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ABSTRACT When polygenic traits are under stabilizing selection, many different combinations of alleles allow close adaptation to the
optimum. If alleles have equal effects, all combinations that result in the same deviation from the optimum are equivalent.
Furthermore, the genetic variance that is maintained by mutation–selection balance is 2m=S per locus, where m is the mutation rate
and S the strength of stabilizing selection. In reality, alleles vary in their effects, making the fitness landscape asymmetric and
complicating analysis of the equilibria. We show that that the resulting genetic variance depends on the fraction of alleles near
fixation, which contribute by 2m=S, and on the total mutational effects of alleles that are at intermediate frequency. The interplay
between stabilizing selection and mutation leads to a sharp transition: alleles with effects smaller than a threshold value of 2
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remain polymorphic, whereas those with larger effects are fixed. The genetic load in equilibrium is less than for traits of equal effects,
and the fitness equilibria are more similar. We find that if the optimum is displaced, alleles with effects close to the threshold value
sweep first, and their rate of increase is bounded by
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: Long-term response leads in general to well-adapted traits, unlike the case

of equal effects that often end up at a suboptimal fitness peak. However, the particular peaks to which the populations converge are
extremely sensitive to the initial states and to the speed of the shift of the optimum trait value.

UNDERSTANDING quantitative genetics in terms of pop-
ulation genetics is crucial for both scientific and practi-

cal reasons. However, the development of a consistent theory
for long-term evolution has had limited success, because the
polygenic basis of quantitative traits makes the prediction of
their response to selection immensely intricate, even under
the simplest assumptions (e.g., additivity, equal effects of an
allele on the trait, and linkage equilibrium) (Barton and
Turelli 1989; Keightley and Hill 1990; Turelli and Barton
1994). Most traits seem to be under some form of stabilizing
selection, either by the direct action of selection on a trait
whose extreme values are unfit or indirectly by compromis-
ing individual fitness due to pleiotropic detrimental effects
(Keightley and Hill 1990; Mackay 2001, 2010; Hill and
Zhang 2012). The joint effects of stabilizing selection and
mutation lead to very complicated allele frequency equilib-
ria and evolution, and it is not obvious how much genetic

variation they can maintain (Turelli 1984, 1988; Bürger
2000).

An exact analysis in terms of allele frequencies is lacking
for polygenic traits with loci of unequal effects. This is
desirable, as data from genome-wide association studies
(GWAS) yield information about the distribution of single-
nucleotide polymorphisms (SNPs) relevant to several traits
based on population sequence data (Hindorff et al. 2009;
Visscher et al. 2012). This makes it urgent to understand
how variation at the molecular level explains phenotypic
variation. How quantitative variation depends on the num-
ber of loci and on the distribution of allelic effects is not
clear and is the central question of this article.

Barton (1986) showed that when a population is at equi-
librium with the trait mean at the optimum and the alleles
are very close to fixation, then the genetic variance, n, is
2nm/S, where n is the number of contributing loci, m is
the per-locus mutation rate, and S is the strength of stabi-
lizing selection. In general, the genetic load L is due to both
deviation from the optimum and genetic variance, L } Dz2 +
n, where Dz is the deviation of the trait mean from the
optimum. The contribution of the genetic variance is much
more significant because compared to it, the deviations from
the optimum are very small. Moreover, if the trait is not at
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the optimum, higher variance can be maintained. These cal-
culations assumed a trait with diallelic loci of equal effects.
However, we show that under unequal effects, deviations
from the optimum can also maintain less variance.

The response to a shift in the optimum trait value will
be radically different under equal and unequal effects. For
example, Figure 1 shows the response of two equivalent
populations that differ only in their distribution of allelic
effects. Note that although the traits match the optimum
almost perfectly in both cases (Figure 1A), under equal
effects much more variation is maintained than under un-
equal effects (Figure 1B), which implies a greater mutation
load.

We will see that under unequal effects, the equilibria
depend on the magnitude of allelic effects. With equal
effects, there is a high degree of symmetry in the sense that
many allelic combinations match a given optimum value,
making it easier to characterize the possible equilibria
(Barton 1986). However, this analysis fails under unequal
effects because the symmetry is absent. For example, Figure
1, C and D, shows the response of the allele frequencies; in
Figure 1, C and D, the alleles have equal and unequal
effects, respectively. Initially, the alleles rest at a stable equi-
librium that has comparable mean and variance. We see that
the response under unequal effects is more heterogeneous in
Figure 1D (unequal effects), whereas the alleles respond
homogeneously under equal effects (Figure 1C). This differ-
ence in the response accounts for the eventual maladapta-
tion of traits with loci of equal effects. Moreover, alleles that

have very large effects are at very low frequency and might
take substantial time to achieve a higher representation in
the population. Thus, anticipating when they will reach in-
termediate frequencies and make a notable contribution to
the genetic variance is difficult. Also, we do not know which
alleles contribute preferentially to the response and even-
tual adaptation of the trait. Under equal effects, all alleles
have the same contribution, but the symmetry of the solu-
tions effectively reduces the genetic degrees of freedom,
which in turn limits the possible paths to find a global fitness
optimum.

The house of cards (HoC) is a mutation–selection balance
model that assumes that each allele is new and arises inde-
pendently from the previous allele from which it mutated, so
that the effects of new mutations are uncorrelated from the
previous ones. In equilibrium, the variance of allelic effects is
larger than the genetic variance and is predicted to be 2nm/S,
where n is the number of loci, m is the per-locus mutation
rate, and S is the strength of stabilizing selection (Kingman
1978; Turelli 1984; Bürger 2000, Chap. IV). Exactly this
amount of genetic variance is maintained for traits with sev-
eral diallelic loci of equal effects, when they are adapted to
the optimum (Barton 1986). However, numerical experi-
ments such as the one shown in Figure 1B reveal that with
unequal effects, the genetic variance is decreased even farther
below this bound. It is not immediately clear why this differ-
ence between traits with equal and unequal effects occurs.

Although the HoC assumes a continuous production of
new alleles with varying effects (Turelli 1984), this model

Figure 1 Response to selection of traits determined by 50 loci of equal (dashed-dotted red line) and unequal effects (black solid line). (A) Deviation of
the trait mean from the optimum value. (B) Genetic variance. The dotted black line show the HoC variance. (C and D) Allele frequencies under (C) equal
and (D) unequal effects. The equal effects have g = 1/10, and the unequal effects are distributed as an exponential (mean = 1/10). Mutation rate m =
1024, selection intensity S = 1021. The dynamics are numerical solutions to ordinary differential equations (Equation 6 in the text).
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can be interpreted as a limit of a trait consisting of many loci
(Barton 1986), in which case each locus composing a trait z
under stabilizing selection evolves according (as is explained
in detail below) to

dp
dt

¼ 2 Sgpð12 pÞð2Dzþ gð12 2pÞÞ þ mð12 2pÞ; (1)

where p is the frequency of the “+” allele, g is its allelic
effect, and Dz is the deviation of the trait mean from the
optimum. Detailed analyses of this system under equal
effects were performed by Barton (1986). At equilibrium,
the equation above can have one or three solutions for each
locus, given by the cubic polynomial on p that results from
equating dp=dt ¼ 0: If we plot the equilibrium value of p
against Dz/g, we find that there are two types of curves,
depending on the mutation rate, m (Figure 2A). The first
type (Figure 2A, thin curve) occurs at high mutation rates;
in this case and at small deviations from the trait optimum,
the equilibrium is maintained at intermediate frequencies,
maintaining substantial variability. The other type of equi-
librium (Figure 2A, thick curve) occurs when mutation rates
are low compared to the mutational effects: for well-adapted
traits either of the two alleles can be near fixation, each one
contributing to the genetic variance by 2m/S, as the HoC
predicts.

Under equal effects the equilibrium value of the trait
depends only on the number of + and “2” alleles, thus
allowing many equivalent genetic combinations; there are
many other stable but suboptimal combinations (Barton
1986). The particular state to which the population con-
verges is thus strongly determined by its previous history.
All these suboptimal combinations trap the population in
local fitness peaks that deviate considerably from the opti-
mum trait value. We can see in Figure 2A (thick line) that if
the effect of each locus on the trait is fairly large, then
deviations from the trait that are at most equally large as
the effect can maintain any + or 2 alleles at equilibrium.
Thus, many of the suboptimal combinations are realizable.
Also, if the population is resting at an initial equilibrium and
the optimum is shifted (either slowly or abruptly), the allele
frequencies respond in a coordinated way. Thus, the trait is
resilient to perturbations in the sense that all allele frequen-
cies are always equidistant from the bifurcation point where
their stability changes and thus resist large deviations from
the optimum. Once the bifurcation point is reached, all loci
become unstable at once and suddenly jump to a suboptimal
state. Therefore, it is unlikely that populations reach an
optimal peak.

In this article we show that if the loci that constitute the
trait have different effects, there is a more heterogeneous
distribution of equilibria, with no symmetry among peaks.
There are still many suboptimal states where the population
could get stuck, but we will see that under unequal effects,
these suboptimal equilibria are much more similar (and
closer) to the optimum. However, the trait is also less resilient
to deviations from the optimum, and smaller perturbations

render the configurations unstable. In fact, we see in Figure
2A that alleles of very small effects will make Dz/g large,
implying that the allelic configurations become unstable. Nat-
urally, the occurrence of small effects is contingent on the
distribution of allelic effects, which is unknown in detail;
we explore this aspect in this article.

Summarizing, under equal effects precise adaptation to
the optimum is harder because the population might get
stuck at suboptimal peaks that have large variation and
larger mutation load. At equilibrium, selection purges the
new mutations and irrespective of their allelic effects, each
locus contributes 2m/S to the genetic variance. In fact, this is
an upper bound achieved when the trait is perfectly adapted
to the optimum, irrespective of the distribution of genetic
effects (as long as these are larger than their contribution to

Figure 2 (A) Equilibria of allele frequencies as a function of scaled de-
viation from the optimum. Thin curve shows equilibria for alleles of small
effects (g2 , 4m/S); for each value of Dz/g there is one stable allele
frequency. Thick curve shows equilibria for alleles of large effects,
(g2 . 4m/S); for small deviations from the optimum, there are two possible
equilibria near fixation. The dashed segments are unstable equilibria. (B)
Equilibria of allele frequencies as a function of the scaled parameter
m = m/g2S. Thick shaded curve shows no deviations from the optimum,
Dz = 0. Thin solid curve shows small deviations from the optimum. Thick
solid curve shows large deviations from the optimum. Circles show end
point of Figure 1D.
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the genetic variance in equilibrium). However, if the trait
mean deviates from the optimum, the genetic variance can
differ from that of the HoC (Bürger and Hofbauer 1994)
(Figure 1).

A different situation is realized if the allelic effects are
smaller than the equilibrium variance, for which the HoC
model does not apply. Another classic approximation, which
supposes multiple alleles and is often referred as the
Gaussian model (GM) (Kimura 1965; Lande 1976), makes
the opposite assumption about the allelic effects, i.e., that
these are small compared to their contribution to the genetic
variance in equilibrium. The GM assumes that there is a con-
tinuous production of new alleles that follows a Gaussian
distribution of effects at each locus that is centered at the
parental genotypic value. Barton (1986) showed that in
polygenic diallelic traits under equal effects, changes in
the optimum can lead the population toward stable albeit
maladapted equilibria that can have much larger variation
than that of the HoC and fall into a limit that is better
approximated by the GM.

