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		  As an emerging therapeutic approach, adoptive T cell therapy shown promise in advanced solid malignancies. 
The results obtained in patients with metastatic melanoma and kidney cancer are encouraging because of the 
visible clinical benefits and limited adverse effects. Recently, the genetically-modified T cells expressing specif-
ic T cell receptors or chimeric antigen receptors are just now entering the clinical arena and show great poten-
tial for high avidity to tumor-associated antigens and long-lasting anti-tumor responses. However, continued 
investigations are necessary to improve the cell product quality so as to decrease adverse effects and clinical 
costs, and make adoptive T cell therapy a tool of choice for solid malignancies.
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Background

Although progress has been made in improving the progno-
sis of advanced solid tumors, it still has relatively short-term 
benefits for most patients. Immunotherapy can result in long-
term benefit, even after short-term treatment. Adoptive T cell 
therapy (ATCT) has emerged as a potent immunotherapeutic 
approach for the treatment of cancer in the past 2 decades. 
The whole process involves the identification and expansion 
ex vivo or in vivo of autologous T cells capable of tumor kill-
ing, which are then adoptively transferred back into the pa-
tients, often along with appropriate growth factors to stimu-
late their survival and expansion in vivo. This could be either 
non-specific such as lymphokine-activated killer cells and cy-
tokine-induced killer cells, or specific recognition of tumor cells 
by cell culture or genetic modification techniques.

In this paper, we review the recent clinical research on treat-
ment of advanced solid tumors with ATCT to provide a gener-
al update on this topic.

Non-Specific Immunotherapy

Lymphokine-activated killer cells

Lymphokine-activated killer (LAK) cells, so-called because the 
immune effector was induced by cytokines, were first de-
scribed in the early 1980s. LAK cells are generated in vitro by 
the incubation of human peripheral blood leukocytes (PBLs) 
in interleukin-2 (IL-2), yielding populations with different sets 
of T cells and NK cells with cytolytic properties not specifical-
ly directed against tumor cells. The cytolytic activities of LAK 
cells are not restricted by the major histocompatibility com-
plex (MHC) [1–3].

The first clinical trial of the systemic administration of autol-
ogous LAK cells was done by Rosenberg in 1985 [4]; 11 of the 
25 patients with metastatic cancer had partial (regression of 
cancer with more than 50% of volume) or complete responses. 
Decades afterwards, it was demonstrated that LAK cells had 
efficacy against metastatic solid tumors such as melanoma, 
renal cell carcinoma, and other advanced solid tumors [5–10]. 
In 1993, a prospective randomized trial showed a trend to-
ward improved survival in patients with melanoma receiving 
IL-2 plus LAK cells compared with IL-2 only, but no difference 
in survival was seen in patients with renal cell cancer (RCC) in 
the 2 treatment groups [11]. Subsequently, a phase-III random-
ized trial revealed that the dose and schedule of IL-2 resulted 
in a low level of antitumor activity against RCC, the addition 
of LAK did not improve the response rate, and more patients 
on the LAK arm experienced pulmonary toxicity, yet only 4 in 
71 patients (6%) had major responses [9].

Postoperative adoptive immunotherapy of LAK cells could low-
er the frequency of recurrence of hepatocellular carcinoma, as 
demonstrated by a randomized trial [10]. The immunotherapy 
group had significantly longer recurrence-free survival (RFS) 
and disease-specific survival (DSS) than the control group. 
Adoptive immunotherapy reduced the risk of recurrence by 
41%. Time to first recurrence in the immunotherapy group was 
significantly longer than in the control group (38% vs. 22% at 5 
years). Intralesional injection of LAK cells and IL-2 also revealed 
a potential role in treating metastatic hepatocellular carcino-
ma and recurrent glioblastoma, with low incidence of severe 
adverse effects [8,12–14]. As summarized by Vauleon [15], 12 
trials treating high-grade gliomas with LAK have been report-
ed in the literature. There were 5 complete response (3 glio-
blastomas [GBM]), 13 partial responses (8 GBM), and 6 stable 
disease (6 GBM) in a total of 118 patients. Neurological toxic-
ity such as brain edema and aseptic meningitis was observed 
in 6 of the 9 trials reporting this factor.

