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Abstract Several studies have established the role of activat-
ed corneal keratocytes in the fibrosis of the cornea. However,
the role of keratocytes inmaintaining the structural integrity of
a normal cornea is less appreciated. We focus on the probable
functions of integrins in the eye and of the importance of
integrin-mediated keratocyte interactions with stromal matrix
in the maintenance of corneal integrity. We point out that
further understanding of how keratocytes interact with their
matrix could establish a novel direction in preventing corneal
pathology including loss of structural integrity as in
keratoconus or as in fibrosis of the corneal stroma.
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The simple cellular organization of the cornea is belied by its
fascinating specialization for transparency. The cornea has
three main tissue layers, the outer epithelium, the stroma in
the middle and the inner endothelial layer. The stromal con-
nective tissue, the layer mainly responsible for the corneal
configuration, constituting nearly 80 % of the thickness of the
cornea, is extremely resilient, capable of resisting intraocular
pressure and protecting the posterior structures of the eye. The
stromal tissue consists of lamellae of orthogonally arranged
collagen fibrils surrounded by proteoglycans; in between the
lamellae of collagen are found the keratocytes. The near-
orderly arrangement of collagen lamellae, the narrow diameter
of the collagen fibrils, regular interfibrillar space, associated

proteoglycans and the expression of crystalline proteins in the
keratocytes (Birk 2001; Kao and Liu 2002; Jester et al. 2007;
Hassell and Birk 2010) are some of the main factors respon-
sible for corneal transparency. Consequently, the factors af-
fecting corneal transparency such as fibrotic changes due to
disease or injury are problems primarily associated with the
stroma. Thus it is important to achieve further understanding
of the mechanisms by which the stroma acquires and main-
tains its structural integrity and its transparency.

Loss of corneal transparency is the second leading cause of
blindness affecting the general population worldwide
(Whitcher et al. 2001). The lack of orderly arrangement of
the newly deposited stromal extracellular matrix (ECM) after
a penetrating wound of the cornea (McCally et al. 2007) or
after inflammatory corneal diseases (herpes simplex virus,
infectious ulcers, rosacea) is an impediment to the transmis-
sion of light through the cornea. Occurrence of edema in the
stroma as in Fuchs’ dystrophy or after surgical intervention is
also known to hinder the transmission of light (Portellinha
et al. 2001; Meek et al. 2003; Elhalis et al. 2010). The integrity
of the stroma is important for many other clinically important
topics as well; shape disorders of the cornea such as
keratoconus, keratoglobus, pellucid marginal degeneration
(Krachmer et al. 1984) often need surgical intervention, while
correction of shape disorders of the cornea such as astigma-
tism is achieved by the multi-billion dollar spectacle and
contact lens industry. The equally beneficial refractive surgery
industry uses excimer laser to reshape the curvature of the
stroma to achieve vision without glasses (McDonnell 1999).

Although several studies have expanded our understanding
of the importance of structural components by which cornea
remains transparent, very few investigations explore the role
of keratocyte cells in a normal corneal stroma; they are gen-
erally considered quiescent having left the cell cycle
(Francesconi et al. 2000; Jester et al. 2007). This is unexpect-
ed, considering that the keratocytes are the cells mainly
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responsible for the production of stromal extracellular matrix
(ECM) (Cintron et al. 1983; Haustein 1983) and probably are
mainly responsible for the unique arrangement and assembly
of the matrix. A theme of importance that has not seen the
limelight, mostly due to absence of in vivo studies, is the role
of mechanical communication of keratocytes with their extra-
cellular environment in maintaining corneal structural integri-
ty. Cell-ECM interaction is critical for communicating the
state of the mechanical environment to the cell as well as in
mediating cellular response to a variety of stimuli (Pedersen
and Swartz 2005). We discuss the role of keratocyte-integrins
and ECM components in the maintenance of the stromal
structure in a normal cornea and the restoration of stromal
integrity after corneal disease or injury.

Constituents of corneal stromal ECM

Collagen is the primary constituent of the stromal matrix and
include collagen types I, V, VI, VIII, XII, XIII and XIV
(Quantock and Young 2008). The major collagen of the stro-
ma is collagen type I and it forms heterotypic fibrils with
collagen type V (Birk et al. 1988). Some collagens are detect-
ed in the stroma only during certain phases of corneal

development and include type XIV collagen (may have a role
in stromal fibrillogenesis (Young et al. 2002)), type XV col-
lagen (may influence corneal avascularity (Saika et al. 2004))
and type XXIV collagen (may regulate type I collagen
fibrillogenesis (Koch et al. 2003)).