The analyses for polygenic systems with unequal effects
that we perform here are more challenging than for equal
effects. Our current understanding of unequal effects derives
from models that deal with a few loci, from which general
results are hard to extrapolate (Turelli 1984; Bürger 2000;
Chevin and Hospital 2008; Pavlidis et al. 2012). In this ar-
ticle we aim to understand how a trait determined by arbi-
trarily many loci of unequal effects responds to stabilizing
selection and mutation. Putting aside the technical complex-
ities, we regard this problem as fundamental to understand-
ing the bigger picture of the evolution of polygenic traits,
namely that of finite populations subject to drift and how
these are constrained by pleiotropic effects caused by selec-
tion on multiple characters. But first, we need to understand
in detail the nature of the equilibria and the response of
allele frequencies to factors such as stabilizing selection
and mutation. Thus, we address the simplest case of deter-
ministic selection on a single trait.

We start by studying the equilibria and find that there can
be multiple loci with high polymorphism, provided that they
have small effects. For these alleles of small effect, devia-
tions from the optimum trait value are tolerated without
affecting their equilibrium. However, we also find that there
is a threshold ĝ ¼ 2

ffiffiffiffiffiffiffiffiffi
m=S

p
that objectively defines which

alleles are of “small” effect ðg, ĝÞ and which ones are of
“large” effect ðg. ĝÞ: The former remain at intermediate
frequencies and the latter near fixation most of the time.
Alleles of large effect can be sensitive even to small devia-
tions from the optimum. In particular, if the optimum is
suddenly shifted, we find that the alleles that respond first
are those with effects closer to the threshold value, g � ĝ: In
the long term, however, the dynamics are intricate. Different
initial equilibrium configurations that are equally well adapted
may lead the population to totally different regions of the
fitness landscape. However, these different genetic states
have very similar phenotypic values.

Model of Stabilizing Selection and Mutation on
Additive Traits

We consider the simplest diploid genotype–phenotype map,
which assumes an additive trait for diallelic loci, without
dominance or epistasis,

z ¼
Xn
i¼1

gi

�
Xi þ X9i 2 1

�
; (2)

where gi is the allelic effect at locus i, n is the number of loci
composing the trait, and X and X9 are indicators of the 2
allele (X, X9 = 0) or of the + allele (X, X9 = 1). We allow
each gi to vary across loci. Specific values are drawn from
a given distribution (we explore mainly gamma distributed
effects), although in every run they are kept constant. As-
suming linkage equilibrium, the trait mean and the genetic
variance are given by

z ¼
Xn
i¼1

gið2pi 2 1Þ (3)

n ¼ 2
Xn
i¼1

g2i pið12 piÞ; (4)

where pi = e[Xi], the allele frequency of the + allele, given
by the expectation of Xi in the population. (Unless otherwise
stated, the expectations are on the population, not on the
distribution of effects.)

We assume a Gaussian fitness, Wz ¼ exp½2ðS=2Þðz2z∘Þ2�
so the mean fitness of the population is

W ¼ exp
�
2
S
2
Dz2 2

S
2
n

�
; (5)

which assumes weak selection. The genetic load is due to
both terms: the deviations from the optimum Dz ¼ z2 z∘
and the genetic variance n. The maximum mean fitness is
1, which occurs if an optimal genotype is fixed, with no
genetic variance.

In an infinite, random-mating population, the change in
allele frequencies is given by the selection–mutation
equation

dpi
dt

¼ 2 Sgipið12 piÞð2Dzþ gið12 2piÞÞ þ mð12 2piÞ;
(6)

for i = 1, . . . , n, and m, S � 1 (see, for example, Barton
1986). This equation for the dynamics of allele frequencies
assumes linkage equilibrium and weak selection.

To understand the complexities of the fitness landscape
and how the trait evolves, we first study the properties of the
equilibria. An exact solution of the equilibria of the system
defined by Equation 6 for the n loci is possible, but the formu-
las are complicated, being solutions to coupled cubic equations.
Therefore, instead of taking this exact but intricate approach,
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we first study the qualitative aspects of the equilibria of Equa-
tion 6, by assuming that Dz is given, which uncouples the
equations. This gives a solid intuition to understand detailed
equilibrium analyses and how much genetic variance can be
maintained at the different suboptimal peaks.

Afterward, we explore the dynamics and understand the
irregular behaviors by using the intuition derived from the
equilibrium analyses. We numerically solve the system for
all the allele frequencies at each locus. Since we assume
diallelic loci, there are n equations to track. We calculate the
genetic variance and trait means from the definitions given
by Equations 3 and 4. We typically randomize the initial
conditions and the realization of allelic effects, unless other-
wise stated.

Allelic Equilibria Have Two Defined Regimes

Equation 6 shows that the equilibrium condition for every
locus is given by a set of cubic equations coupled through
Dz. When there are many loci, we can assume a particular
value for Dz and treat each of the n equations independently.
Therefore, for each locus the number of valid roots of the
cubic equation depends on four quantities: the deviation
from the optimum Dz, the allelic effect g of the focal locus,
the mutation rate m, and the strength of stabilizing selection
S. However, these four variables can be combined into just
two scaled parameters, d = Dz/g and m = m/Sg2, and the
equilibrium solution at each locus is given by the scaled
equation

p3 2 p2
�
3
2
þ d

�
þ p

�
1
2
þ dþm

�
2

m
2
¼ 0: (7)

Figure 2A shows how the equilibrium frequencies depend on
the scaled deviation from the optimum, d. These diagrams
also hold for unequal effects, except that the equilibria for
each locus are represented by a specific diagram. In Appen-
dix A we give the precise expression of the critical points of
Equation 7. Figure 2A shows that there may be two types of
equilibria: either near fixation of one or the other allele or
a single equilibrium at intermediate frequency 1/2. The fac-
tor that determines which equilibrium is attained at a given
locus is the scaled variable m = m/Sg2.

Figure 2B shows the equilibrium allele frequencies as
a function of m. Consider d = 0: we see a partitioning of
two qualitative regions with stable states that are near fixa-
tion (m , 1/4, to the left) and intermediate equilibrium
(m . 1/4, to the right). Note that since m is inversely propor-
tional to g2, the smaller the effects are, the more to the right
the alleles are represented in Figure 2B, and vice versa. Thus
ĝ ¼ 2

ffiffiffiffiffiffiffiffiffi
m=S

p
is a threshold that objectively defines alleles of

large and small effect: if g. ĝ; these fall into the category of
large effects, and if g, ĝ; these fall into the category of small
effects.

Figure 2B shows how this diagram is modified for d 6¼ 0:
the bifurcation is shifted, and the intermediate equilibria
close to m $ 1/4 are displaced from 1/2. This has two main

implications. First, assume a small deviation of d . 0 (d ,
0); some of the alleles of large effect that would have been
close to fixation, at the + (2) state, are forced to sweep to
the alternative state. Second, some of the alleles of small
effect that would be at the intermediate state, P = 1/2, will
show reduced (increased) frequencies. Most notably, the
alleles that are displaced are those that are close to
m ¼ m̂; which are those that are close to the threshold
ĝ ¼ 2

ffiffiffiffiffiffiffiffiffi
m=S

p
:

A bigger picture emerges when we consider how the
equilibria depend on combinations of both d and m (see
Appendix A for the exact calculations), which is shown in
Figure 3. On a logarithmic scale, the allelic effects fall on
a straight line, with the distribution of effects determining
their spread along this line: smaller effects fall toward the
right and larger effects fall toward the left of the diagram;
different values of d are represented as parallel lines of slope
1/2.

When effects are large enough that m, m̂ ¼ 1=4; the
alleles can be in a bistable regime: there are two stable
points close to fixation and one unstable at intermediate
frequency (the thick line in Figure 2A). This is provided that
deviations from the optimum are small (d � 0). In this case,
the stability is not affected. However (and as we explain
below), deviations that are of the order $d1/2 disturb this
equilibrium (see Figure 2B).

The situation is very different for small effects, when m.
1/4, since there is only one valid root of the cubic above (the
thin line in Figure 2A). When the trait is close to the opti-
mum (d � 0), intermediate frequencies can be maintained,
as explained above. Small deviations from the optimum will
readjust frequencies slightly, but the stability of the equilib-
rium is not modified (there is no qualitative change in the
stability).

As a consequence, the frequency of alleles of small effect
varies smoothly with the deviations from the optimum,
whereas those with larger effect experience discontinuous
transitions when the magnitude of the deviation approaches
half of their respective effects.

The scaling properties indicate that the parameters that
really matter are m = m/g2S and d = Dz/g. Thus, the spe-
cific numerical choices of m and S are not in themselves
decisive.

Stability and Variation at Equilibrium

Equilibria under mutation–selection balance

As above, when mutation is present, there might be one or
three solutions for each locus, with the stability depending
on the particular multidimensional adaptive peak. Conse-
quently, there might be up to 3n possible equilibria, although
only a fraction of these can be stable. Assuming equal
effects, it would be enough to count the number of loci that
are fixed or intermediate, since the symmetry of the land-
scape makes it feasible to understand the stability of any of
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these peaks (Barton 1986). With unequal effects, we need to
consider each of these configurations separately. These are
tractable as long as we assume that Dz = 0, in which case
the equilibria at each locus are given by

0 ¼ 	
m2 Sg2pð12 pÞ
ð12 2pÞ: (8)

In this case there are three possible states for each locus,
namely

p ¼ 1=2 (9)

p ¼ 1
2

�
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 4

m

Sg2

r �
: (10)

In Supporting Information, File S1 we detail the stability
analyses that we now summarize. In the absence of muta-
tion, at most one allele can be maintained polymorphic,
irrespective of the magnitudes of the allelic effects and of
the deviation from the optimum (this result was anticipated
by Wright 1935). If mutation rates are small compared to
selection, the trait mean is exactly at the optimum, and all
alleles are of large effects, then the configurations where all
loci are close to fixation will be stable (all eigenvalues are
negative). Furthermore, configurations where alleles of
large effect are at intermediate frequency will be unstable.
We also find that configurations where alleles of small effect
are near fixation are unstable.

Why is this? Alleles with large effects increase the genetic
variance substantially. We saw that each allele near fixation

contributes 2m/S, whereas if it has intermediate frequency, it
contributes g2/2 to the load. Since the alleles with large
effects fulfill that g2/2 . 2m/S, the genetic load would be
much larger if the alleles of large effect were maintained
polymorphic. A similar argument applies for alleles of small
effect. Because g2/2 , 2m/S, then the load would be signif-
icantly higher if these alleles were near fixation. We can
interpret this by thinking that the amount of selection re-
quired to fix alleles of small effect would need to be consid-
erably high, to make them fall into a “large effect” class.

Distribution of allelic equilibria

We saw that alleles of large effect will be in near fixation.
However, whether they are more likely to be at the + or
the 2 state depends on details such as the position of the
optimum and the deviation from it. For example, in File S2
we show that optima positioned toward the largest (smallest)
trait value zx bias alleles to the + (2) states. Can we estimate
how likely are alleles to be close to a particular state?