Cytokine-induced killer cells

To date, use of LAK cells as tumor immunotherapy is ham-
pered by the limited expansion of LAK cells in vitro, low cyto-
lytic activity in vivo, and relatively high toxicity, mainly due to 
the infusion of IL-2. Cytokine-induced killer (CIK) cells are an 
improvement of LAK cells by introduction of anti-CD3 antibody 
and IL-2 into the culture of PBLs. CIK cells possess non-MHC-
restricted cytolytic activity which is increase by over 70-fold 
when compared with standard IL-2 stimulated LAK cell activi-
ty [16]. The lytic activity can be further increased by addition-
ally adding other cytokines such as IL-1, IFN-g, IL-7, IL-15, and 
CH-296 [16–20].

Several randomized studies have revealed that the combina-
tion of CIK cell therapy and standard therapy was superior to 
standard therapy alone in patients with solid tumors, including 
renal, hepatocellular and nasopharyngeal carcinoma, and the 
graft-versus-host effects were limited [20–23]. Sixty patients 
with metastatic nasopharyngeal carcinoma after radiotherapy 
were randomized and assigned to 2 groups to evaluate the ef-
ficacy of autologous CIK cells transfusion used in combination 
with gemcitabine and cisplatin (GC) chemotherapy [23]. The 
total effective rate of GC+CIK group was 70% (21/30), much 
higher than that of the GC group (46.7%, 14/30). Similarly, CIK 
cell therapy could remarkably decrease the recurrence rate of 
patients with hepatocellular carcinoma [21] and prolong the 
PFS [22]. Recently, 148 patients with metastatic clear cell re-
nal cell carcinoma (RCC) were randomly divided into 2 groups: 
autologous CIK cell immunotherapy and IL-2 treatment combi-
nation with IFN-a-2a. The 3-year PFS and OS in the CIK group 
were 18% and 61%, significantly higher than in the IL-2/ IFN-
a-2a group (12% and 23%). Similar results could be seen in 
several retrospective studies investigating the therapeutic 
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effect of CIK cells in patients with non-small-cell lung cancer 
(NSCLC) [24] and advanced gastric cancer [25,26]. Furthermore, 
CIK cells can also enhance the killing activity of L-OHP on oxali-
platin-resistant gastric cancer cells in vitro and in vivo [27,28].

The international registry on CIK cells (IRCC) has been estab-
lished to collect the clinical data and set standards on reports 
of clinical trials using CIK cells [29], which included 11 clinical 
trials. Of the 384 patients with reported clinical response, the 
total response rate (RR) was 91/384 reported patients, of which 
24 patients showed a complete response, 27 patients showed 
a partial response, 40 patients showed a minor response. DFS 
was significantly higher in patients treated with CIK cells than 
in a control group without CIK treatment. CIK cells treatment 
had minor adverse effects; however, there is no reliable bio-
marker so far for estimating the clinical response of CIK ther-
apy. It has been shown that CD4/CD8 ratio and percentage of 
NK cells are significantly increased in patients receiving CIK 
transfusion [21,25], but the exact relationship of these mark-
ers with clinical outcome is still unknown.

To date, the variations in methods and clinical evaluation among 
the studies hamper definite conclusions about the clinical effi-
cacy of CIK cell therapy. More studies are needed to elucidate 
the best treatment schedule for CIK cell therapy.

