating func-
tion b(f, ~α) touches but does not cross wn,N(f)

We can show that the best upper bound with d = 2 is V (N)−V (n) < (N/n−1)φ(1).
There is a one-dimensional family of lower bounds which are optimal for at least one
function Φ(f), parameterized by the contact point 0 ≤ f0 ≤ 1 where

b2(f0, ~αf0) = wn,N(f0)

b′2(f0, ~αf0) = w′n,N(f0).
(1)

To see that these ~αf0 exist and define lower bounds, consider the first, second, and third
derivatives of the function wn,N (f)−b(f,~α)

(1−f)n−2 .

For each f0, we can solve for ~αf0 , and thus obtain a lower bound to V (N) − V (n).
Given a sample, one can calculate all bounds and use the tightest. Figure 1 and Table
3 show results using this approach with simulated data. It is easy to derive bounds with
higher d, but the process of establishing the optimal bound is more challenging. Extrapo-
lations based on upper bounds with d = 3 are shown on Table 3.

As in the case of jackknife estimates, higher order for the bounds means reduced bias,
but also reduced stability in the presence of errors.

Known proportion of invariant sites
In the ecology problem, the proportion of individuals or species that have not been ob-
served is unknown; it is the object of the inference. In the genetic context, the total number
of sequenced sites L may be known; the object of the inference is to determine the propor-
tion of these sites that would be variable in a larger sample. This does not fundamentally
change the inference process:

Jackknife bounds

In the jackknife case, we are provided with one additional function (1 − f)N to try to
obtain a linear bound to the weight functions wn,N(f). In the infinite-extrapolation case
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(N = ∞), we now have an upper bound to the number U of undiscovered variants: U ≤
φ(0). This is an inequality because variants with frequency 0 are counted in φ(0) but not
in U =

∫ 1

0+
(1− f)nΦ(f).

Finite extrapolation bounds can be improved using the knowledge of φ(0), by follow-
ing the procedure described in the ‘Naive linear bound’ section for the optimization of the
~αi. However, we do not study these in detail here.

Linear programming bounds

In the linear programming framework, the observed φ(0) is easily incorporated as an addi-
tional equality constraint stipulating that

∑
i Φ(i) =

∑
j φ(j). Intuitively, we expect that

the additional constraint will help narrow the confidence interval.
However, when the total sample size is equal to the extrapolation size (i.e., M = N ),

this provides limited information because the additional constraint involves a new variable,
Φ(0), that is not involved in the objective function V (N). Thus, Φ(0) can be adjusted to
satisfy the constraint without affecting V (N). Starting from a vector Φ∗(i) realizing the
upper bound V ∗↑ (N) for the problem with φ(0) unknown, such an adjustment is possible
unless

∑N
i=1 Φ∗(i) >

∑n
d=0 φ(d), in which case Φ(0) would be negative, violating the

constraint Φ(0) ≥ 0. In such a case, convexity ensures that the optimal solution must sat-
isfy Φ(0) = 0, and V↑(N) =

∑n
d=0 φ(d). Thus, in general, we simply have the somewhat

disappointing result V↑(N) = min
(
V ∗↑ (N),

∑n
d=0 φ(d)

)
. The same argument holds for

the lower bound, but since V ∗↓ (N) ≤
∑n

d=0 φ(d), the lower bound is unchanged by the
additional information.

This argument does not hold if the population size M is larger than the extrapolation
size N because, in that case, ΦM(0) = 0 does not imply V (N) =

∑n
d=0 φ(d). Indeed, we

find an improvement of the upper bound that becomes more pronounced as the number of
invariant site in the sample of size M is decreased.

Jackknife equivalence

We wish to show that the jackknife expansions A:

V (N)− V (n) =

p∑
i=1

ai (H(N)−H(n))i

, and B:

V (N)− V (n) =

p∑
i=1

biH
i(N)−H i(n)
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lead to the same predictions. Both expansions can be written in the third expansion form C:
V (N)−V (n) =

∑p
i=0 ci(N)H(n)i, for different parameterizations of ci(N). Importantly,

these parameterizations do not involve n. In the parameter estimation, we use in the three
cases the constraints V (n)− V (n− j) =

∑p
i=0 ci (H

i(n− 1)−H i(n)) , for j = {1...p}.
These provide p equations for p unknowns {ci}i≥1. We can solve for these independently
of N . We could equally well expand the ci in terms of, say, the ai, solve a linear equation
for the ai, and substitute these back to produce exactly the same expansion. Thus, the
expansions A, B, and C are equivalent for i > 0. In expansion C, the dependence on N
enters only after we impose that V (N)− V (n) must be zero when N = n. This imposes
c0 = −