We assume that the trait mean is at the optimum and
focus on the state of one particular allele. We study how the
probability r that the focal allele is at the + state depends on
its effect g. In this case, we take r to be a probability calcu-
lated over all possible states (peaks), where we assume that
the rest of the (background) loci contribute in a way that
keeps the trait at the optimum. We assume that for all alleles
of large effects the initial conditions are such that Pr0(2) =
Pr0(+) = 1/2. Numerically, we perform many runs that start
close to uniformly randomly selected peaks and let the sys-
tem reach equilibrium. Then we count how often alleles of
effect g are in the + state. In Appendix B and Appendix C we
show that

rj ¼
1

1þ exp
h
22ðz∘=VÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2j 24ðm=SÞ

q i; (11)

where V ¼ P
9i 6¼jðg2

i 2 4m=SÞ; where
P

9 indicates summa-
tion on the set of alleles of large effect. Figure 4 shows that
the predictions of Equation 11 are consistent with the sim-
ulations. The distribution of effects does not affect the prob-
ability of an allele being in the + or 2 state; only the effect
of the focal allele matters.

The larger the effect of the focal allele is, the larger the
probability it is in the + state (this assumes positive
positioning of the optimum; for negative positioning, the
converse would be true). The reason is that alleles that are
closer to the threshold value are more prone to the instabilities
resulting from small deterministic fluctuations around the
optimum. Large alleles, on the other hand, are more often at
the + state since they are more resilient to perturbations
from the optimum value. Thus, once a population attains
equilibrium, large alleles with effects close to ĝ are much
more likely to be stuck in alternative equilibria than larger
alleles.

We also find in Figure 4B that the larger the value of zo is,
the larger the probability for all loci to be in the + peak. This

Figure 3 Diagram showing the two regions of qualitatively different
equilibria of allele frequencies. For m , 1/4 (the gray region) the allele
frequencies are near fixation points. When m . 1/4, only polymorphisms
can be maintained. On a log scale the effects are distributed along
parallel lines whose height is determined by log(Dz) 2 log(g) and log
(m/S) 2 2log(g) and therefore have a slope of 1/2. Effects that fall at the
right-hand side of the point m = 1/4 can never fall into the bistable
regime and correspond to the alleles with the smallest effect. Depicted
are (circles) effects distributed, g � exp(10); (upward triangles) traits
with equal but large effects (g = 3); and (downward triangles) traits
with equal but small effects (g = 0.001).
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is expected, because lager trait values require more +
alleles. This obvious observation, although supported by
the model, is quantitatively underestimated by it. In princi-
ple, deviations from the optimum trait value can be accom-
modated in Equation 11 (Appendix C). But this correction, at
least to first order on Dz, does not fully account for the
underestimation of the model at large optimum values (data
not shown). What actually happens is that as the optimum is
positioned closer to the range of response of the trait, the
distribution of traits is considerably skewed and the Gauss-
ian assumption fails.

Above we saw that alleles with effects that are close to
the critical point are more susceptible to small perturbations

to the optimum. Thus how stable the trait is to small shifts of
the optimum depends on how far the frequencies are from
the critical point, which in turn depends on the particular
distribution of allelic effects. Under equal effects, all alleles
are equally far from the critical point and thus remain stable
for a long period until the deviation is large enough. But
when the deviation reaches the critical value, all alleles are
perturbed at the same instant.

Under unequal effects the picture is more complex. The
individual equilibria of each allele are perturbed differently
by deviations from the optimum. Moreover, once a given
allele is perturbed and placed at an alternative state, the
newly attained equilibrium is characterized by a different
deviation from the optimum, potentially perturbing yet
another allele. The interplay among the complex equilibria
is hard to characterize in detail.

Now we determine the size of the deviations from the
optimum. By employing perturbation analysis (Appendix B)
we find that positive deviations from the optimum push
allele frequencies closer to fixation. We also prove that the
maximum deviation close to a given peak is of the order
~Dz ’ mini2Lgi=2; where L is the set of large effects (in Ap-
pendix B we give an exact expression to the maximum de-
viation). Clearly, this is bounded below by g

︹
=2; and ~Dz

depends on the particular draw of effects. This limit for
the deviation is suggested by the diagram in Figure 2A:
we see that the shoulders of the black lines actually occur
relatively near d = 1/2 (as long as effects are large enough).
Consequently, we expect that most of the time the traits will
be fairly well adapted, and most of the load is given by the
genetic variance, rather than by large deviations of the mean
from the optimum.

Genetic variance

By direct substitution of Equations 9 and 10 into Equation 4
we see that the genetic variance that is maintained by
mutation–selection balance is g2/2 per locus at the interme-
diate state and 2m/S per locus near fixation. Contrast this to
the genetic variance predicted by the HoC, which is the
same as for traits controlled by equal but large effects; i.e.,
n = 2nm/S. Under unequal effects, if Dz = 0, the genetic
variance is

n ¼ 2nf
m

S
þ 1
2

X
k2S

g2k; (12)

where nf is the number of alleles of large effect, and the set
L contains the ns alleles with small effects, g2/2 , 2m/S;
clearly, n = nf + ns. Note that the first term is due to alleles
that are close to fixation, and their contribution to the ge-
netic variance is independent of their effect, and the second
term is due to alleles of small effect, which are at interme-
diate frequency. Equation 12 is one of our central results.

With this result we come back to Figure 1: in Figure 1B the
genetic variance of the trait with unequal effects is lower than
that of the HoC. That is because 24 alleles are of small effect.

Figure 4 The probability of + alleles increases as the magnitude of their
effect gets larger. Lines follow Equation 11; symbols show average of
occurrences of the + state from 100 simulations. (A) The optimum is fixed
and the distribution of allelic effects is varied. zo = 10 (roughly halfway
from the maximum trait value). Solid line and solid circles show exponen-
tial distribution (mean = 1/5); dashed line and shaded squares show
gamma distribution (shape = 20, scale = 1/100); dotted line and crosses
show equal effects, g = 1/5. (B) The distribution of allelic effects is fixed
and the position of the optimum is varied. Effects are distributed as an
exponential (mean = 1/5); thick solid line and solid circles show zo = 0,
dashed line and solid squares show zo = 5, dotted-dashed line and crosses
show zo = 10, dotted line and open circles show zo = 15, and thin solid
line and stars show zo = 20. In all cases the trait is determined by 100 loci.
m = 1024, S = 0.1. The initial conditions were uniformly and indepen-
dently drawn for each locus.
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Equation 12 correctly predicts the equilibrium variance, n =
0.064. However, note that if we use the HoC with nf (instead
of n), then n ’ 0.052, .80% of the total variance.

Thus, the HoC variance bounds the genetic variance
under unequal effects. Specifically, Equation 12 implies that
nHoC(nf) # n # nHoc(n), where nHoC(m) is the HoC variance
with m loci. With no deviations from the optimum, the load
is proportional to the genetic variance. Under the HoC the
load is always L = Sn/2 = nm. However, because under
unequal effects the genetic variance is smaller, the muta-
tional load will also be smaller and dependent on the distri-
bution of alleles.

The equilibrium genetic variance depends on the distribu-
tion P(g) of allelic effects. Even though alleles near fixation
contribute to n independently of g, the proportion of alleles of
large effects will change with P. For example, fixing the
expected value of g at a value larger than ĝ; but allowing
the shape of the distribution to change, will result in different
proportions P = nf/n of alleles of large effect (Figure 5). In
this way, we keep the whole range of response of the trait
comparable across different distributions of effects. Distribu-
tions peaked around the mean will correspond to traits with
alleles of large effect, all of which will be near fixation (Figure
5A, yellow stars); thus 100% of the variance is due to alleles
of large effects and will match the HoC variance (Figure 5B,
yellow curve). For distributions that are more spread, the
traits will have mixed effects (Figure 5, red squares/line
and green circles/line): ns increases to 96, with �7% of the
variance due to alleles of small effects, and ns = 342, �17%
of the variance is due to alleles of small effects (red and
green, respectively). The extreme case will be for positively
skewed distributions, such as the exponential, where the pro-
portion of alleles of large effects is much smaller (Figure 5A,
black diamonds), and the genetic variance will be consider-
ably lower than that of the the HoC (Figure 5B, black curve):
roughly half of the alleles (ns = 478) are of small effect, but
contribute by 20% to the total variance.

Distribution of phenotypic equilibria

For many loci, the number of allelic equilibria can be astro-
nomical. Nevertheless, under equal effects it can be calcu-
lated explicitly (Barton 1986). When mapped to trait mean
and genetic variance, the number of distinct equilibria is
smaller, since many combinations of allelic effects have
equivalent, or at least very similar, trait mean and variance.
Figure 6 shows how the phenotypic states change when we
keep the mean of the allelic effects constant, but increase its
variance: the genetic variance decreases (see also Figure 5),
and deviations from the optimum have less effect on the
genetic variance, making Equation 12 a good approxima-
tion. Notably, we find that the number of values of trait
mean and genetic variance increase when the distribution
of effects spreads. However, these equilibria become more
similar and closer to each other.

Although it is hard to count the states precisely, we can
study how a given phenotypic equilibrium is affected as the

asymmetry of the unequal effects is increased. For instance,
suppose under equal effects we track a set of initial
conditions P that lead to a particular point in the “pheno-
typic” ðz; nÞ-space. The states to which these trajectories
converge (basins of attraction) are symmetric in the sense
that exchanging + alleles at one locus with 2 alleles at
another does not change the phenotypic states. If we keep
constant the set P, but now change one effect by a small
amount, how is the distribution of phenotypic states af-
fected? Many of the trajectories starting at P that under
equal effects converged to equilibria characterized by the
same trait mean and variance will now converge to different
points in ðz; nÞ-space. The symmetries are broken and ex-
changing alleles at that locus with another one affects the
trait mean and variance. Hence, the phenotypic equilibria
show bifurcations when we perturb the effects. We can

Figure 5 (A) Equilibria under different distributions of allelic effects. Sym-
bols show data from simulations. Initial frequencies were drawn uniformly
in (0, 1) and the system numerically evolved to equilibrium. Gray lines
show equilibria of allele frequency and symbols show numerical equilib-
ria. (B) Cumulative contribution to the genetic variance under different
distributions of allelic effects P(g). Solid curves show data corresponding
to the simulations in A. Solid horizontal lines show equilibrium genetic
variance (Equation 12). Dotted line shows genetic variance of the HoC.
P(g) is a gamma distribution of mean = 0.1 with shape parameters p as
follows: yellow, stars, p = 1023; red, squares, p = 1022; green, circles,
p = 5 3 1022; and black, diamonds, p = 1021. m = 1024, S = 0.1, n =
1000, zo = 0.
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repeat this procedure by then perturbing a second locus, and
so on. Thus, if we represent the phenotypic states as nodes,
and we connect these nodes according to the initial condi-
tion that led to their corresponding phenotypic states, we
will have a graph that represents the increase in complexity
of the adaptive peaks. Unless we have a way to cover the
initial space uniformly, this does not ensure complete count-
ing of the number of phenotypic equilibria. However, even if
the subsampling of the basins of attraction is poor, the
method quantifies how complex the space becomes as we
increase the variance of the allelic effects.

If we carry out this procedure for different phenotypic
states under equal effects, then we will have several of these
graphs. If these graphs share nodes, then it means that the
adaptive landscape is more accessible to better-adapted
equilibria (because under unequal effects the equilibria
have less genetic load, Figure 6). In fact, in Figure 7 we
see an example for three graphs derived from the optimal
peak and two suboptimal peaks.

Altogether, this exposes that under unequal effects the
fitness landscape is more complex or “rough”, but the solu-
tions are generally closer to the optimum. Surprisingly, per-
turbing slightly the effect of only one or two loci is enough
to overlap different graphs with common nodes, indicating
that unequal effects act like a funnel to guide the trajectories
to nearly optimal states.