Specific Immunotherapy

Various approaches have been used to obtain tumor-specif-
ic T cells to increase the efficacy of anti-cancer cell therapy 
protocols. One main approach is tumor-infiltrating lympho-
cytes (TILs) grown from metastatic tumor nodules, repeated 
in in vitro stimulation with tumor-associated antigens (TAAs). 
Another approach is genetic modification of T cells to express 
a T cell receptor (TCR) or a chimeric antigen receptor (CAR) to 
a known TAA.

Autologous expanded tumor-infiltrating lymphocytes

The adoptive transfusion of autologous TIL, fist described in 
1988 by Rosenberg [30], has been considered the best available 
treatment for patients with metastatic melanoma. However, 
the decisive improvement in efficacy came after 2000 with the 
introduction of an immuno-depleting preparative regimen giv-
en before the TIL infusion [31,32], resulting in clonal repop-
ulation of circulating lymphocytes with anti-tumor activity.

The adoptive therapy of TIL can mediate the dramatic regres-
sion of metastatic cancer in patients with melanoma, with 
over 50% clinical responses, many of which are lasting for 
years [33]. ATCT of TIL can mediate complete and durable re-
gression of melanoma brain metastases [34], indicating that 

TIL can cross the blood-brain barrier and might be a new ap-
proach for brain tumors.

The great progression of TIL therapy in metastatic melano-
ma suggests that this approach might be used for other ma-
lignancies. Increasing lymphocytic infiltration in the solid tu-
mors always infers a good prognosis; however, the difficulty 
in identifying antigen-specific T cells in other cancers is a ma-
jor barrier to widespread use of TIL therapy. Currently, not all 
patients with advanced melanoma can be candidates for sur-
gical excision of a tumor metastasis necessary to generate TIL. 
Techniques have been developed to modify peripheral lympho-
cytes recognizing tumor antigens.

Genetically-modified autologous peripheral blood 
lymphocytes

T cell therapy with modified T cell receptor genes

T cell receptor a and b chain genes can be identified and isolat-
ed from the T cells of the rare patients who respond to tumors 
[35]. By means of viral or non-viral technologies, large numbers 
of antigen-specific T cells can be rapidly generated [36,37]. The 
modified T cells can proliferate and respond to tumor cells ex-
pressing the target TAA presented by MHC molecules.

The first clinical trial using TCR-T cells targeting MART-1 (mela-
noma antigen recognized by T cells, DMF4 clone) for the treat-
ment of metastatic melanoma was performed by Rosenberg’s 
group [38]. The TCR genes were isolated from a patient who 
had received TIL therapy with excellent clinical response. The 
infused MART-1 TCR T cells sustained for over 1 year, and 2 
of 17 patients demonstrated a sustained objective regression 
of metastatic lesions. Later on, T cells with TCR recognizing 
MART-1 (DMF5 clone) or g100 were generated and transfused 
into patients with advanced melanoma and showed a relative-
ly enhanced avidity [39]. Six of 20 patients (30%) treated with 
DMF5 TCR and 3 of 16 (19%) treated with gp100 TCR experi-
enced an objective antitumor response. Tumors regressed in 
multiple organs, including the brain, lung, liver, lymph nodes, 
and subcutaneous sites. However, 29 of 36 patients had a wide-
spread erythematous skin rash, 15 patients developed ante-
rior uveitis, and 15 patients developed hearing loss, caused 
by recognition of low-level expression of MART-1 and gp100 
antigens on normal melanocytes, retina, and inner ear (also 
called the “on-target, off-organ” effects).

Carcinoembryonic antigen (CEA) is another promising TAA as 
a target of immunotherapies, which over-express in many epi-
thelial cancers, most notably in colorectal adenocarcinoma. In 
a phase I trial produced by Parkhurst’s group [40], 1 in 3 pa-
tients with metastatic colorectal cancer had an objective re-
gression of cancer metastatic to the lung and liver after the 
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adoptive therapy using CEA TCR-T cells. However, all 3 patients 
suffered a severe transient inflammatory colitis as a result of 
the “on-target” effect, which emphasized the destructive pow-
er of small numbers of highly avid T cells and the limitations 
of using CEA as a target for cancer immunotherapy.