In Mov13 mutant mouse, which does not synthesize
collagen I, there was normal cellular organization during
corneal morphogenesis, but the stroma lacked orthogonal
organization of collagen lamellae and had markedly less
collagen; also collagen fibrils present were of smaller fibril
diameter than in normal cornea (Bard and Kratochwil
1987). Patients with Ehlers-Danlos syndrome due to CO-
L5A1 haploinsufficiency or exon-skipping mutation in CO-
L5A2 had thinner corneas. Collagen V regulates collagen
fibril assembly and Col5a1-haploinsufficient mouse had
opacity of cornea, thinner stroma, disorganized lamellae
and fewer collagen fibrils with larger diameters (Segev
et al. 2006; Sun et al. 2011). Lack of collagen type VIII
leads to dysgenesis of the anterior segment in mice with
protrusion of anterior chamber and thin corneal stroma
(Hopfer et al. 2005). Further, there is increased expression
of type XIII collagen in the myofibroblasts of stromal scar
tissue in keratoconus corneas, indicating a role in wound
healing (Maatta et al. 2006) (Table 1).

Table 1 Established functions of extracellular matrix components of the corneal stroma

Gene disruption /
knockout / mutation

Corneal / stromal phenotype / disease References

Collagen, type I, alpha 1 Less collagen, lack of orthogonal organization, smaller fibril diameter (Bard and Kratochwil 1987)

Collagen, type V, alpha 1 / 2 Opacity of cornea, thinner stroma, disorganized lamellae, fewer
collagen fibrils, larger fibril diameter; Ehlers-Danlos syndrome

(Segev et al. 2006; Sun et al. 2011)

Collagen, type VIII,
alpha 1 and alpha 2

Dysgenesis of the anterior segment: keratoglobus-like protrusion, thin
corneal stroma, thin Descemet’s membrane, reduced number of
endothelial cells; Fuch’s endothelial dystrophy and posterior
polymorphous corneal dystrophy

(Biswas et al. 2001; Hopfer et al. 2005)

Lumican / fibromodulin /
PRELP / opticin

High myopia (Wang et al. 2006; Majava et al. 2007)

Lumican Corneal opacity, larger collagen fibril diameter, disorganized
collagen arrangement

(Chakravarti et al. 1998)

Keratocan Thinner stroma, larger collagen fibril diameter, less organized
fibrils; cornea plana

(Pellegata et al. 2000; Liu et al. 2003)

N-acetylglucosamine-6-O-
sulfotransferase

Thinner stroma, decreased interfibrillar spacing, disorganized
collagen arrangement; macular corneal dystrophy

(Midura et al. 1990; Hayashida et al. 2006)

Decorin Mild changes in collagen ultrastructure; congenital stromal dystrophy (Bredrup et al. 2005; Zhang et al. 2009)

Biglycan Mild changes in collagen ultrastructure (Zhang et al. 2009)

Decorin and biglycan Severe disruption of collagen fibril structure and organization (Zhang et al. 2009)

Mimecan No significant abnormalities (Beecher et al. 2005)

Thrombospondin-1 Chronic edema and persistent opacity following penetrating corneal injury (Blanco-Mezquita et al. 2013)

Osteopontin Upon corneal injury: delayed wound healing, fewer myofibroblasts,
reduced expression of TGF-β

(Miyazaki et al. 2008)

Hevin Upon corneal injury: excessive apoptosis, aberrant wound healing,
early corneal haze, severe chronic inflammation, stromal fibrosis

(Chaurasia et al. 2013)

Tenascin-C Upon corneal injury: delayed stromal wound healing, impaired
keratocyte migration, fewer myofibroblasts, less invasion of
macrophages, reduced expression of TGF-β