Initial Response to Selection

We saw that there are two well-defined regimes that clearly
separate alleles of large effect from alleles of small effect. If
the optimum shifts, which alleles respond first? A related
question is, Is the initial rate of change of the trait driven
mainly by alleles of large or small effect? Although these

two questions are related, they are not the same; even if, for
example, alleles of small effect sweep first, they might not
drive a substantial displacement of the trait. Conversely,
even if an allele of large effect sweeps first, its overall effect
might be negligible when compared to a background of very
many loci of small effect.

To calculate the rate of response of an allele, assume that
the population is at equilibrium at a local peak with no
deviation from the optimum that is at zo. Suddenly, the
optimum is placed at another value zf. Equation 6 implies
that at each locus

Figure 6 Phenotypic equilibria under different distributions of effects.
Shaded circles, equal effects; small solid circles, effects tightly clustered
around the mean (gamma distributed with variance = 1/1000); crosses,
exponentially distributed effects (variance = 1/100). In all cases the mean
effect is 0.1. Points are results from numerical calculations for 11 equi-
distant optima zo 2 ½2zx=2; zx=2�; zx ¼ g ¼ 5; at each point employing
200 runs with uniform random initial conditions. m = 1024, S = 0.1,
n = 50.

Figure 7 (A) Connectedness of macroscopic fitness peaks as the number
of different effects of a polygenic trait is systematically increased from 1
to 20. The thick black lines originate at suboptimal equilibria, and the thin
blue lines originate at the optimal equilibrium (dz = 0). (B) Number of new
equilibria derived from the suboptimal equilibria under equal effects
(black circles and green diamonds) and at the optimum equilibria (blue
stars) as the number of different effects is increased. m = 1024, S = 0.1,
n = 50, zo = 0.
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dp
dt

¼ 2SgpqDV; (13)

where DV = zf 2 zo. For alleles of small effect, the right-
hand side is ðSg=2ÞDV: Therefore, alleles with infinitesimally
small effects will be nearly neutral and will have a vanishingly
small rate of response to selection. As the effects become
closer to (but still smaller than) ĝ; the rate of response is
larger. Consider now alleles that have infinitely large effects.
The right-hand side of Equation 13 is ð2m=gÞDV and implies
that since these alleles will be almost fixed, there is little
variation to select on. Consequently, their rate of response
is also vanishingly small. As the effect become closer to
(but still larger than) ĝ; the rate of response become larger.
Therefore, those alleles with effects close to ĝ will have the
earliest response to selection because they are the most sen-
sitive to deviations from the optimum. Thus, the maximum
response for each limit is given by the effect that is exactly at
the critical value ĝ: Evaluating Equation 13 at ĝ we find that
the rate of response is at most�

dp
dt

�
max

¼
ffiffiffiffiffiffi
mS

p
DV; (14)

indicating that alleles with effects close to ĝ drive the initial
response of the trait to selection.

Long-Term Response to Selection

The long-term response of a polygenic character to the
displacement of the optimum trait value can be driven by
alleles other than those of intermediate effect. Although the
alleles of large effect evolve slowly in the beginning, they
can eventually gain representation and evolve much faster.
A general closed solution for the dynamics is neither
possible nor useful, as the behavior of the allele frequencies
is rather complicated. The question is whether the theory
developed above can be useful to gain insight into the long-
term response of the trait.

Abrupt displacement of the optimum

We assume that repositioning the optimum happens always
within the range of response of the trait and far from the
extreme values given by zx ¼

P
gi; i.e., 2zx � zo � zx. The

equilibrium analyses revealed that the particular position of
the optimum is not decisive for equilibria or stability. Instead
the deviation from the optimum is the important factor.
Thus, if the population eventually adapts to the new opti-
mum value, the genetic variance that is maintained at the
newly established equilibrium will be more or less the same
as in the beginning. In the transient time, the dynamics will
be complicated and depend on the specific initial conditions
(the adaptive peaks where the population initially stands)
and on the distance to the optimum.

If the optimum changes abruptly and is larger in magni-
tude than the largest of the effects, all the equilibria will be

perturbed, favoring an increase in the frequency of the those
alleles that diminish the deviation from the optimum. That is,
if the new optimum value is smaller (larger) than that of the
original optimum value, 2 (+) alleles will increase in fre-
quency. This displacement is seen in the diagram in Figure
3 toward the top (where only one stable border is initially
beneficial), with a gradual return of the line to low values of
Dz. Therefore, we expect to observe a transient increase in
the genetic variance. Figure 8 provides an example where
these patterns are in fact found.

In the example in Figure 8, of 50 loci, 26 are of large
effect and contribute .80% of the initial variance, whereas
24 are of small effect, contributing the remaining 20% of the
variation. In Figure 8C we see that many of the large alleles
shift in frequency and some sweep, transiently raising the
genetic variance. In this case, since the optimum shifts from
zo = 2 to zo = 22, the + (2) alleles decrease (increase) in
frequency. Alleles of small effect are displaced, but not sub-
stantially. Most of the transient variation that is generated is
due to sweeps of alleles of large effects.

As hypothesized above, even if transient dynamics are
very complex (Figure 8), when a new equilibrium is attained,
the final deviations from the optimum are small, and the
genetic variance is close to that of Equation 12 (see also
Figure 1). As we saw in the Introduction, under equal effects
the population will evolve to a suboptimal state where plenty
of genetic variation is maintained. Why do populations end
up better adapted under unequal effects?

At first we might think that a bulk of alleles of small
effects could provide enough background variation, allow-
ing the population to explore the genetic space more
efficiently. However, the response of a trait constituted only

Figure 8 Response to an abrupt displacement of the optimum of a poly-
genic trait. (A) Deviation of the trait mean from the newly positioned
optimum. (B) Genetic variance. Solid black line, exact numerical results;
dashed black line, house of cards prediction (n = 2nm/S); dotted black
line, exact value from Equation 12. (C) Response of the allele frequencies:
black lines, alleles of large effect; thin red lines, alleles of small effect. The
trait is constituted by n = 50 loci, 26 of large effects and 24 of small
effects, distributed as an exponential of mean = 1/10. m = 1024, S =
1021, zo ’ 22.
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by alleles of large effect is virtually the same as that of a trait
that contains also alleles of small effect, in as much as the
initial genetic variation contributed by the latter alleles is
small, and the optimum is not too close to the maximum
trait value (File S3). Thus, concerning the response, alleles
of small effect can be regarded as nearly neutral.

Another plausible explanation lies in the rate of “benefi-
cial mutations” (in the sense that these are mutations that
approach the trait mean to the new optimum). Because un-
der equal effects the response of allele frequencies is syn-
chronized, most mutations are initially beneficial. However,
due to the epistatic nature of the fitness landscape, those
initially beneficial mutations are not necessarily beneficial
once the rarer alleles have increased their representation in
the population and might even become detrimental. Fur-
thermore, these alleles arise and increase their frequency
on the same timescale. Under unequal effects different
mutations arise at different times and can compensate the
load contributed by previous mutations. In fact, because of
epistasis, we expect and in fact we find (Figure 8C) that
some alleles that are initially beneficial increase in fre-
quency, but afterward become detrimental and decrease in
frequency again. This “prevention of sweeps” has been ob-
served in polygenic traits with up to eight loci (Pavlidis et al.
2012). However, under equal effects allele frequencies re-
main synchronized along evolution, and it is unlikely that
the initial conditions and the shift in the optimum are in
general finely tuned in such a way to allow the population
to reach a local peak that is close to the global optimum.

Since the previous examples suggest that adaptation is
driven mostly by alleles of large effect, an interesting question
that follows is, What happens when traits are controlled
principally by alleles of small effect? First of all, Equation 12
indicates that the genetic variance will be much lower than
that of the HoC. We find that the population eventually
adapts (although somewhat slower), but with virtually no
change in the genetic variance. In this example, the trait has
only three alleles of large effect, which contribute 11% of
the genetic variance, and 397 loci with alleles of small
effect, which contribute the remaining 89% of the variation.
The three alleles of large effect sweep, but ultimately do not
affect the genetic variation substantially (assuming their
HoC contribution), and some alleles of small effect are
strongly shifted.

Figure 9 shows the response of a system of alleles of prin-
cipally small effects. Although 400 loci determine the trait,
we estimate that the effective number of alleles ne ’ 28 (see
File S4). Assuming constant genetic variance given by the
HoC (but using ne), we find that directional selection toward
the optimum explains the response of the trait (although it
fails to predict a minor final deviation from the optimum).
This experiment highlights why we might find stasis of the
genetic variance and a sustained response to selection, which
is caused by innumerable alleles of small effect. Under these
circumstances, although experimental assays would be able
to detect only a few major loci (Hindorff et al. 2009; Visscher

et al. 2012), these turn out to be the least relevant to explain
the quantitative genetic variation.

Slowly moving optimum

If the optimum is shifted slowly enough, the deviation Dz
remains very small. We also see that the genetic variance
then hardly changes (for example, Figure 10). After some
time the population keeps evolving but reaches a stationary
state. If the optimum suddenly stops, the population settles
at a state characterized by a lower genetic variance, but
larger deviation from the optimum as in the case when it
adapts to a rapid shift of the optimum, as in the previous
section. How can we explain these patterns?

Under the infinitesimal model the population achieves
a stationary lag from the optimum given by Dz* = 2k/2Sn,
where k is the speed of the moving optimum (Lynch and
Lande 1993; Jones et al. 2004). However, we see in Figure
11 that this approximation fails for a finite number of loci of
unequal effects.

Suppose that a moving optimum changes linearly in time:
zo(t) := V0 + (Vf 2 V0)t/T. For simplicity we consider
optima starting at 2V and ending at V. Hence the speed
of the moving optimum is k = 2DV/T.

By summing Equation 6 over loci and using Equations 3
and 4, we find that during transient evolution the deviation
from the optimum is given by

dDz
dt

¼ 22nDzþ Sm32 2mz2 k; (15)

Figure 9 Response to an abrupt displacement of the optimum of a poly-
genic trait constituted mainly by alleles of small effect. (A) Deviation of
the trait mean from the newly positioned optimum. Solid black line,
exact numerical results; dashed gray line, approximation assuming an
effective number of loci, neff = 28 and constant genetic variance, n ’
2nem/S (see text). (B) Genetic variance. Solid black line, exact numerical
results; dashed black line, house of cards prediction, (n = 2nm/S); dotted
black line, exact value from Equation 12. (C) Response of the allele
frequencies: black lines, alleles of large effect; thin red lines, alleles of
small effect. The trait has n = 400 loci, 3 of large effects and 378 of
small effects, distributed as an exponential of mean = 1/80. m = 1024,
S = 1021, zo ’ 22.
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where m3 ¼ P
ig

3
i piqið2pi 2 1Þ is the third moment of the

allelic effects. If the deviation from the optimum reaches
a stationary state Dz* where dDz*=dt ¼ 0; then

Dz* ¼ kþ 2mz2 Sm3

2Sn
: (16)

Under the infinitesimal model, the breeding values are
normally distributed, which implies that m3 = 0. The ge-
netic variance due to mutational effects is finite, but the
mutation rate decreases with the inverse of n and the term
mz can be neglected. Consequently, Equation 16 reduces to
the approximation of the infinitesimal model (Lynch and
Lande 1993; Jones et al. 2004). What limits are then neces-
sary from the point of view of our model with a finite num-
ber of loci?

The stationary lag is not a constant; it represents a quasi-
equilibrium state, and so we need to know how z; n and m3

change in time. This is not feasible in an exact way, except
under restrictive limits such as the infinitesimal model. Even
under other simple assumptions, such as the HoC, predicting
higher moments is hard (Barton 1986; Barton and Turelli
1987; Bürger 1991).