NY-ESO-1 is a member of the cancer-testis antigens family, ex-
pressed by a wide range of epithelial malignancies, but is re-
stricted in its expression in normal adult tissues to cells in the 
testis that lack expression of MHC-I molecules. As a result, NY-
ESO-1 is not susceptible to damage by T cells that recognize 
the gene products, with less possibility to induce “on-target” 
cytotoxicity. Transfer of NY-ESO-1 TCR engineered T cells medi-
ated objective cancer regressions in 5 of 11 patients with mel-
anoma and 4 of 6 patients with synovial cell sarcoma bearing 
tumors express NY-ESO-1 [41]. No “on-target” toxicities were 
seen in this trial. All patients experienced a transient neutro-
penia and thrombocytopenia induced by the preparative reg-
imen and the transient toxicities associated with IL-2. Similar 
results were reported in another phase I trial [42], but 3 of 
all 9 patients suffered severe neurological toxicity. Other can-
cer-testis antigens such as LAGE-1, MAGE-A4, and SSX-2 have 
also been investigated for their potential role as target tumor 
antigens for T cells in active immunotherapies. Some anti-tu-
mor activities towards several tumor cell lines and rodent tu-
mor models have been reported [43–45]. Clinical trials in hu-
mans have not yet been published.

Despite the promising therapeutic results of TCR-engineered T 
cells, the number of TAAs identified is relatively limited. During 
the past decade, a novel TAA named receptor-binding cancer 
antigen expressed on SiSo cells (RCAS1) has gained atten-
tion for its ability to induce cell-cycle arrest and/or apoptosis 
in RCAS1 receptor-bearing cancer cells [46–48]. Tissue RCAS1 
expression was associated with important clinicopathological 
parameters for patient prognosis and tumor immune escape, 
which might become a potential target for immunotherapies. 
Another concern is that some TAAs are expressed on tumor 
cells and on activated T cells. Several studies demonstrated that 
survivin, an apoptosis inhibitor protein, belongs to this type of 
TAA. The expression of survivin and the subsequent presenta-
tion of the survivin TCR on the cell surface of activated T cells 
led to their recognition and fratricide killing by survivin-spe-
cific TCR-modified T cells in an MHC-restricted fashion [49], 
which indicates the limitation of survivin-specific TCR-T cells.

T cell therapy with modified CAR genes

One of the important mechanisms of immune evasion for ma-
lignant tumors is that tumor cells can frequently lose antigen 
expression through down-regulation of MHC expression and 
failure to process antigens to the cell surface. This process led 
to the restricted use of TCR-T cell therapies because T cells 

specifically recognize a single TAA presented by MHC molecules 
only. In contrast, most CARs use an antibody-derived antigen-
binding motif to recognize antigen or bind to the cognate li-
gand or receptor counterpart, and recognize native cell surface 
antigens in a MHC-independent manner [50]. Targeting of tu-
mor antigens by CAR-modified T (CAR-T) cells is applicable to 
any cell surface antigen, including proteins, glycolipids, carbo-
hydrates, or even intracellular antigen for which a monoclonal 
antibody (MoAb) can be generated. This allows CAR-T cells to 
affect a wider range of targets compared to TCR.

CARs provide both antigen-binding and T cell-activating func-
tions. Based on the costimulatory activity, current CARs are 
classified into 3 generations. The first-generation CARs contain 
the single-chain variable fragments (scFv) fused to an intracel-
lular signaling domain of CD3z or Fc receptor g chain without 
the intracellular signaling domains of costimulatory molecules.