(Matsuda et al. 1999; Sumioka et al. 2013)
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Proteoglycans are found associated with collagen fibrils in
the corneal stroma; they have a core protein with one or more
glycosaminoglycan (GAG) side chains covalently attached.
Corneal proteoglycans mainly belong to the small leucine-rich
type proteoglycan (SLRP) gene family and include decorin,
biglycan, lumican, keratocan, mimecan and fibromodulin.
Decorin and biglycan have chondroitin / dermatan sulfate
GAG chain attached to their core protein; while lumican,
keratocan, mimecan and fibromodulin have keratan sulfate
GAG chains. Decorin and keratocan are present in relatively
high levels throughout the stroma in mature corneas
(Chakravarti et al. 2006; Zhang et al. 2009). In contrast,
post-natal keratocytes had low-immunoreactivity for
mimecan (Chakravarti et al. 2006). Fibromodulin has been
found in the mouse central cornea at post-natal day (P) 14 but
becomes restricted to the limbus by P30 (Chen et al. 2010).
Similarly, biglycan was expressed highly during corneal de-
velopment but gradually decreased to low levels in mature
cornea (Zhang et al. 2009) and lumican becomes restricted to
posterior stroma in adult cornea (Chakravarti et al. 2006).
These SLRPs have similar or homologous core protein and
along with their GAG chains are also similar in size and thus
considered to have a role in maintaining the regular distance
between collagen fibrils in the corneal stroma (Hassell and
Birk 2010). They are also involved in collagen fibril growth,
fibril organization and ECMassembly (Chen et al. 2010; Chen
and Birk 2013). SLRPs also regulate cell-matrix-interactions:
for example, lumican modulated cell migration by binding to
integrins (Lee et al. 2009; Zeltz et al. 2010); while decorin
inhibited cell adhesion to fibronectin and thrombospondin
(Winnemoller et al. 1991; Merle et al. 1997). Further, SLRPs
have important role in modulation of inflammation (Moreth
et al. 2012), and can regulate corneal wound healing (Mohan
et al. 2011).

Loss of function mutations in genes encoding SLRPs
lumican, fibromodulin, PRELP and opticin are associated with
high myopia (Wang et al. 2006; Majava et al. 2007). Mice with
null mutation in lumican develop corneal opacity with disorga-
nized and abnormally thick collagen fibrils (Chakravarti et al.
1998); however, keratocan-deficient mice had normal corneal
transparency despite thinner stroma, larger stromal fibril diam-
eter and less organized collagen fibrils (Liu et al. 2003). People
with mutations in the gene encoding keratocan suffer from
cornea plana (Pellegata et al. 2000). Mutations in the gene that
encodes a sulfotransferase that is vital for sulfation of keratan
sulfate chains cause macular corneal dystrophy (Midura et al.
1990; Hayashida et al. 2006). Mutations in the decorin gene
have been identified as the cause of corneal opacity as in
congenital stromal dystrophy (Bredrup et al. 2005). Deficiency
of either decorin or biglycan in mice caused only mild changes
in stromal collagen ultrastructure; however deletion of both
caused severe disruption of collagen fibril structure and orga-
nization (Zhang et al. 2009). Mimecan-deficient mice did not

show significant abnormalities in corneal stromal architecture,
indicating a lesser role for this proteoglycan (Beecher et al.
2005) (Table 1).

Matricellular proteins are non-structural ECM proteins that
regulate cell function by interacting with and modulating the
actions of cell-surface receptors, growth factors, cytokines,
proteases, and matrix proteins (Bornstein and Sage 2002).
Role of matricellular proteins such as hevin, connective tissue
growth factor (CTGF / CCN2) and thrombospondin are less
defined in a normal corneal stroma. However, matricellular
proteins have an important role in wound healing (Kyriakides
and Bornstein 2003) and their involvement in the corneal
wound healing (Table 1) is discussed later in this review.

Identification of biological roles of various integrins

Cells interact with their extracellular matrix (ECM) mainly
through integrin receptors. Integrins are glycoprotein hetero-
dimers made of noncovalently associated α and β chains. The
vertebrate family of integrins has 18 α subunits and 8 β
subunits allowing 24 different heterodimers to exist, and are
classified further into subgroups based either on their subunit
composition or ligand-binding properties. They recognize and
bind to aspartic acid or glutamic acid-based sequence motifs
in various ligands, including collagen, fibronectin, laminin
and growth factors (Hynes 2002; Barczyk et al. 2010).
Mg2+, Ca2+ and Mn2+ cations are also known to have a crucial
role in binding of integrins to their ligands (Arnaout et al.
2002; Campbell and Humphries 2011).