Figure 11 shows that the third moment of allelic effects,
m3, is relevant for an accurate prediction of the lag. In fact, if
all terms of Equation 16 are considered, there is virtually no
distinction between the stationary lag approximation and
the actual lag. However, neglecting the third moment does
affect the prediction substantially. But the extent to which
m3 is relevant depends on the distribution of effects.

Figure 11B shows an example for a trait constituted only
by alleles of small effects. The third moment is small, and
neglecting it leads to a good approximation of the stationary

lag. This is consistent with the infinitesimal model as a limit
of many loci of small effects.

When traits are determined by alleles of large but equal
effects, the distribution of allelic effects is also asymmetric.
As the optimum advances, traits with unequal effects allow

Figure 10 Response to a gradually shifting optimum of a polygenic trait.
(A) Deviation of the trait mean from the newly positioned optimum. (B)
Solid black line, exact numerical results; dashed black line, house of cards
prediction (n = 2nm/S); dotted black line, exact value from Equation 12.
(C) Response of the allele frequencies: black lines, alleles of large effect;
thin red lines, alleles of small effect. The optimum linearly moves from
2zo to zo between t = 0 and t = 104 and afterward stays constant at zo.
Other parameters are as in Figure 8.

Figure 11 Stationary lag approximation for the response of polygenic
traits to a steadily moving optimum. In all cases the trait is constituted
by n = 1000 loci. The optimum moves steadily, shifting from 2V to V in
T = 300,00 time units. The value of V was chosen to match the random
initial condition. Solid black line, lag z2 zo; dotted red line, stationary lag
Dz* (from Equation 16); dashed purple line, stationary lag neglecting the
third moment of the allelic effects. The insets compare z (black) and zo
(dashed pink line) along all times. The trait is determined by (A) exponen-
tially distributed effects (mean = 0.1), ns = 435, V = 48; (B) exponentially
distributed effects (mean = 0.01) ns = 1000, V = 3.72; and (C) equal
effects with mean ’ 0.1, ns = 0, V = 246. In all cases S = 0.1, m = 1024.
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many small adjustments. These gradual changes allow fine
tuning of the deviation from the optimum. Under unequal
effects, this results in high frequency but low amplitude
fluctuations of the lag. However, under equal effects the
allele frequencies change in a coordinated fashion and the
equilibria are more robust to deviations from the optimum.
Thus, we observe fewer but larger fluctuations.

Comparing Figure 11, A and B, we find that traits with
mixed allelic effects initially respond smoothly, but eventu-
ally enter a highly fluctuating phase. This does not happen
when all the effects are small. We must point out that strong
fluctuations can occur when the optimum is very close to the
range of response of the trait. In File S5 we show that differ-
ent initial conditions converge to the same erratic trajectories
and that these are not chaotic, but quasi-periodic (determin-
istic but unpredictable fluctuations of many different frequen-
cies, characterized by a zero Lyapunov exponent).

The existence of the quasi-periodic phase explains why, if
the optimum suddenly halts, the population remains stuck
at a local optimum. This is because the populations are not
able to wander freely in the fitness space. Being driven by
the moving optimum, they are forced to stay in states that
keep a certain deviation from it. In turn, in equilibrium, this
poses some directional selective pressure, which biases even
further the allele frequencies, resulting in a loss of genetic
variation.

In File S5 we also study a moving optimum that oscillates
smoothly with different frequencies and amplitudes. The lag
enters a periodic phase of many frequencies (i.e., it is not
smooth), and the fluctuations increase as the frequency and
the amplitude increase. We also study damped oscillations.
Surprisingly, once the oscillations stop, the population ends
up better adapted when compared with linearly moving
optima.

Discussion

Our analyses help us to understand the relative contribu-
tions of alleles of large and of small effect in the mainte-
nance of genetic variation and in the response to stabilizing
selection. Interestingly, our analysis questions whether the
specific distribution of allelic effects is relevant. Naturally,
a more robust interpretation of these results requires un-
derstanding how genetic drift affects the distribution of allele
frequencies. In this model, alleles of small effect are at
intermediate frequencies. However, these will be fixed by
genetic drift. This could induce major changes to our results
when there are many alleles of small effect. Thus, selection
on many traits and genetic drift might change the picture
substantially by maintaining larger variation, even though
the details of the distribution of allelic effects might not be
relevant.

Under genetic drift, the eventual fate of any allele is
fixation or loss. Although drift may seem an additional
complication, it also has an interesting effect, namely to
allow access to parts of the fitness landscape that were

inaccessible from a given state of a deterministic population
(De Vladar and Barton 2010). In this sense, genetic drift
smooths the landscape, and although stochastic effects are
introduced, the expected trajectories are somewhat regular-
ized, because the populations can easily escape suboptimal
peaks (Wright 1935; Barton 1989), converging to fitter
states. In this sense, drift aids adaptation, allowing alleles
to jump across peaks by mutation and genetic drift (Wright
1931, 1932; Coyne et al. 1997).

The stochastic HoC (Bürger 2000, p. 270) shows that, on
average, each locus at equilibrium contributes to the genetic
variance by 2g2Nm/(1 + g2NS). Thus, the expected genetic
variation, hni, is smaller than the nHoC. Alleles of small effect
will be fixed by drift, but their contribution is still small
compared to alleles of large effect. Consequently, on aver-
age, the response of the trait is slower in finite populations
than in infinite populations, which was already observed by
us for the case of equal effects (De Vladar and Barton 2010).
However, in a strong selection regime, i.e., g2NS � 1, even
alleles of small effect (g2NS , m) will be near fixation. Thus
for sufficiently large populations, the HoC approximation
should hold. However, the problem is far from trivial be-
cause these fixed alleles of small effect can further induce
deviations of the trait mean from the optimum.

These analyses assume that at equilibrium the trait is well
adapted. Other factors such as asymmetric mutation rates
can maintain a deviation from the optimum (Charlesworth
2013). In this case, a stationary population effectively expe-
riences directional selection and maintains even more ge-
netic variance than when the trait matches the optimum.
In our analyses we find in some cases that when traits de-
viate from the optimum, there is more genetic variance. Un-
der asymmetric mutation rates, as in Charlesworth’s model,
the deviation from the optimum is maintained by two op-
posing forces: an asymmetric flux of mutations and direc-
tional selection toward the optimum. In our model the
populations simply stand at a suboptimal peak.

Selection on many traits and pleiotropy

It is often argued that stabilizing selection acts on multiple
traits. Under a common polygenic basis, two traits that are
subject to antagonistic selective pressures remain at an
intermediate value that is a compromise among the optimal
solutions. Alleles of large effect that are not subject to these
pleiotropic effects can contribute significantly to the re-
sponse to selection, even though their contribution to the
genetic variance is negligible due to the large number of loci
(Kelly and Rausher 2009 provide many examples). In this
section, we show that our previous results are relevant in
this larger context.

A more general calculation for many traits under selec-
tion shows that if several traits are all adapted to their
optima, there are still two classes of alleles, near fixation
and at intermediate frequency, but the criterion for locus i to
be near fixation is Gi [

P
kg

2
kiSk . 4m; where Sk is the selec-

tion strength on trait k and gki is the allelic effect of locus i
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on trait k (Appendix D). However, if the optimum for one
trait favors alleles at the + state, and the optimum of the
other trait favor alleles at the 2 state, then the net effect of
selection on an allele might partly neutralize. In this case,
deviations from the optima will exist and both alleles will be
maintained at intermediate frequency, and the genetic var-
iance in the population will be high, as they will contribute
by g2

ki=2 even if gki . ĝ:

For multiple traits that share a polygenic basis, only
a few principal components will experience strong stabiliz-
ing selection; all the other components will be subject to
only weak selection; otherwise the genetic load would be
prohibitively large (Barton 1990). Hence, it remains unclear
when (and unlikely that) a particular focal trait is the main
component of fitness (Barton 1990). Therefore, if the stabi-
lizing nature of selection is attributed to pleotropic factors,
the equilibrium genetic variance will be decreased (Turelli
1985; Barton 1990; Slatkin and Frank 1990): if the
strengths of selection on the M traits are the same, we get
that n = nHoC/M.

The observed differences in fitness can be due to other
correlated traits, as explained above, or to pleiotropic effects
directly affecting fitness. For morphological traits, the
distribution of allelic effects is positively correlated with
fitness effect (Keightley and Hill 1990). However, it remains
difficult to disentangle whether pleiotropy or multivariate
selection is the acting mode of fitness reduction (Barton
1990; Zhang and Hill 2003)

Under antagonistic selection the picture is different. The
HoC model for many traits (Turelli 1985) shows that the
genetic variance of one trait depends on the strength of
selection of the other traits (even if the traits are uncorre-
lated). In this case each locus near fixation contributes by
2g1ig2im/Gi. However, we must consider that the condition
Gi . 4m is dependent not only on the distribution of allelic
effects, but also on the distribution of selective coefficients S.
If the latter has a mean of zero and small variance (weak
selection), the fixation condition would be hard to fulfill, and
most alleles will be at intermediate frequency, leading to high
genetic variance (consistent with Zhang and Hill 2003).

Admixed populations and genetic incompatibilities

Suppose that two populations that are genetically differ-
entiated come into contact. Will a subsequent admixture
result in maladapted offspring? In File S6 we show that the
admixed population necessarily has larger genetic variance
than the source populations, even if the latter have the
same trait mean and variance. This is because the popula-
tions might be at different adaptive peaks that have the
same or very similar phenotypic distribution. However,
there are ñ loci with distinct alleles in each population,
which cause the excess variance relative to the parental
mean. This will be caused by alleles of large effects, each
one contributing by g2

i 2 2~nðm=SÞ: This can be interpreted
as the expression of genetic incompatibilities between the
two divergent populations and emphasizes the role of sta-

bilizing selection and epistasis in the process of speciation
(Barton 1989, 2001). (However, this mechanism is of a dif-
ferent nature than the paradigm of Dobzhansky–Müller in-
compatibilities). After secondary contact the population
might develop isolation and readapt to its original state,
retaining the incompatible alleles, or it might hybridize and
readapt to a new state. This will depend on the initial de-
gree of admixture, but also on the otherwise negligible
deviations from the optimum as well as on genetic drift,
factors that we have not considered.

SNPs as genomic signatures of stabilizing selection

Under the assumptions of our analyses, most loci with high
heterozygosity will have small effects, whereas alleles of
large effect will have much lower heterozygosity, a result
consistent with early results of the neutral theory (Kimura
1969). In turn, our results support the well-known idea that
there can be substantial measurement bias in the estimation
of allelic effects from QTL or GWAS: alleles of large effect will
be harder to detect than polymorphisms of alleles with small
effect. For instance, most effects that we can map are
expected to be small. This is consistent with the knowledge
that most alleles have small effects. Furthermore, if alleles of
large effect are common, our results indicate that they will be
close to fixation, and thus rare in the population, and conse-
quently less likely to be detected.

Ignoring drift and equating ns to the SNPs on a genome of
size n and the proportion of fixed alleles to P = nf/n and
assuming that this proportion is homogeneous not only
across the genome, but also across the set of loci that affect
different traits (questionable suppositions of course), this
implies that traits are approximately at a fraction P of the
total genetic variation, as we saw above. The ratio ns/n is on
the order of 1:100 or 1:1000, and thus P ’ 0.99. The evolu-
tion of these traits is mutation limited rather than by standing
genetic variability. These estimations assume linkage equilib-
rium, as are the SNPs identified by GWAS, which are often
spread across the genome. (Clearly, this does not apply within
genes or coding or regulatory sequences, as linkage is tight).