Although the anti-tumor effect of CAR-T cells has been dem-
onstrated in external and animal experiments, clinical tri-
als have just started. Several centers have conducted phase 
I clinical trials testing the anti-tumor efficacy of first-genera-
tion CARs targeting folate receptor (FR) in ovarian cancer [51], 
carbonic anhydrase IX (CAIX) in renal cell carcinoma [52,53], 
L1-cell adhesion molecule (L1-CAM; CD171) [54], CD20 in in-
dolent non-Hodgkin lymphoma [55], and diasialoganglioside 
GD2 [56,57] in neuroblastoma. The objective clinical respons-
es in these phase I trials were weak since most patients did 
not receive a significant clinical benefit. Moreover, the trans-
fused CAR-modified T cells showed limited peripheral persis-
tence upon repeated antigen exposure.

One method to improve this weakness of first-generation CAR 
by providing costimulation to CAR-transduced T cells was test-
ed by Brenner’s group [56]. They engineered Epstein-Barr vi-
rus (EBV)-specific cytotoxic T lymphocytes (CTLs) to express a 
chimeric antigen receptor directed to the diasialoganglioside 
GD2. Persistence of infused CAR-EBV-specific T cells was in-
deed improved compared to standard bulk-engineered T cells 
infused concurrently in all subjects. Four of the 8 patients with 
evaluable disease experienced tumor necrosis or regressions.

Receptors encompassing both CD3z and 1 costimulatory signal-
ing domain, mostly CD28, are the prototypes for second-gen-
eration CARs. Savoldo [58] demonstrated the superior persis-
tence, expansion, and trafficking to a site of disease for CARs 
with dual signal domains to the first generation CARs through 
a side-by-side comparisons. More recently, triple-fusion recep-
tors, so-called third-generation receptors, consisting of CD3z, 
CD28, and CD134 (OX40) or CD137 (4-1BB) signaling region, 
have been reported. Triple fusion receptors are active in vivo, 
but comparisons to second-generation CARs have not yet been 
reported. Some researchers believed that the functional activity 
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induced by CAR-T cell is dependent upon endogenous “natu-
ral” receptor interactions [59].

Current clinical trials using T cells modified with second gen-
eration CARs are mainly focused on CD19 antigen in hematog-
enous malignancies such as CD28- or CD137-containing CARs 
in non-Hodgkin lymphoma and lymphocytic leukemia [58,60–
63]. Although all the studies were phase I trials, in which safe-
ty and feasibility were the biggest concerns, some candidates 
did show evidence of tumor regression to an extent. The ther-
apeutic effect of the second-generation CARs in treating other 
solid tumors is still under investigation through in vitro stud-
ies and animal experiments [64].

Tc1 and Th1 cells with chimeric receptor fused to CD28 and 
CD3z specifically recognizing CEA showed strong antitumor ac-
tivity and produced IFN-g in response to CEA-expressing hu-
man lung cancer and colon cancer cells, and inhibited tumor 
growth RAG2−/− in mice [65,66]. Similarly, treatment of breast 
cancer-bearing mice with scFv-erbB2-CD28-CD3z-modified T 
cells resulted in significant inhibition of tumor growth and 
long-term, tumor-free survival in the hosts. More important-
ly, the surviving mice developed a host memory response to 
tumor cells, and this memory response could protect from re-
challenge with parental breast cancer cells [67,68], indicating 
that the CAR-T cells transfusion will become a promising strat-
egy for adoptive immunotherapy of human cancer.

Two reports of death following administration of CAR-T cells 
emphasize the dangers of this approach. The first report de-
scribed a patient with widely metastatic colon cancer treated 
with a third-generation CAR (CD28/4-1BB/CD3z) – engineered T 

cell therapy targeting ERBB2 [69], and the other trial described 
a patient with bulky chronic lymphocytic leukemia treated with 
a second-generation CAR (CD28/CD3z) that recognized CD19 
[70]. The deadly toxicity may be due to the “on-target” effect 
– the low levels of ERBB2 on lung epithelia were recognized 
by transgenic T cells, and severe underlying infection followed 
by a cyclophosphamide-induced “cytokine storm” resulting in 
multiple organ failure.