Though integrins have been identified to have a role in
several diseases such as cancer, infection, thrombosis and
autoimmune disorders, identifying a specific integrin involved
or assigning a precise role has been difficult because of the
multifactorial nature of most diseases and due to the multiple
integrins present on the cells and their redundant binding
properties (Cox et al. 2010). However, whole-body deletion
of individual integrin subunits is allowing the identification of
unique function of each integrin subunit (Hynes 2002; Chen
and Sheppard 2007; Takada et al. 2007); such deletions
though are usually lethal and involve studying of embryonic
or neonatal mice. Among the breakthroughs, for example, is
the recognition of the critical role of the β1 integrin subunit in
gastrulation; whole-body deletion of β1 integrin resulted in
lethality shortly after embryo implantation (Fassler andMeyer
1995; Stephens et al. 1995). Whole-body deletion of the α5
integrin caused embryonic lethality around day 10–11 due to
abnormality in the development of the posterior trunk with
reduced mesoderm and defects in formation of the neural tube
and vasculature (Yang et al. 1993). On the other hand, mice
harboring a whole-body deletion of the β2 integrin were
viable but developed chronic dermatitis and defective T cell
function with impaired leukocyte adhesion, neutrophil
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migration, leukocytosis and spontaneous infections
(Scharffetter-Kochanek et al. 1998). So far, each of the 24
known integrin subunits have been inactivated resulting in
various defects ranging from impaired bone healing, epider-
mal detachment, inflammation in skin and lungs, cerebral
hemorrhage, kidney defect, heart defect and muscular dystro-
phy. In addition, the post-natal functions of individual
integrins are also being deduced from a growing number of
conditional cell-type-specific knockout animals that are be-
coming available, (see reviews (Hynes 2002; Chen and
Sheppard 2007; Takada et al. 2007)). Though gene deletions
allow us to understand the overall role of integrin subunits, the
signaling mechanisms by which integrins regulate the func-
tion of various tissues have yet to make significant progress.

Established functions of integrins in the eye
and their association to eye diseases

Though integrins are important for normal development and
tissue homeostasis, their role in pathology / wound healing,
largely perhaps, drives the interest in understanding their
functions in the eye. This is because, unlike many other
tissues, even minor disorganization of tissues of eye due to a
pathology or injury can drastically affect normal vision. Mod-
ulating the activity of integrins could serve as valuable thera-
peutic targets (Kapp et al. 2013). Several studies have revealed
the expression pattern of integrins in the tissues of the eye
during development and in pathology (see reviews, (Stepp
2006; Vigneault et al. 2007; Carter 2009)), however, very
few studies reveal their actual function in the eye.

In the eye, conditional deletion of integrin β1 in the lens
causes microphthalmia due to apoptosis of the lens epithelium
and disintegration of the lens fibers (Simirskii et al. 2007). In a
similar study, there was disrupted lens fiber morphology that
suggested a role for integrin β1 in linking lens fibers to the
surrounding ECM (Samuelsson et al. 2007). Also, deactiva-
tion of both α3 and α6 results in dysmorphogenesis of the
developing lens (De Arcangelis et al. 1999). αvβ5 is the only
integrin present at the retinal pigment epithelium-
photoreceptor interface and its absence resulted in reduced
retinal adhesion and age-related blindness as αvβ5 integrin in
the retinal pigment epithelium is essential for phagocytic
uptake of shed photoreceptor disks (Nandrot et al. 2004). On
the other hand, polarized integrin localization is required for
normal morphogenesis of vertebrate retinal pigment epitheli-
um (Bogdanovic et al. 2012). α4β1 was found to be required
for survival of developing retinal neurons (Leu et al. 2004).
Blocking of β1 integrins significantly inhibited retinal gangli-
on cells migration from ventricular zone to the vitreal border
in developing chick retina (Cann et al. 1996).

Alterations in integrin expression have alluded to their
importance and role in vascular changes associated with

diabetic retinopathy (Robbins et al. 1994; Ljubimov et al.
1998), in corneal disorders such as bullous keratopathy
(Spirin et al. 1999; Ljubimov et al. 2001), in recurrent epithe-
lial erosions (Pal-Ghosh et al. 2004), and in keratoconus
(Bystrom et al. 2009). Integrins are also among various factors
that cause retinal detachment in proliferative diabetic retinop-
athy and proliferative vitreoretinopathy (Kupper and Ferguson
1993; Guidry et al. 2003). In rats, blockade of α4 integrin
diminished diabetes-induced increase in NF-kappaB activa-
tion, VEGF and TNF-alpha levels and significantly reduced
leukocyte adhesion and vascular leakage (Iliaki et al. 2009).
Synthetic peptide antagonists of integrin αvβ3 inhibited ret-
inal neovascularization in a murine model when administered
as intraperitonal or periocular injections (Luna et al. 1996),
inhibition of αv integrins prevented basic fibroblast growth
factor-induced neovascularization of cornea (Klotz et al.
2000), and inhibition of α5β1 inhibited and regressed corneal
neovascularization after alkali-burns (Muether et al. 2007).
Blockade of α4β1 decreased dry eye symptoms and inflam-
mation significantly (Ecoiffier et al. 2008). Furthermore,
integrin signaling and integrin-linked kinase activity could
affect the organization and contractility of actin cytoskeleton
in trabecular meshwork cells (Faralli et al. 2011), a factor
known to modulate aqueous humor outflow.