Different populations that show similar trait distribution
and genetic variation may still differ at individual SNPs,
especially if these have large effects. Thus, a particular allele
might not be uniquely associated with a particular trait,
even if they are causally related. This justifies and is
consistent with GWAS findings that several variants can be
associated with different alleles. What we have shown is
that these causal variants are expected to contribute equally
to the genetic variance, irrespective of the specific genetic
makeup of the quantitative trait(s).
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Appendix A

Bifurcation Points

The bifurcation points occur when there is a change in the stability of the equilibrium allele frequencies by varying
a parameter. This means that, in addition to the equilibrium condition dp/dt = 0, we also require that the eigenvalue
vanishes at the point of equilibrium. If we rescale the equations in terms of d and m, we have to solve the following system:

mð12 2pÞ2 ð12 pÞpð2d2 2pþ 1Þ ¼ 0
22d2 2mþ 2pð2d23pþ 3Þ2 1 ¼ 0:

(A1)

By eliminating p from the two equations we get that

8d2
	
2d2 þ 2ðm2 5Þm2 1


 ¼ ð4m21Þ3: (A2)

This formula defines the boundary in the diagram of Figure 3 in the main text. Clearly, if there are no deviations from the
trait, d = 0, the right-hand side gives the critical value m̂ ¼ 1=4: Also, as m vanishes, d / 1/2. In general, the last equation
gives the boundary for any arbitrary deviation.

We can also eliminate m and get the allele frequency p at which the bifurcation occurs, given by the solutions to the cubic:

28p3 þ 4ðdþ 3Þp2 þ ð24d2 6Þpþ 1þ 2d ¼ 0: (A3)

Note that to keep allele frequencies 0 # p # 1, it must be fulfilled that 21/2 # d # 1/2.

Appendix B

Perturbation Analysis for Small Deviations from the Optimum

Consider an approximate solution to Equation 6 expressed as p = P0 + (Dz)P1 + (Dz)2P2 + O[(Dz)3]. The time derivative of
p neglecting terms of order (Dz)3 is

_p ’ _P0 þ ðDzÞ _P1 þ ðDzÞ2 _P2
¼ ð12 2P0Þ

�
m2 Sg2P0ð12 P0Þ

�
þ  ðDzÞ

h
2Sg

�
2P0ð12 P0Þð12 gP1Þ þ gP1ð122P0Þ2

�
2 2mP1

i
þ  ðDzÞ2½Sgðð2P0 21ÞP1ð3P1 þ 2Þ þ 6ðP02 1ÞP0P2 þ P2Þ2 2mP2� :

(B1)

The unperturbed solutions for P0 are those given in the main text, i.e., Equation 9. In equilibrium, we require the terms
proportional to Dzm in the last equation to vanish, which gives the following two solutions for alleles of small and of large
effects, respectively:

P1 ¼

8>>><
>>>:

Sg
Sg2 2 4m

�
g2 ,

4m
S

�
2m=g

4m2 Sg2
�
g2 .

4m
S

� : (B2)

Note that both quantities are negative.
The second-order perturbations give P2 = 0 for alleles of small effect, and for alleles of large effect

P2 ¼ 6
4m

ffiffiffiffiffiffi
gS

p ðmþ gSÞ
ð4mþ gSÞ5=2

; (B3)

where the sign indicates whether the allele is in the + or the 2 state.

Deviations from the optimum
We can estimate the deviation from the optimum by summing over all alleles. This leads to a quadratic equation for Dz
with the solution
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Dz ¼ 12 z1
2z2

6

"�
12z1
2z2

�2

2
z0 2 z∘
z2

#1=2
, (B4)

where the factors zk are

zk ¼ 2
Xn
i¼1

giPki (B5)

(Pki is the kth perturbation at the locus i).

Maximum trait deviation
Taking the solution for alleles of large effect, we can calculate what is the maximum allowed deviation from the trait, ~Dz:
For this, we equate the allele frequency to zero (for positive deviations) or equivalently to one (for negative deviations).
Assuming positive deviations,

min p ¼ 0 ¼ 1
2

"
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4m
sg2

s #
þ 	

~Dz

 2m=g
4m2 Sg2

; (B6)

which gives a deviation of

~Dz ¼ g

�
Sg2

4m
2 1

�"
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4m
Sg2

s #
: (B7)

Note that the larger effects tolerate larger deviations. Hence we need to take the minimum of all these deviations, to ensure
stability for all alleles. This is thus given by the smallest allele of large effect. Assuming that Sg2 � 4m the expression above
simplifies to

~Dz ¼ g

2

�
12

3m
Sg2

�
; (B8)

and for alleles of extremely large effect, the deviations can be at most of order ~Dz ’ g=2; as reported in the main text.

Appendix C

Probability of Allelic States

In Appendix C we derive the probability r of finding an allele at the + state, that is, Equation 11 in the main text.
As mentioned in the main text, we assume that the trait mean has a value Z ¼ z ¼ z∘ and calculate the probability r that

allele X is at the + state. That is, r[ Pr½X ¼ 1jZ ¼ z�. We first decompose this probability, using Bayes’ theorem:

Pr½X ¼ 1jZ ¼ z� ¼ Pr½X ¼ 1� Pr½Z ¼ zjX ¼ 1�P
yPr½Z ¼ zjX ¼ y�Pr½X ¼ y�:

Then, we express the trait mean as the sum over loci, z ¼ P
ið2xi 2 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
i 2 4m=S

q
; where xi indicates whether the allele is

close to x = 1 or x = 0. Here we assumed that the background alleles are near fixation. Summarizing,

Pr
�
zjxj ¼ 1

� ¼ Pr
hP

ið2xi 21Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2i 24m=S

q xj ¼ 1
i

¼ Pr
h
z 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2j 24m=S

q i
:

(C1)

Since the trait is a sum over independent loci, we can approximate that the trait distribution is normal (central limit
theorem). Its variance V is given by summing over the background loci of large effect:
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V ¼
X
i 6¼j

�
g2i 2

4m
S

�
: (C2)

Now assume that the initial configurations between + and2 alleles are chosen uniformly; i.e., Pr[X= 1] = Pr[X= 0] = 1/2.
The sum in the denominator of Bayes’ theorem involves only two Gaussian terms. Putting the pieces together, this leads to
Equation 11:

rj ¼
1

1þ exp
h
22ðz∘=VÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2j 2 4ðm=SÞ

q i: (C3)

To accommodate deviations from the optimum trait value, we proceed in a similar way, but using the first-order
perturbation on the allele frequencies. Notably, the variance V does not change, since all alleles are displaced proportionally
to Dz. We arrive at the expression

rj ¼
1

1þ exp
h
22ð1=VÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2j 24ðm=SÞ

q �
z∘ þ DzSg2j

.�
Sg2j 2 4m

��i: (C4)

Note that the term proportional to Dz denotes the strength of the directional selection component on allele j. For alleles of
very large effect Sg2

j � 4m; and the term is �Dz, which as we saw before is very small. Thus the deviations from the optimum
affect mainly alleles of large effect that are closer to the critical value ĝ:

Appendix D

Stabilizing Selection on Multiple Traits

We consider a simple extension of our model, where stabilizing selection acts independently on many traits. Call z= (z1, . . . ,
zm) an array of m traits that are under selection S = (S1, . . . , Sm) and zo their corresponding optima. Calling S = diag(S), we
define fitness as Wz = exp[2(z 2 zo) � S � (z 2 zo)T/2), where “�” represents the inner product. In principle we could
accommodate correlation selection in the model by allowing the matrix S to have nonzero off-diagonal elements, but we
leave out that possibility at the moment. Under weak selection, mean fitness becomes

W ’ exp
�
2
1
2

	
Dz � S � DzT þ S � n
�; (D1)

where Dz ¼ ðz2 z∘Þ is the vector of deviations from the optima and n is the vector of genetic variances.
The trait means and genetic variances are

zk ¼
Xn
i¼1

gkið2pi 2 1Þ (D2)

nk ¼ 2
Xn
i¼1

g2kipiqi; (D3)

where gki is the allelic effect of locus i on trait k. We are assuming that all n alleles contribute to m traits. This can be relaxed
by simply assuming that gki = 0 for some i, k.

The equilibria for this system are given by

0 ¼ 2 piqi½2bi 2Gið12 2piÞ� þ mð12 2piÞ; (D4)

where

bi ¼
Xm
k

SkDzkgki (D5)
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Gi ¼
Xm
k

Skg
2
ki: (D6)

We find that the two quantities above take the role of the deviation from the optimum and allelic effects on the single-trait
model. In fact, Equation 7 in the main text holds, when we define d = b/G and m = m/G. Consequently, the critical points,
the scaled equilibria, and their stability are the same.
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1 Stability analyses

Our goal is to derive criteria for the equilibria. First, we will calculate the
eigenvalues for a polygenic system without mutation. Then by perturbation
analyses we will consider small mutation rates,

Stability in the absence of mutation.

In the absence of mutation (µ=0) there are three equilibrium points given
by a simpler version of Eq. 6 of the main text, namely:

0 = −Sγipi(1− pi)[2∆z + γi(1− 2pi)] . (1)

The solutions are the two fixed states, and the point where the gradient of
mean fitness vanishes, which occurs at

pi =
1

2
+

∆z

γi
. (2)

Since ∆z couples all the alleles, the stability of any given point is de-
termined by the whole genetic background which determines the value of
∆z. The stability of each equilibrium is determined by the Jacobian matrix,
J = {∂ṗi/∂pj}ni,j=1, where the elements are shown in Table 1. It follows that
if alleles are fixed at all loci, J is diagonal with eigenvalues

λi = −Sγi (γi ± 2∆z) , (3)

where the signs depend on whether the locus i has the allele ‘-’ or ‘+’, re-
spectively. Hence, if the trait matches the optimum (∆z = 0) all fixed states

Table 1: Elements of the Jacobian matrix for a polygenic trait under stabi-
lizing selection and no mutation.

pi 0 1
2

+ ∆z
γi

1

∂ṗi
∂pi
−Sγi (γi + 2∆z) −2Sγ2

i

[
1
4
−
(

∆z
γi

)2
]
−Sγi (γi − 2∆z)

∂ṗi
∂pj

0 −4Sγiγj

[
1
4
−
(

∆z
γi

)2
]

0

1



are stable. If the trait deviates from the optimum, any locus i for which
|∆z| > γi/2 will become unstable and sweep to an alternative state.

Under equal effects, if the deviation from the trait optimum surpasses γ/2,
all alleles in one fixation corner become unstable simultaneously, whereas in
the case of unequal effects this happens only for a fraction of loci, if they
fulfill the above condition.

Clearly, large deviations from the optimum will favour fixation of some
alleles, which do not contribute to the genetic variance. However, small
deviations in principle allow some alleles to be at intermediate frequencies,
and thus generate genetic variance. In that case, each polymorphic allele will
contribute to the genetic variance by 1

2
(γs + 2∆z)2, where s indicates loci

that are polymorphic.
Now we will prove that at most one locus can be polymorphic. First

we prove exactly for ns = 1, 2, and then for a general case. Without loss
of generality we will assume that the vector of allelic effects is ordered, is
bounded and positive, i.e. 0 < γ1 ≤ γ2 . . . ≤ γn <∞.