In other trials, grade 2–4 liver toxicity was observed in CAIX-
CAR-T cell therapies because of the specific attack of the mod-
ified T cells against the CAIX+ bile duct epithelial cells [52,53]. 
This toxicity can be prevented by blocking antigenic sites in off-
tumor organs and allowing higher T cell doses [71]. FR, on the 
other hand, seems to be a promising candidate for the bio-tar-
get of CAR-T cells therapies in solid tumors. It is overexpressed 
in ovarian, lung, renal, and breast cancers, but restricted in 
normal conditions to the apical surfaces of polarized epithelia, 
where it may be inaccessible to circulation-redirected T cells [72].

Most scFvs are derived from mouse monoclonal antibodies, 
which may trigger a host immune response [51,53]. The im-
munogenicity of conventional CARs may lead to its restrict-
ed clinical use. CARs encompassing humanized scFvs or scFvs 
derived from human monoclonal antibodies will probably re-
duce this concern.

Summary and Future Direction

With similar active mechanism, LAK cells are nearly abandoned 
now because of high toxicity and low cytolytic effect, whereas 

Type of 
ATCT

Characters Advantages Disadvantages Comments

LAK cells Non-specific.
Non-MHC-
restricted

Modest efficacy in melanoma, RCC, 
and glioma through systematic 
administration or intralesional 
injection

High toxicity. Limited expansion 
in vitro
Low cytotoxicity

Almost abandoned

CIK cells Non-specific.
Non-MHC-
restricted

Improved cytotoxicity VS LAKs.
Low toxicity

The definite conclusion about the 
clinical efficacy of CIKs is unclear 

Potential applicability 
in various solid tumors

TILs Specific Most effective treatment for 
metastatic melanoma

Candidature only accepted when 
the tumor is resectable
Requirement of immunodepleting 
preparation

Limited application in 
other solid tumors

TCR-T cells Specific
MHC-restricted

High avidity to tumor cells
Long-lasting responses

Limited identified TAAs
“On-target, off-organ” effects

Potential applicability 
in various solid tumors

CAR-T 
cells

Specific
Non-MHC-
restricted

Wide range of potential target TAAs
High avidity to tumor cells
Long-lasting responses

“On-target, off-organ” effects Potential applicability 
in various solid tumors

Table 1. Characters of different ATCT in solid tumors.
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CIK cells seem have the therapeutic potential for solid tumors 
with good preclinical results. Specific immunotherapies, on the 
other hand, have a higher avidity and efficacy. To date, adoptive 
transfer of TIL is the most effective treatment for patients with 
metastatic melanoma. At the Surgery Branch, NCI, the efficacy of 
TIL therapy is currently being tested for patients with metastatic 
digestive tract adenocarcinomas. Genetically engineered T cells 
have a long-lasting effect towards a wide range of solid cancers. In 
mutant experiments, the host might develop a memory response 
to tumor and revive from the reexposure of the tumor cells. It is 
crucial to choose the target antigen. High-affinity TCRs or CARs 
have the potential to cross-recognize normal cells as well as tu-
mor cells. NY-ESO-1 and folate receptor appear promising because 
low incidence of “on-target” adverse effects was been observed.

After decades of efforts on the immunology of solid tumors, 
ATCT has shown its great potential in treating metastatic solid 
cancers (characters as shown in Table 1), but still ACTC holds 
a marginal place in the management of advanced solid can-
cers. The major obstacle for the application of ATCT is the per-
sonalized nature of this approach, which brings the difficulty 
in cell expansion and culture on a large scale. The technologi-
cal limitations, facility requirements, and the cost may restrict 
the application of ACTC. Continued investigation into the ele-
ments that govern the persistence of tumor-targeted T cells is 
essential to improve the cell product quality. Meanwhile, it is 
necessary to evaluate the efficacy and safety of ACTC in solid 
tumors through multicenter clinical trials.
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