Role of integrins in the cornea

Corneal epithelium is known to express β1, β4, β5, α2,α3,
α4, α5, α6 and αv (Lauweryns et al. 1991; Stepp et al. 1993),
with α5, α6, and β4 localizing specifically to the basal
membrane of the basal cells (Stepp et al. 1993) while
keratocytes are known to express α2β1, α3β1, α4β1, α6β1
and αvβ3 (Stepp 2006). Several studies have reported alter-
ations in the distribution and expression of integrins during
corneal wound healing (Grushkin-Lerner and Trinkaus-
Randall 1991; Murakami et al. 1992; Stepp et al. 1993,
1996; Latvala et al. 1996; Hutcheon et al. 2005; Carter
2009) indicating an important role for integrins in corneal
homeostasis. For example, elevatedMMP9 activity correlated
with cleavage of integrin β4 and recurrent corneal erosions
(Pal-Ghosh et al. 2011). cDNA microarray studies indicated
that pathogenesis of granular corneal dystrophy II may be due
to alterations in transforming growth factor-β receptor- and
integrin-mediated signaling pathways (Choi et al. 2010). In
wound healing after corneal epithelial abrasion, integrin α6
was detected in migrating epithelial cells (Latvala et al. 1996);
and in final stages of wound healing repression of α6 integrin
is thought to contribute to the reduced proliferation and at-
tachment of epithelium to the basal membrane (Gaudreault
et al. 2007). In an indirect inference, mice lacking heparan
sulfate proteoglycan, syndecan-1, showed slow cell migration
and reduced expression of α9 integrin during corneal

116 S.K. Parapuram, W. Hodge



epithelial wound closure (Stepp et al. 2002). In an in vitro
study with implications for continuation of normal corneal
health, αvβ6 was shown to have a role in the maintenance of
corneal epithelial barrier (Guo et al. 2013). However, inter-
pretation of the precise function of integrins in normal or
wound healing cornea remains problematic as there is dearth
of reports using integrin gene-knockout models. Thus, in a
solitary study, mice lacking integrin β6 revealed that αvβ6
(which is upregulated in the corneal epithelium during wound
healing (Hutcheon et al. 2005)) was essential for basement
membrane zone regeneration during healing of keratectomy
wounds (Blanco-Mezquita et al. 2011).

Integrin β1 and corneal structural integrity

It is in this scenario that keratocyte-integrin β1 (Itgb1) was
found to have an important role in the maintenance of struc-
tural integrity of the normal adult cornea (Parapuram et al.
2011), with implications on corneal wound healing without
scarring. Postnatal (at 23 to 26 days) deletion of Itgb1 (Itgb1−/
−) in keratocytes caused considerable thinning of mice corneal
stroma accompanied by loss of epithelial layers and other
associated pathological changes similar to the pathology seen
in the corneas of patients with keratoconus (Efron and
Hollingsworth 2008). However, when Itgb1 was deleted in
keratocytes at postnatal day 40 the mouse cornea remained
normal, unlike the corneas that developed keratoconus-like
phenotype when Itgb1 was deleted at postnatal days 23–26
(Parapuram et al. 2011). This implied that the deletion of Itgb1
at days 23–26 after birth somehow affected the process of
postnatal stromal maturation. It is known that corneal struc-
tural organization continues to mature after birth in cats, dogs
and humans (Ehlers et al. 1976; Moodie et al. 2001; Montiani-
Ferreira et al. 2003). In humans, adult corneal thickness is
reached at about 3 years of age (Ehlers et al. 1976). In the
mouse, even though the keratocyte cell division plateaus about
postnatal day 21, the stroma continues to mature, to reach
adult thickness only by postnatal day 30 (Song et al. 2003;
Chakravarti et al. 2006; Jester et al. 2007). However, the
specific molecular events that allow maturation of the stroma
remain unknown.

Stromal ECM maturation

Several factors could influence the formation of the
stromal matrix and its maturation. Thus, even though
collagen I can self-assemble to form fibrils in vitro,
several other molecules, including other collagens, fibro-
nectin and integrins regulate collagen fibril formation
in vivo (Kadler et al. 2008). Collagen type V is involved
in initiating fibril assembly (Wenstrup et al. 2004, 2006).

Antibody against α2β1 integrin inhibited collagen fibril
assembly by vascular smooth muscle cells, while pro-
moting the high-affinity binding state of α2β1 integrin
enhanced the fibril assembly (Li et al. 2003). Collagen
fibril diameter, on the other hand, is known to be deter-
mined by the core proteins of lumican and decorin (Rada
et al. 1993), proteoglycans present in the corneal stroma,
as well as by type V collagen (Birk et al. 1990).