Notice that the Jacobian is a block diagonal matrix:

J =

(
As Ao

O Af

)
(4)

the sub-matrices for the polymorphic states, As and A0 contain the Jacobian
terms given by the central column of Table A1, and are of dimensions ns×ns
and ns×nf , respectively. The sub matrix Af is a diagonal matrix correspond-
ing to fixed loci, and its elements are given by the left and right columns of
Table A1; it has dimension nf×nf . O is a zero matrix of dimensions nf×ns.

Because J is a triangular matrix, its eigenvalues are given by ‖Af −
λI‖‖As − λI‖ = 0. This implies that we can find the eigenvalues for each
matrix separately. Therefore, there will be nf eigenvalues of the form λi =
−Sγi (γi ± 2∆z) for the fixed alleles, just as in Eq. 3.

Assume now that there is only one polymorphic allele, i.e. that As =

−2Sγ2
i

[
1
4
−
(

∆ z
γi

)2
]

for a given i. Then, as long as the deviation from the

optimum is less than half the effect, the polymorphic allele is stable.
Suppose now that As is a 2× 2 matrix. Call fff = (f1, f2), with

fi = Sγi

[
1

4
−
(

∆ z

γi

)2
]
, (5)

2



and the vector of effect of polymorphic loci ggg = (γ1, γ2). Then irrespective
of the magnitude of the deviation from the optimum we get:

λs = −fff · ggg ±
√

(fff · ggg)2 + 12f1f2γ1γ2 (6)

where f · gf · gf · g denotes the dot product between the two vectors. Thus, one
eigenvalue is negative and one is positive, making the configuration with two
polymorphic alleles unstable.

A more general case is hard to compute exactly, but we can approach
the problem by partitioning the matrix As into two simpler matrices whose
eigenvalues can be computed exactly, and then by applying Weyl’s inequality
(see also Horn’s conjecture; Horn, 1962; Knutson and Tao, 2001), we can
bound the eigenvalues of As in terms of the eigenvalues of the other two
matrices.

Assume that the vectors fff and ggg are of dimension ns > 0. Consider
the following two matrices: B = −2fff ⊗ ggg and C = Diag {fiγi}ns

i=1, where
⊗ denotes the outer product of the vectors. Then As = 2S(B + C). The
matrix B has rank one, and therefore has eigenvalues β = (0, . . . , 0,−2fff · ggg)
where there are ns−1 zeroes. The matrix C, being diagonal, has eigenvalues
ζ = (γnsfns , . . . , γ1f1), where the eigenvalues are written in decreasing order,
and therefore ζ has the reverse order of ggg. Then if α are the eigenvalues of
As, Weyl’s inequality states that ζi + β1 ≤ αi ≤ ζi + βns , which implies the
following two inequalities:

0 < g1f1 ≤ αi ≤ gnsfns , 1 < i < n (7)

g1f1 − 2ggg · fff ≤ αn ≤ gnsfns − 2ggg · fff < 0 (8)

The first inequality implies that there are ns−1 positive eigenvalues, and
the second inequality that there is one negative eigenvalue. (We confirmed
this result using numerical calculations; data not shown). This, as stated
above, requires that |∆z| < γ1/2; there are no fixed points that allow larger
deviations.

In conclusion, only one allele can be maintained polymorphic; any con-
figuration with more than one polymorphic allele is unstable.

Stability under small mutation rates.

Now we will derive an approximation for the eigenvalues of the Jacobian
matrix when the trait matches the optimum and mutation rates are small

3



compared to selection, (µ << S). However, we will assume that all alleles
are of large effect, i.e. γ > 2

√
µ/S, and hence contribute to the Jacobian by

−Sγ2
i in the diagonal, and −4µ

γj
γi

in the non-diagonal. If mutation is absent,

then the Jacobian is simply J0 = −SDiag {γ2
1 , . . . , γ

2
n}, with eigenvalues λi =

−Sγ2
i , as above (Eqn. 3) when ∆z = 0. For simplicity, we will scale the

eigenvalues as λ→ λ/S. We write the Jacobian as J = J0 + µJµ, where

Jµ =

{
−4 γi

γj
i 6= j

0 i = j

We are therefore looking for the solution to the equation

‖J0 + εJµ − λI‖ = 0 (9)

where ε=µ/S. This equation is a polynomial of degree n on λ. The central
idea is to treat the determinant as a function F (ε, λ), and to perform a
perturbation analysis on ε, and solve for λ. The eigenvalues are expanded
as λ = λ0 + ελ1 + ε2λ2 + . . ., making F (ε, λ) = F (ε, λ0 + ελ1 + ε2λ2 + . . .),
which in turn is written as F (ε, λ0, λ1, λ2, . . .). Following we expand the
determinant in series of ε up to second order:

F (ε, λ0, λ1, λ2, . . .) ' F (0, λ0) + εF ′ (0, λ0, λ1) +
ε2

2
F ′′ (0, λ0, λ1, λ2) +O(ε3).

(10)
In general, the derivatives F (n) are polynomials on ε. Grouping terms

of equal order of ε, leads to system of equations that give the λi. Since a
general formula for the coefficients of the polynomial on λ is complicated, we
use matrix algebra as a general framework to perform the approximations,
since the compact notation of matrix algebra makes it more convenient to
derive general results. For convenience, define the following n× n matrix:

F = J0 − λ0I + ε (Jµ − λ1I)−
(
ε2λ2 + . . .

)
I (11)

therefore, the characteristic equation is

F (ε, λ0, λ1, λ2, . . .) = ‖F‖ = 0 (12)

The first term in the perturbation method is the unperturbed solution
(order ε0) which emerges from the first term of the Taylor expansion: F (0)⇒
‖J0 − λ0I‖ = 0; its roots are as above (Eq. 3).
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The second term (order ε) follows from the derivative F ′, where we use
Jacobi’s formula, i.e. F ′ = d

d ε
‖F‖ = Tr

(
F† dF

d ε

)
, where F† is the adju-

gate (a.k.a. classic adjoint) matrix of F. The only relevant term of F′ is
(Jµ − λ1I) (higher order terms vanish when ε = 0). Then at ε=0 we get
that

(
F†F′

)
i j

= −αi j
∏n

k 6=j (γ2
k + λ0) where αi i = λ1 and αi j = 4γi/γj .

This leads to Tr
(
F† dF

d ε

)
= −λ(i)

1

∏n
k 6=j

(
γ2
k + λ

(i)
0

)
. Since we require that

F ′
(

0, λ
(i)
0 , λ

(i)
1

)
= 0, this implies that λ

(i)
1 = 0, concluding that there are no

terms of order ε.
Because the first order perturbation vanishes, it suggests that the config-

uration will be stable. The leading value of the eigenvalue is given by the
unperturbed solution, and it will change by order of (µ/S)2. Thus even if λ2

is positive, as long as it is bounded the eigenvalue will remain negative.
Now we will calculate the second order term to verify that it remains

finite. For the term of order ε2 we need to evaluate F ′′, that is

F ′′ =
d2

dε2
‖F‖ =

d

dε
Tr

(
F†
dF
dε

)
(13)

the the differential operator can be exchanged with the trace, and using the
additive property we get

F ′′ = Tr

(
dF†

dε

dF
dε

)
+ Tr

(
F†
d2 F
d ε2

)
(14)

Since d2F/dε2 ' 2λ2I, substitution of this identity gives

λ2 = −Tr

(
dF†

d ε

dF
d ε

)/
2Tr

(
F†
)

(15)

At ε = 0 and readily using that λ1 = 0 we have that dF/dε = Jµ and that{
dF†

dε

}
ij

=

{
−4

γj
γi

∏n
k 6=i,j (γ2

k + λ0) i 6= j

0 i = j

By multiplying the last two matrices we get the numerator of Eq. 15; the

denominator is Tr
(
F†
)

=
∑n

j=1

∏n
k 6=j −

(
γ2
k + λ

(i)
0

)
. Substituting the corre-

sponding λ0 gives the second order terms of the eigenvalues, which are:

λ
(i)
2 = −

8
∑n

j 6=i
∑n

m 6=i
∏n

k 6=j,m (γ2
k − γ2

i )∑n
j 6=i
∏n

k 6=j (γ2
i − γ2

k)
. (16)
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Assuming that there γi 6= γj∀i, j, the last expression simplifies to

λ
(i)
2 = −16

n∑
j 6=i

1

γ2
j − γ2

i

. (17)

Thus the second order term is finite. If two or more effects are the same,
the previous expression does not apply. Nevertheless, multiplicities can be
incorporated in the more general expression of Eq. 16, but we leave that case
aside as it is unlikely that two effects are exactly the same.

Summarizing, the perturbation parameter is ε=µ/S, thus the eigenvalues
are as

λ(i) = −γ2
i +

(µ
S

)2

λ
(i)
2 +O

([µ
S

]3
)

(18)

which completes the approximation up to second order.
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2 Allele Frequency Spectra

At equilibrium, alleles of large effect are close to fixation. However, whether
most of these are at the ‘+’ or ‘-’ state depends on the relative position of
the optimum, and on how much the trait deviates from it. Intuitively, we
expect that if z◦ > 0 (conversely, z◦ < 0) most alleles will be at the ‘+’ (‘-’)
state. Figure S1 presents the allele frequency spectrum from numerical runs
showing that the position of the optimum strongly biases the allelic states.

The proportion of alleles of large effect will determine the relative height
of the central peak (central column in Fig. S1) with respect to the peaks
close to the borders. For instance, for traits with many alleles of small effect
the central peak will be substantial. In contrast, traits composed mainly
of alleles of large effect will have a moderate or practically absent central
peak. This is best visualized in the central column for Fig. S1. If

√
µ/S is

increased, the spectrum is biased towards fixation, and as it is decreased, the
spectrum is less dense at the fixation borders.
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Figure S1: Allele frequency spectrum for different proportions of alleles of
large effect, and for different positions of the optimum. Optimum value set
at: 90% of the maximum trait value to the left (left column), close to zero
(central column), 90% of the maximum trait value to the right (right column).
Proportion of alleles of large to small effects is: 90% (top row), 50% (central
row), 10% (lower row). Each plot is composed of the end points of 50 runs
with random initial condition and realization of effects. µ = 10−4, S = 0.1,
n = 100.

8



3 Response to selection

3.1 Response of traits composed of alleles of only large
effects

By comparing the response of a trait composed only by alleles of large effect
but otherwise evolving under identical conditions as another trait with mixed
effects, we find that alleles of large effects are the most important driving the
response to selection. Figure S2 is nearly identical to Fig. 8 in the main text,
but without the alleles of small effects.

To have a more comprehensive demonstration, we proceed as in the pre-
vious situation. That is, we compare the response of two populations that
are identical, except that in one the trait is composed only by the alleles of
large effects. If we compute the absolute difference,

D =

∫ T

0

|z̄1 − z̄2|/
√

(ν1 + ν2)/2 dt

we expect D to be very small except in the limit where ns >> nf , and close
to the limit of response of the trait. Figure S3 shows the divergence between
these trajectories for different realizations of allelic effects, which differ only
on the number of alleles of small effect. The deviations that are large (e.g.
more than two standard deviations) correspond to cases where the optimum
is placed close to the maximum trait values.

Summarizing, alleles of large effect not only contribute most of the vari-
ation, but also drive the dynamics of the trait.