∑p
i=1 iciH(N)i. This simple form of the estimator, made explicit in expansion B,

was obscured by the poor parameterization choice of expansion A: whereas the {bi}i≥1
depend only on n, the {ai}i≥1 are messy functions of N and n.
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Figure S1: Distribution of predictions for N = 100 based on multiple subsamples of
20 diploid individuals from 1000 Genomes populations, expressed as a proportion of the
correct value. We display the jackknife prediction, and upper and lower 95% bootstrap
confidence intervals based on the Jackknife estimator and Linear Programming. Recently
admixed populations (ASW,CLM,MXL,PUR), and populations with cryptic relatedness
(ASW,CHS,MXL,LWK) show more variation across sub-samples, reflecting sample het-
erogeneity.
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Figure S2: Linear Programming upper and lower bounds, extrapolating from 50 chromo-
somes sampled from a population of 100 chromosomes containing 1 Million SNPs fol-
lowing the frequency distribution from Equation (4). The sample was generated assuming
Poisson noise in each bin. Upper and lower bounds are calculated for 20 different Poisson
resamplings of the sample, and 95% confidence intervals were obtained (vertical lines).
The tips of the upwards and downwards pointing triangles represent the 95% confidence
intervals of the lower and higher bounds, respectively. LPs with p ≥ 9 were not feasible.
The ‘observed’ line represents variants observed in the sub-sample.

6 S. Gravel



1 2 3 4
0

200 000

400 000

600 000

800 000

1.0´106

1.2´106

Jackknife order

T
ot

al
Sa

m
pl

e
E

st
im

at
e

f=1� x

1 2 3 4
0

200 000

400 000

600 000

800 000

1.0´106

1.2´106

Jackknife order

T
ot

al
Sa

m
pl

e
E

st
im

at
e

f=1�x

1 2 3 4
0

200 000

400 000

600 000

800 000

1.0�106

1.2�106

Jackknife order

To
ta

lS
am

pl
e

Es
tim

at
e

f�x-2

Figure S3: Jackknife simulations using the BO assumptions (Red) and the harmonic
assumptions (Blue) for three different functional forms of the site-frequency spectrum,
extrapolating from a population of 100 to 5000 chromosomes, based on a total count of
1,000,000 SNPs. The middle panel corresponds to the Standard Neutral Model.
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Figure S4: Comparison of the true weight w(x) = (1−x)n−(1−x)N used in the infinite-
genome expression (2) for the number of missed variants (thick solid line) to the jackknife
approximate weights (with jackknife order indicated by the number of dashes). From
top to bottom, we consider extrapolations from 100 to 200, 100 to 400, and 100 to 1000
chromosome. For twofold extrapolation, the third-order weight is a good approximation
to the exact weight and the jackknife will be accurate independent of the underlying allele
frequency distribution Φ(f), whereas for 10-fold extrapolation, the accuracy of the results
will depend much more on the cancellation of errors, in the integral of Eq. (2), making
results sensitive to model assumptions.
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Figure S5: (Left) Predicted and observed discovery rates as a function of sample composi-
tion when the sample has both European and West African ancestry, based on a simulated
evolutionary model from (TENNESSEN et al. 2012, GRAVEL et al. 2011). LP and jack-
knife predictions for discovery rates were generated using a sample of 100 European and
100 African haplotypes, for varying proportions of European and West African ancestries.
These were compared to simulated values according to the model. (Right) Predictions
based on 100 haplotypes drawn from 1000 Genomes YRI and CEU samples, as a function
of sample composition.
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Figure S6: Three possible SFS’ in a sample of size 100 that are consistent with a single
simulated observed SFS of size 40. The black curve is the correct (simulated) SFS in the
large sample, and the red (blue) curves were identified by linear programming to provide
the maximal (minimal) total number of variants consistent with the data. Despite the large
qualitative differences in the shape of the SFS’, the total number of variants differs by less
than 1%.
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Figure S7: The effects of the amount of data on the extrapolation accuracy. We generated
Poisson sampling for 103 to 108 polymorphic SNPs in samples of size 100, 200, 400, and
1000. For each, we generated 40 samples of size 50 by hypergeometric sampling. We
obtained upper and lower LP bounds for each simulated set by merging bins until an LP
solution is found (see text). Triangle tips represent the upper limit of the 95% CI on the
upper bound, and the lower limit of the 95% CI on the lower bound. Vertical lines connect
these with the short horizontal lines representing the other end of the respective confidence
interval.

S. Gravel 11