The thinning of Itgb1−/−corneas was not accompanied by
any change in stromal collagen fibril diameter or gross pro-
teoglycan deposition (Parapuram et al. 2011). However, in-
stances of reduction in space between collagen fibrils in the
Itgb1−/−corneas (Parapuram et al. 2011), indicate the inability
of the matrix to resist strain; repulsive charges of proteogly-
cans, for example, are known to resist compression
(Buschmann and Grodzinsky 1995). These observations in
the Itgb1−/−corneas support the prevalent hypothesis that
thinning of keratoconus cornea is attributable to increased
sliding of the collagen and not due to loss of tissue (Polack
1976; Edmund 1988). Consistent with this viewpoint is the
recent report of decreased expression of lysyl oxidase (LOX),
the enzyme that is involved in the cross-linking collagen
molecules as well as elastin, in keratoconus corneas
(Dudakova et al. 2012). Reducing the formation of cross-
links in collagen by inhibiting LOX is known to reduce the
mechanical stability of matrix and decreased adhesion signal-
ing (Bruel et al. 1998; Levental et al. 2009). Conversely,
LOX-induced collagen cross-linking and tissue stiffening pro-
moted integrin clustering and increased adhesion signaling
(Levental et al. 2009). Few studies have indicated that the
interlamellar and probably intralamellar slippage in
keratoconus stroma is due to loss of cohesion between colla-
gen fibrils and non-collagenous matrix (proteoglycans)
(Fullwood et al. 1992; Daxer and Fratzl 1997; Meek et al.
2005). It is possible that tractional forces generated by
keratocytes (Petroll et al. 2003) through integrins could pro-
vide appropriate spatial conditions for cross-linking by LOX
or for proteoglycan-collagen interaction, thus facilitating
proper maturation of matrix. In this context, it has to be noted
that decreased expression of integrins has been reported in
keratoconus corneas (Vorkauf et al. 1995; Tuori et al. 1997).
Deficiency of magnesium, which is required for activation of
integrins, has also been reported in patients with keratoconus
(Thalasselis et al. 1988). Thus, it is highly likely that the
etiology of keratoconus could be multifactorial but converge
on a common mechanism that prevents matrix maturation
during corneal development resulting in gradual development
of the disease. Similarly, in a healing cornea conditions for
proper maturation of newly laid matrix may be deficient and is
perhaps the reason for its disorganized deposition. Conse-
quently, keratocyte-matrix interactions and integrin signaling
during the entire course of corneal development and in wound
healing warrants further study.
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Furthermore, maturation of the stromal matrix is perhaps
vital for its role as a load-bearing structure. Diseases such as
keratoconus paradoxically allow appreciation of the mechan-
ical role of matrix in a normal cornea. The stromal matrix can
shield the keratocytes from stress; for any external stress
applied (such as the intraocular pressure) the matrix typically
bears most of the stress, resulting in almost no load on the cells
(Pedersen and Swartz 2005). It is possible that in keratoconus
as well as in the Itgb1−/−corneas there is increased stress on
the keratocytes due to loss of integrity of the matrix, affecting
the normal physiology of keratocytes. We can only speculate
presently that such stress could disrupt the growth factor-
mediated communications between the keratocyte and corneal
epithelium (Wilson et al. 1999; Imanishi et al. 2000) and is a
cause for the reduced cell division of basal epithelia in the
Itgb1−/− corneas (Parapuram et al. 2011). The necessity of a
mature matrix is again evident as the swelling pressure caused
by hydrophilic glycosaminoglycans is counteracted by the
lamellar tension and the cohesive forces between lamellae
(Klyce et al. 1971; Smolek and McCarey 1990; Dupps and
Wilson 2006). Disruption of the lamellar tension and the
cohesive forces between lamellae is considered a cause of
edema (Dupps and Wilson 2006) and could be one explana-
tion for the occurrence of edema in Itgb1−/− corneas. In fact,
activation of integrin β1 signaling is known to reduce edema
in other systems (Rodt et al. 1994) and this may also have
relevance in treating corneal edema. Also, cross-linking of
collagen to strengthen the stroma, a therapeutic strategy for
management of keratoconus (Wollensak et al. 2003), is thus a
logical substitute for the role of integrins in the development
of stromal matrix into a resilient load-bearing structure.