3.2 Response of traits under different distribution of
effects

In the main text we showed that the number of alleles that can be near fixa-
tion depends on the distribution of allelic effects. Since these alleles of large
effect are the ones that generate most of the genetic variance, the response to
selection will be also affected by the details of the distribution of allelic effects.
By integrating the amount of genetic variance that has been produced along
an evolutionary run, that is VT =

∫ T
0
νdt, we can measure how the distribu-

tion of allelic effects affects the response to selection. At the same time, this
measure can be regarded as the effectiveness of directional selection towards

9



the optimum. Recall that dz̄/dt = νβ. Integrating in the time interval [0, T ],
on both sides we have that ∆z̄ = βVTβ, and consequently βVT = ∆z̄/β. The
last expression is the relative amount of displacement of the mean trait value
per selection. In Fig. S4 we study how different distributions of allelic effects
affect the total genetic variance VT that is produced along a run, and com-
pare it against the number of contributing loci nf . The positive, power-law
relationship indicates that selection works more efficiently by fixing alleles
of large effect than by displacements of allele frequencies of alleles of small
effect.
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Figure S2: Response to an abrupt displacement of the optimum of a polygenic
trait. (A) Deviation of the trait mean from the newly positioned optimum.
(B) Genetic variance. Black: exact numerical results. Dashed black line:
equilibrium genetic variance, (ν = 2nµ/S). (C) Response of the allele fre-
quencies. The trait is composed by n = 26 all of large effects, distributed as
an exponential of mean = 1/10. µ = 10−4, S = 10−1, z◦ ' −2.
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Figure S3: Deviations of the trajectories of traits composed by mixed effects
and large effects, against the number of alleles of small effect. The allelic ef-
fects are drawn from a gamma distributions of mean 0.1 and shape parameter
π = 0.1 (stars, squares), π = 1 (up-triangles, circles), π = 10 (down-triangles,
diamonds). The position of the optima are color coded. For loci with n = 50
(stars and triangles) the maximum trait value is zx ' 5, and the optima are
placed at z◦ = -4 (pink), -2 (yellow), 0 (black), 2 (cyan), and 4 (green). For
traits with n = 200 (squares, circles and diamonds) the maximum trait value
is zx ' 20, and the optima are placed at z◦ = -18 (red), -12 (purple), -6
(blue), 0 (black), 6 (gray), 12 (brown), 18 (orange). µ = 10−4, S = 10−1
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4 Effective number of loci

The response of the trait is given by dz̄/dt = 2νS∆Ω. If ne effective loci
contribute to the variance, then by assuming the HoC we get that

dz̄

dt
= 4neµ∆Ω . (19)

We saw that the alleles that first respond to a sudden shift in the opti-
mum are those of effect close to γ̂. Assuming no initial deviations from the
optimum, and using Eq. 12 of the main text we get

dz̄

dt
= ∆Ω

(
4µnf + S

∑
k∈S

γ2
k

)
. (20)

Hence, in as long as there are some fixed alleles (nf > 0), the two expressions
of dz̄/dt equate to give

ne = nf

(
1 +

1
2

∑
k∈S γ

2
k

2µnf/S

)
. (21)

In essence, this amounts to the variance of the HoC model but using an
effective number of loci ne.

A similar approximation using effective number of loci for the initial re-
sponse of the genetic variance, indicates that ν remains roughly constant.
Therefore the approximations can be regarded in a “breeder’s equation regime”,
where the response to selection is sustained with constant genetic variance.
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5 Moving optimum

5.1 Oscillating moving optimum

In this section, we study how a trait responds to an optimum that oscillates
deterministically as:

z◦ = Ω sin

(
2π
t

τ

)
. (22)

In Figures S5-S8 we show how the amplitude and the period of the fluc-
tuations affect the evolution of the trait. We find that the trait remains very
close to the optimum, and therefore the lag is small. An interesting feature
is that the stationary lag shows fluctuations of different frequencies, which
are more erratic as amplitude and frequency are increased.

5.2 Quasiperiodicity

Figure S9 shows that this is a pervasive behavior which seems to occur when
the deviation from the optimum is large enough. In these plots, the allelic
effects are the same but the initial peaks are slightly different. Although the
trajectories seem to converge after a few thousand generations, they briefly
separate, and, surprisingly they enter a phase of fluctuations, but which are
entirely deterministic, since all initial conditions converge to that path (Fig.
S9). Hence, we rule out chaotic behavior, because, if the trajectories were
chaotic, they would diverge from each other, resembling random fluctuations
that are uncorrelated across runs.

The fluctuations are entirely deterministic, and are composed by oscil-
lations of many different frequencies. This is known as quasiperiodicity [1,
Ch. 6]. Quasiperiodicity is associated with unpredictable physical systems
such as weather and turbulence, and appears when there is an external forc-
ing, as happens with a moving optimum in a population. However, although
quasiperiodicity imply unpredictability of the evolutionary outcome, on the
scale of response of the trait, these are minor fluctuations (∼ .1 − .01% of
the value of the mean trait).
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Figure S5: Response of a trait to an oscillatory moving optimum. (A) Moving
optimum (red, dashed), trait mean (black). (B) Lag of the trait mean from
the optimum. The optimum fluctuates according to Eq. 22 with amplitude
Ω = 0.5zx, and period τ = 104. The trait is composed by n = 1000 loci with
exponentially distributed effects with mean 0.1, and zx ' 100. S = 0.1, µ =
10−4
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Figure S6: Response of a trait to an oscillatory moving optimum. The opti-
mum fluctuates with amplitude Ω = 0.75zx, and period τ = 104. Otherwise
as Fig. S5
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Figure S7: Response of a trait to an oscillatory moving optimum. The opti-
mum fluctuates with amplitude Ω = 0.5zx, and period τ = 5×104. Otherwise
as Fig. S5
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Figure S8: Response of a trait to an oscillatory moving optimum. The opti-
mum fluctuates with amplitude Ω = 0.75zx, and period τ = 5× 104. Other-
wise as Fig. S5
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5.3 Damped oscillating moving optimum

Now we consider an optimum that oscillates but its amplitude gradually
dampens. That is

z◦ = z◦ = Ω sin

(
2π
t

τ
+ φ

)
e−t/τ . (23)

When t >> τ the optimum is a t zero and oscillations come to an end. Figure
S10 shows an example of a population that evolves under a damped oscillating
optimum. We also compare it to a linearly moving optimum that starts at
the same state, and stops at a similar time. Fig. S10B shows that once
equilibrium is achieved the oscillating optimum leads to better adaptation
than the linearly moving optimum. By the moment when the optimum stops
fluctuating or moving, the population responding to the oscillatory optimum
ends up with more genetic variance than the one evolving under the linearly
moving optimum. This is consistent with the final lag, since the population
that has more genetic variation is able to find a peak with higher fitness (or
lower load) than the population that has lower genetic variance and that
cannot escape from a local optimum.

In Fig. S11 we present the end-point of simulations similar as the one in
Fig. S10, but where we randomize the initial conditions, the effects, and vary
the number of loci that compose the trait. As in the particular example of
Fig. S10 we find that the linear moving optimum leads populations to larger
deviations (up to an order of magnitude) than damped oscillating moving
optimum. We also find that the final lag is smaller with less loci. The
genetic variance, is also smaller for the linear moving optimum, although
only slightly.
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Figure S10: Polygenic trait following a moving optimum with damped oscil-
lations (red) compared to a linearly moving optimum (green). (A) Response
of a polygenic trait. (B) Stationary lag. (C) Response of the genetic vari-
ance. The oscillatory optimum has a period of τ = 2×104, and an amplitude
of Ω = 3/4zx. The phase is set so that the population initially stands at the
optimum peak with no deviations from the optimum. The linearly moving
optimum starts at the same point and moves to z◦ = 0 in T = 1.8× 105 time
units. Otherwise as Fig. S5.

22



•••

••

•

•
•

•

•

•

•

•

•

•
•
•

•

•

•

•

•

•
•

•

• •

•

•

•
• •

ë
ë

ë

ë
ë

ë
ëëë ëë

ë
ëë

ë ëëëë ë
ë ë ëë

ë ëë

ë

ë

ëëëë ë

å

å

å

å

å

å

å

å

å

å

å
å

å

å
å

å

å

å

å

å

å

åå

å

å

åå

åå

å

å

å

å
å

å

å

å

å

å

åå

åå
å

å
å

å
å

å

å

å å
åå

å

å å
å

å

ää ä

ä

ä

ä

ä

ä

ä

ä

ä
ä

ä

ä
ä

ä

ä

ää

ä
ä

ä

ä

ää

ä ä

ä

ä

ä

ä

ä

ä

ä

ä

ä

ä

ä ä

ä

ä

ä ä

ä

ä

ä

ä

ä

1 ´ 10
-4

2 ´ 10
-4

5 ´ 10
-4 0.001 0.002 0.005

0.010

0.050

0.020

0.030

0.015

0.070

Lag HD.O.M.O.L

L
a
g

HL.M
.O

L

••••••••
•

•••
••••••••
••••••••••••ëëëëëëëëëëëëëëëëëëëëëëëëëëëëëëëëëë

ååååååå
å
åå
åååååååå
åå
ååååååå
åå
åååååååå
ååååå
å
åååååååå
ååååååååå

ä
ä ä

ääää
ä ääää

äääääää
äääää

ä
ää

ä
ääää

ä
ä

ää
ääää ä

ä

ä
ä ää

ä
ä

ä
äää

ä

ää
ä

ää
ä ä

0.10 1.000.500.20 0.300.15 1.500.70

0.10

1.00

0.50

0.20

0.30

0.15

1.50

0.70

Genetic Variance HD.O.M.O.L

G
e
n
e
ti

c
V

a
r
ia

n
c
e

HL.M
.O

L

Figure S11: End point of polygenic trait following a moving optimum with
damped oscillations (D.O.M.O. )compared to a linearly moving optimum
(L.M.O). Each point compares (A) the final lag and (B) the genetic variance
of populations that differ only on the way the get to equilibrium. The dotted
line is the identity (for visual reference). Circles n = 1000, squares n =
100. Open symbols represent randomization of the initial peaks but same
realization of effects. Solid symbols randomize both initial conditions and
effect. The realization of effects used for n = 1000 is the same as in Figs
S5-S8. All effects are sampled from an exponential distribution with mean
0.1. Otherwise as Fig. S10.
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6 Admixed populations and genetic incom-

patibilities.

Assume that two populations that are genetically distinct, although with the
same mean trait and genetic variance come into contact. The new, admixed,
frequencies at each locus i are padi = αp

(1)
i +(1−α)p

(2)
i , where the superscripts

denote the source population, and α is the degree of admixture. Since the
trait is additive, the admixed mean trait is the weighted average z̄ad = αz̄(1)+
(1− α)z̄(2). The genetic variance, however, is not additive, thus:

νad = α2ν(1) + (1− α)2ν(2) + 2α(1− α)
n∑
i=1

γ2
i

(
p

(1)
i q

(2)
i + p

(2)
i q

(1)
i

)
. (24)

Necessarily, ns and nf are the same in both populations, and thus have
the same genetic variance, ν(1) = ν(2) = ν. By distinguishing those alleles
that are at the same frequency in both populations, and those that have
different frequencies across populations we get:

νad = ν + 2α(1− α)

(∑
i∈I

γ2
i − 2ñ

µ

S

)
(25)

where the set I =
{
i : p

(1)
i = q

(2)
i

}
has ñ loci. Notice that ñ is the number

of loci that have contrary alleles close to fixation in each population, i.e.
p

(1)
i = q

(2)
i . Since γ2

i > 2µ/S, then νad > ν the admixed population, has larger
genetic variance, and is unfit with respect to any of the source populations
(independently of the degree of admixture).
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