Integrin-mediated events that modulate stromal wound
healing

The wound healing events are complex and often occur si-
multaneously and are influenced by several factors (Netto
et al. 2005). In cutaneous wound healing, integrins are impli-
cated in all phases of wound repair, including migration of
various types of cells, matrix remodeling and in wound con-
traction (Larsen et al. 2006; Li et al. 2007). Deletion of
integrin β1 in fibroblasts delayed cutaneous wound closure,
less granulation tissue formation, reduced deposition of ECM
and α-smooth muscle actin expression (Liu et al. 2010).
Proteoglycans, such as lumican can promote skin wound
healing by enhancing α2β1 integrin-mediated fibroblast con-
tractility (Liu et al. 2013). Also, integrins are now considered
to regulate the availability of active transforming growth
factor-β (TGF-β), the most potent stimulator of fibrosis, at
the site of injury by protease-dependent and protease-
independent mechanisms (Margadant and Sonnenberg
2010). The protease-independent TGF-β activation occurs

through integrin-mediated cell traction forces (Annes et al.
2004; Fontana et al. 2005; Wipff et al. 2007; Wipff and Hinz
2008) and is likely to influence the outcome of corneal wound
healing, especially being a structure that experiences tension.
Isoforms TGF-β2 and -β3 have been localized in the matrix
of normal stroma, while isoforms TGF-β1, −β2 and -β3 were
expressed in the stromal cells during wound healing (Saika
et al. 2008). Such activation of TGF-β byαvβ3,αvβ5,αvβ6
andαvβ8, as well as byβ1-integrin with a yet unidentified α-
subunit, has been demonstrated in vitro (Wipff and Hinz
2008); αvβ3, as noted earlier, is expressed by keratocytes.

In corneal wound healing, stromal keratocytes are activated
by factors released by the injured corneal epithelium, by the
neutrophils and lymphocytes that reach the site of injury and
from the tear film (Klenkler and Sheardown 2004). The mi-
gration of neutrophil in injured mouse cornea is integrin-
dependent and these neutrophils interact with keratocytes
and prefer to migrate along the keratocyte network (Petrescu
et al. 2007; Hanlon et al. 2014). These activated keratocytes
proliferate to repopulate the region of stromal injury in which
keratocytes have disappeared due to apoptosis (Helena et al.
1998; Wilson 2002). At 1–2 weeks after injury
myofibroblasts, mostly differentiating from bone marrow-
derived cells (Barbosa et al. 2010; Wilson 2012), and less
transparent than keratocytes (Jester et al. 1999; Piatigorsky
2000) can be detected (Jester et al. 1995). Myofibroblasts
deposit large amounts of ECM (Klingberg et al. 2013) that
contributes to stromal opacity (Wilson 2012) and their con-
traction is associated with wound closure, compaction of
matrix (Tomasek et al. 2002; Gabbiani 2003) and activation
of latent TGF-β (Wipff et al. 2007). Myofibroblast apoptosis
(Wilson and Chaurasia 2007) results in their disappearance
slowly over weeks following restoration of corneal epithelial
basement membrane after injury (Stramer et al. 2003; Dupps
and Wilson 2006); conversely, corneal haze due to fibrosis is
associated with persistent presence of myofibroblasts (Netto
et al. 2005). Stromal scar tissue had markedly decreased levels
of lumican (Sundarraj et al. 1998) and this may be related to
TGF-β-induced keratocyte-myofibroblast transition that is
known to decrease the expression of normal stromal proteo-
glycans lumican, keratocan, mimecan and decorin, but also
increase the expression of biglycan, a proteoglycan present in
fibrotic tissue (Funderburgh et al. 2001). Stromal scar tissue
may take several years to resolve and may involve remodeling
of disorganized stromal collagen (Netto et al. 2005) by
keratocytes that repopulate the stroma after the disappearance
of myofibroblasts (Wilson 2012).

Fibrosis is associated with increased integrin-mediated ad-
hesion signaling in the myofibroblasts (Hinz et al. 2007;
Wong et al. 2011). Relatedly, conduciveness for growth of a
particular type of cell can be determined by the stiffness of the
matrix (Georges et al. 2006; Carracedo et al. 2010) and may
explain the persistent presence of highly adhesive and
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contractile myofibroblasts until remodeling of matrix occurs.
In fibroblasts, blocking adhesion signaling through integrin
β1 prevented an increase in alpha-smooth muscle actin posi-
tive stress fibers even in the presence TGF-β (Arora et al.
1999). Integrins, such asα11β1,α5β1, are known to regulate
keratocyte to myofibroblast differentiation (Jester et al. 1994;
Carracedo et al. 2010). Conversely, other studies have indi-
cated that myofibroblastic differentiation required TGF-β and
PDGF as well as synergistic signaling with integrins (Jester
et al. 2002; Singh et al. 2011). Equally, autocrine TGF-β
signaling is known to regulate conversion of keratocytes to
myofibroblasts (Masur et al. 1996). On the other hand, over-
expression of decorin in the keratocytes blocked TGF-β-
mediated myofibroblast transformation of keratocytes
(Mohan et al. 2010), while decorin gene therapy inhibited
corneal scarring (Mohan et al. 2011). Also, decorin interacted
with α2β1 in endothelial cells and modulated the collagen I
binding activity of the integrin (Fiedler et al. 2008). Since
α2β1 is also expressed in keratocytes, it should be interesting
to knowwhether such integrin-decorin interaction has a part in
stromal wound healing.

Non-structural matricellular proteins present in the ECM
are known to influence corneal stromal wound healing. Se-
creted protein that is acidic and rich in cysteine (SPARC) is
expressed by activated keratocytes adjacent to stromal wound
and induced contraction of matrix by keratocytes (Mishima
et al. 1998). Connective tissue growth factor (CTGF / CCN2)
is also expressed by keratocytes and has a major role down-
stream of TGF-β in inducing fibrosis (Folger et al. 2001;
Leask 2008). CTGF mediates its activity primarily through
interaction with cell adhesion receptors, including integrins
(e.g. α6β1, αvβ3) and heparan sulfate proteoglycans (Chen
and Lau 2009) and also binds to mannose 6-phosphate /
insulin-like growth factor 2 receptor on keratocytes (Blalock
et al. 2012); IGF-2 has a major role in the development of
fibrosis (Grotendorst et al. 2004). CCN3 (Nov) induced neo-
vascularization when implanted in rat cornea and is a ligand of
i n t eg r i n s αvβ3 and αvβ1 (L i n e t a l . 2003 ) .
Thrombospondins, usually produced by platelets during
wound repair, are also produced in avascular cornea by
keratocytes in a wound-repair phenotype (Hiscott et al.
1996; Armstrong et al. 2002). Thrombospondin-1 is implicat-
ed in the transformation of keratocytes into myofibroblasts via
TGF-β (Matsuba et al. 2011) and is known to interact with
different integrins to modulate inflammatory response, and
cell migration (Li et al. 2002; Short et al. 2005; John et al.
2010). Thrombospondin-1 deficient mice have chronic edema
and persistent opacity after penetrating corneal wounding
(Blanco-Mezquita et al. 2013). Osteopontin (OPN) was also
found to have a role in wound healing; wound healing was
delayed and there were fewer myofibroblasts and TGF-β
expression in the stromal wound of OPN knockout mice
(Miyazaki et al. 2008). OPN is known to promote integrin

activation in gastric cancer cells (Lee et al. 2007) and is
upregulated along with αvβ3 during glial scar formation after
focal stroke (Ellison et al. 1998). Hevin, though not expressed
in normal cornea, is transiently expressed in early stages of
stromal wound healing and excimer laser-induced irregular
phototherapeutic keratectomy in hevin-null mice induced ex-
cessive apoptosis and aberrant wound healing, including early
corneal haze, severe chronic inflammation and stromal fibro-
sis (Chaurasia et al. 2013). Tenascin was upregulated in the
corneal stroma upon incision injury; delayed stromal wound
healing was seen in tenascin C knockout mouse due to im-
paired keratocyte migration, myofibroblast differentiation and
invasion of macrophages, along with reduced expression of
TGF-β1 (Matsuda et al. 1999; Sumioka et al. 2013).

Hitherto, the importance of ECM components in maintain-
ing the structural integrity of the cornea has been established
unambiguously. In parallel, the current evidence also point to
a fundamental role of keratocyte / integrin interactions with
structural and non-structural matrix components in the devel-
opment of normal corneal stroma and in regaining the integ-
rity of the stroma after being affected by disease or injury.
Keratocyte / myofibroblast and their integrins have a role in
both normal wound healing as well as fibrosis, indicating that
a delicate balance in their activity is required for normal
healing to occur. Manipulations of integrin activity in
keratocytes could be beneficial for regaining stromal integrity
after being affected by disease or injury; the drug alpha-
trinositol reduced edema due to acute inflammation after
injury to skin by increasing integrin activity (Lund and Reed
1994; Rodt et al. 1994). Would enhancing integrin activity at
crucial stages of corneal development increase the chance for
normal maturation of matrix and prevent the development of
keratoconus? A similar strategy may be employed for ordered
matrix deposition during stromal wound healing; the exact
role of integrins in normal stromal maturation will perhaps
also reveal the elements required for transparency of newly
deposited matrix. Further defining the events associated with
integrin / keratocyte-mediated matrix maturation in the devel-
oping cornea as well as during wound healing thus remains a
relevant strategy.
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